165 lines
5.2 KiB
C++
165 lines
5.2 KiB
C++
|
#ifndef ELEMENTALMESH_HPP
|
||
|
#define ELEMENTALMESH_HPP
|
||
|
|
||
|
#include "Eigen/Dense"
|
||
|
#include "edgemesh.hpp"
|
||
|
#include "flatpattern.hpp"
|
||
|
|
||
|
struct Element;
|
||
|
struct Node;
|
||
|
|
||
|
class SimulationMesh : public VCGEdgeMesh {
|
||
|
private:
|
||
|
void computeElementalProperties();
|
||
|
void initializeNodes();
|
||
|
void initializeElements();
|
||
|
EdgePointer getReferenceElement(const VertexType &v);
|
||
|
|
||
|
public:
|
||
|
PerEdgeAttributeHandle<Element> elements;
|
||
|
PerVertexAttributeHandle<Node> nodes;
|
||
|
SimulationMesh(FlatPattern &pattern);
|
||
|
SimulationMesh(ConstVCGEdgeMesh &edgeMesh);
|
||
|
SimulationMesh(SimulationMesh &elementalMesh);
|
||
|
void updateElementalLengths();
|
||
|
|
||
|
std::vector<VCGEdgeMesh::EdgePointer>
|
||
|
getIncidentElements(const VCGEdgeMesh::VertexType &v);
|
||
|
|
||
|
double previousTotalKineticEnergy{0};
|
||
|
double previousTotalResidualForcesNorm{0};
|
||
|
double currentTotalKineticEnergy{0};
|
||
|
double totalResidualForcesNorm{0};
|
||
|
double totalPotentialEnergykN{0};
|
||
|
};
|
||
|
|
||
|
struct Element {
|
||
|
struct Properties {
|
||
|
double E{0}; // youngs modulus in pascal
|
||
|
double G{0}; // shear modulus
|
||
|
double A{0}; // cross sectional area
|
||
|
double I2{0}; // second moment of inertia
|
||
|
double I3{0}; // third moment of inertia
|
||
|
double J{0}; // torsional constant (polar moment of inertia)
|
||
|
void computeMaterialProperties(const ElementMaterial &material) {
|
||
|
E = material.youngsModulusGPascal * std::pow(10, 9);
|
||
|
G = E / (2 * (1 + material.poissonsRatio));
|
||
|
}
|
||
|
void
|
||
|
computeDimensionsProperties(const RectangularBeamDimensions &dimensions) {
|
||
|
A = (dimensions.b * dimensions.h);
|
||
|
I2 = dimensions.b * std::pow(dimensions.h, 3) / 12;
|
||
|
I3 = dimensions.h * std::pow(dimensions.b, 3) / 12;
|
||
|
}
|
||
|
void computeDimensionsProperties(
|
||
|
const CylindricalElementDimensions &dimensions) {
|
||
|
A = M_PI *
|
||
|
(std::pow(dimensions.od / 2, 2) - std::pow(dimensions.id / 2, 2));
|
||
|
I2 =
|
||
|
M_PI * (std::pow(dimensions.od, 4) - std::pow(dimensions.id, 4)) / 64;
|
||
|
I3 = I2;
|
||
|
}
|
||
|
Properties(const RectangularBeamDimensions &dimensions,
|
||
|
const ElementMaterial &material) {
|
||
|
computeDimensionsProperties(dimensions);
|
||
|
computeMaterialProperties(material);
|
||
|
J = I2 + I3;
|
||
|
}
|
||
|
Properties(const CylindricalElementDimensions &dimensions,
|
||
|
const ElementMaterial &material) {
|
||
|
computeDimensionsProperties(dimensions);
|
||
|
computeMaterialProperties(material);
|
||
|
J = I2 + I3;
|
||
|
}
|
||
|
Properties() {}
|
||
|
};
|
||
|
|
||
|
struct LocalFrame {
|
||
|
VectorType t1;
|
||
|
VectorType t2;
|
||
|
VectorType t3;
|
||
|
};
|
||
|
|
||
|
EdgeIndex ei;
|
||
|
double length{0};
|
||
|
Properties properties;
|
||
