610 lines
25 KiB
C++
610 lines
25 KiB
C++
|
#include "topologyenumerator.hpp"
|
||
|
#include <algorithm>
|
||
|
#include <iostream>
|
||
|
#include <math.h>
|
||
|
#include <numeric>
|
||
|
#include <unordered_set>
|
||
|
|
||
|
const bool debugIsOn{false};
|
||
|
const bool exportArticulationPointsPatterns{false};
|
||
|
const bool savePlyFiles{true};
|
||
|
|
||
|
// size_t binomialCoefficient(size_t n, size_t m) {
|
||
|
// assert(n > m);
|
||
|
// return tgamma(n + 1) / (tgamma(m + 1) * tgamma(n - m + 1));
|
||
|
//}
|
||
|
|
||
|
// void TopologyEnumerator::createLabelMesh(
|
||
|
// const std::vector<vcg::Point3d> vertices,
|
||
|
// const std::filesystem::path &savePath) const {
|
||
|
// const std::string allOnes(patternTopology.getNumberOfPossibleEdges(), '1');
|
||
|
// const std::vector<vcg::Point2i> allEdges =
|
||
|
// TrianglePatternTopology::convertToEdges(allOnes, vertices.size());
|
||
|
// TrianglePatternGeometry labelMesh;
|
||
|
// std::vector<vcg::Point3d> labelVertices(allEdges.size());
|
||
|
// for (size_t edgeIndex = 0; edgeIndex < allEdges.size(); edgeIndex++) {
|
||
|
// const vcg::Point3d edgeMidpoint =
|
||
|
// (vertices[allEdges[edgeIndex][0]] + vertices[allEdges[edgeIndex][1]])
|
||
|
// / 2;
|
||
|
// labelVertices[edgeIndex] = edgeMidpoint;
|
||
|
// }
|
||
|
// labelMesh.set(labelVertices);
|
||
|
// labelMesh.savePly(std::filesystem::path(savePath)
|
||
|
// .append(std::string("labelMesh.ply"))
|
||
|
// .string());
|
||
|
//}
|
||
|
|
||
|
size_t TopologyEnumerator::getEdgeIndex(size_t ni0, size_t ni1) const {
|
||
|
if (ni1 <= ni0) {
|
||
|
std::swap(ni0, ni1);
|
||
|
}
|
||
|
assert(ni1 > ni0);
|
||
|
const size_t &n = numberOfNodes;
|
||
|
return (n * (n - 1) / 2) - (n - ni0) * ((n - ni0) - 1) / 2 + ni1 - ni0 - 1;
|
||
|
}
|
||
|
|
||
|
TopologyEnumerator::TopologyEnumerator() {}
|
||
|
|
||
|
void TopologyEnumerator::computeValidPatterns(
|
||
|
const std::vector<size_t> &reducedNumberOfNodesPerSlot) {
|
||
|
assert(reducedNumberOfNodesPerSlot.size() == 5);
|
||
|
assert(reducedNumberOfNodesPerSlot[0] == 0 ||
|
||
|
reducedNumberOfNodesPerSlot[0] == 1);
|
||
|
assert(reducedNumberOfNodesPerSlot[1] == 0 ||
|
||
|
reducedNumberOfNodesPerSlot[1] == 1);
|
||
|
std::vector<size_t> numberOfNodesPerSlot{
|
||
|
reducedNumberOfNodesPerSlot[0], reducedNumberOfNodesPerSlot[1],
|
||
|
reducedNumberOfNodesPerSlot[1], reducedNumberOfNodesPerSlot[2],
|
||
|
reducedNumberOfNodesPerSlot[3], reducedNumberOfNodesPerSlot[2],
|
||
|
reducedNumberOfNodesPerSlot[4]};
|
||
|
// Generate an edge mesh wih all possible edges
|
||
|
numberOfNodes = std::accumulate(numberOfNodesPerSlot.begin(),
|
||
|
numberOfNodesPerSlot.end(), 0);
|
||
|
const size_t numberOfAllPossibleEdges =
|
||
|
numberOfNodes * (numberOfNodes - 1) / 2;
|
||
|
|
||
|
std::vector<vcg::Point2i> allPossibleEdges(numberOfAllPossibleEdges);
|
||
|
const int &n = numberOfNodes;
|
||
|
for (size_t edgeIndex = 0; edgeIndex < numberOfAllPossibleEdges;
|
||
|
edgeIndex++) {
|
||
|
const int ni0 =
|
||
|
n - 2 -
|
||
|
std::floor(std::sqrt(-8 * edgeIndex + 4 * n * (n - 1) - 7) / 2.0 - 0.5);
|
||
|
const int ni1 =
|
||
|
edgeIndex + ni0 + 1 - n * (n - 1) / 2 + (n - ni0) * ((n - ni0) - 1) / 2;
|
||
|
allPossibleEdges[edgeIndex] = vcg::Point2i(ni0, ni1);
|
||
|
}
|
||
|
FlatPatternGeometry patternGeometryAllEdges;
|
||
|
patternGeometryAllEdges.add(numberOfNodesPerSlot, allPossibleEdges);
|
||
|
// Create Results path
|
||
|
auto resultPath =
|
||
|
// std::filesystem::path("/home/iason/Documents/PhD/Research/Enumerating\\
|
||
|
// "
|
||
|
// "2d\\ connections\\ of\\ nodes");
|
||
|
std::filesystem::current_path()