|
double initialLength;
|
||
|
LocalFrame frame;
|
||
|
double axialConstFactor;
|
||
|
double torsionConstFactor;
|
||
|
double firstBendingConstFactor;
|
||
|
double secondBendingConstFactor;
|
||
|
VectorType f1_j;
|
||
|
VectorType f1_jplus1;
|
||
|
VectorType f2_j;
|
||
|
VectorType f2_jplus1;
|
||
|
VectorType f3_j;
|
||
|
VectorType f3_jplus1;
|
||
|
double cosRotationAngle_j;
|
||
|
double cosRotationAngle_jplus1;
|
||
|
double sinRotationAngle_j;
|
||
|
double sinRotationAngle_jplus1;
|
||
|
std::vector<std::vector<VectorType>> derivativeT1;
|
||
|
std::vector<std::vector<VectorType>> derivativeT2;
|
||
|
std::vector<std::vector<VectorType>> derivativeT3;
|
||
|
std::vector<VectorType> derivativeT1_j;
|
||
|
std::vector<VectorType> derivativeT1_jplus1;
|
||
|
std::vector<VectorType> derivativeT2_j;
|
||
|
std::vector<VectorType> derivativeT2_jplus1;
|
||
|
std::vector<VectorType> derivativeT3_j;
|
||
|
std::vector<VectorType> derivativeT3_jplus1;
|
||
|
std::vector<VectorType> derivativeR_j;
|
||
|
std::vector<VectorType> derivativeR_jplus1;
|
||
|
struct RotationalDisplacements {
|
||
|
double theta1{0}, theta2{0}, theta3{0};
|
||
|
};
|
||
|
RotationalDisplacements rotationalDisplacements_j;
|
||
|
RotationalDisplacements rotationalDisplacements_jplus1;
|
||
|
};
|
||
|
|
||
|
struct Node {
|
||
|
struct Forces {
|
||
|
Vector6d external{0};
|
||
|
Vector6d internal{0};
|
||
|
Vector6d residual{0};
|
||
|
Vector6d internalAxial{0};
|
||
|
Vector6d internalFirstBending{0};
|
||
|
Vector6d internalSecondBending{0};
|
||
|
bool hasExternalForce() const { return external.isZero(); }
|
||
|
};
|
||
|
|
||
|
VertexIndex vi;
|
||
|
CoordType initialLocation;
|
||
|
CoordType previousLocation;
|
||
|
CoordType initialNormal;
|
||
|
double translationalMass;
|
||
|
double rotationalMass_I2;
|
||
|
double rotationalMass_I3;
|
||
|
double rotationalMass_J;
|
||
|
Vector6d acceleration{0};
|
||
|
Forces force;
|
||
|
Vector6d velocity{0};
|
||
|
double kineticEnergy{0};
|
||
|
Vector6d displacements{0};
|
||
|
double nR{0};
|
||
|
std::unordered_map<EdgeIndex, double>
|
||
|
alphaAngles; // contains the initial angles between the first star element
|
||
|
// incident to this node and the other elements of the star
|
||
|
// has size equal to the valence of the vertex
|
||
|
|
||
|
std::vector<VCGEdgeMesh::EdgePointer> incidentElements;
|
||
|
std::vector<VectorType> derivativeOfNormal;
|
||
|
SimulationMesh::EdgePointer referenceElement;
|
||
|
};
|
||
|
|
||
|
Element::LocalFrame computeElementFrame(const CoordType &p0,
|
||
|
const CoordType &p1,
|
||
|
const VectorType &elementNormal);
|
||
|
VectorType computeT1Vector(const ::SimulationMesh::EdgeType &e);
|
||
|
|
||
|
VectorType computeT1Vector(const CoordType &p0, const CoordType &p1);
|
||
|
double computeAngle(const VectorType &vector0, const VectorType &vector1,
|
||
|
const VectorType &normalVector);
|
||
|
|
||
|
#endif // ELEMENTALMESH_HPP
|