|
||
|
.parent_path()
|
||
|
.parent_path()
|
||
|
.parent_path()
|
||
|
.parent_path();
|
||
|
assert(std::filesystem::exists(resultPath));
|
||
|
|
||
|
auto allResultsPath = resultPath.append("Results");
|
||
|
std::filesystem::create_directory(allResultsPath);
|
||
|
std::string setupString;
|
||
|
// for (size_t numberOfNodes : reducedNumberOfNodesPerSlot) {
|
||
|
for (size_t numberOfNodesPerSlotIndex = 0;
|
||
|
numberOfNodesPerSlotIndex < reducedNumberOfNodesPerSlot.size();
|
||
|
numberOfNodesPerSlotIndex++) {
|
||
|
std::string elemID;
|
||
|
if (numberOfNodesPerSlotIndex == 0 || numberOfNodesPerSlotIndex == 1) {
|
||
|
elemID = "v";
|
||
|
} else if (numberOfNodesPerSlotIndex == 2 ||
|
||
|
numberOfNodesPerSlotIndex == 3) {
|
||
|
elemID = "e";
|
||
|
} else {
|
||
|
elemID = "c";
|
||
|
}
|
||
|
setupString +=
|
||
|
std::to_string(reducedNumberOfNodesPerSlot[numberOfNodesPerSlotIndex]) +
|
||
|
elemID + "_";
|
||
|
}
|
||
|
setupString += std::to_string(FlatPatternGeometry().getFanSize()) + "fan";
|
||
|
if (debugIsOn) {
|
||
|
setupString += "_debug";
|
||
|
}
|
||
|
auto resultsPath = std::filesystem::path(allResultsPath).append(setupString);
|
||
|
// std::filesystem::remove_all(resultsPath); // delete previous results
|
||
|
std::filesystem::create_directory(resultsPath);
|
||
|
if (debugIsOn) {
|
||
|
patternGeometryAllEdges.savePly(std::filesystem::path(resultsPath)
|
||
|
.append("allPossibleEdges.ply")
|
||
|
.string());
|
||
|
}
|
||
|
// statistics.numberOfPossibleEdges = numberOfAllPossibleEdges;
|
||
|
|
||
|
std::vector<vcg::Point2i> validEdges =
|
||
|
getValidEdges(numberOfNodesPerSlot, resultsPath, patternGeometryAllEdges,
|
||
|
allPossibleEdges);
|
||
|
FlatPatternGeometry patternAllValidEdges;
|
||
|
patternAllValidEdges.add(patternGeometryAllEdges.getVertices(), validEdges);
|
||
|
if (debugIsOn) {
|
||
|
// Export all valid edges in a ply
|
||
|
patternAllValidEdges.savePly(
|
||
|
std::filesystem::path(resultsPath).append("allValidEdges.ply"));
|
||
|
}
|
||
|
// statistics.numberOfValidEdges = validEdges.size();
|
||
|
|
||
|
// Find pairs of intersecting edges
|
||
|
std::unordered_map<size_t, std::unordered_set<size_t>> intersectingEdges =
|
||
|
patternAllValidEdges.getIntersectingEdges(
|
||
|
statistics.numberOfIntersectingEdgePairs);
|
||
|
if (debugIsOn) {
|
||
|
auto intersectingEdgesPath = std::filesystem::path(resultsPath)
|
||
|
.append("All_intersecting_edge_pairs");
|
||
|
std::filesystem::create_directory(intersectingEdgesPath);
|
||
|
// Export intersecting pairs in ply files
|
||
|
for (auto mapIt = intersectingEdges.begin();
|
||
|
mapIt != intersectingEdges.end(); mapIt++) {
|
||
|
for (auto setIt = mapIt->second.begin(); setIt != mapIt->second.end();
|
||
|
setIt++) {
|
||
|
FlatPatternGeometry intersectingEdgePair;
|
||
|
const size_t ei0 = mapIt->first;
|
||
|
const size_t ei1 = *setIt;
|
||
|
vcg::tri::Allocator<FlatPatternGeometry>::AddEdge(
|
||
|
intersectingEdgePair,
|
||
|
patternGeometryAllEdges.getVertices()[validEdges[ei0][0]],
|
||
|
patternGeometryAllEdges.getVertices()[validEdges[ei0][1]]);
|
||
|
vcg::tri::Allocator<FlatPatternGeometry>::AddEdge(
|
||
|
intersectingEdgePair,
|
||
|
patternGeometryAllEdges.getVertices()[validEdges[ei1][0]],
|
||
|
patternGeometryAllEdges.getVertices()[validEdges[ei1][1]]);
|
||
|
intersectingEdgePair.savePly(
|
||
|
std::filesystem::path(intersectingEdgesPath)
|
||
|
.append(std::to_string(mapIt->first) + "_" +
|
||
|
std::to_string(*setIt) + ".ply")
|
||
|
.string());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// assert(validEdges.size() == allPossibleEdges.size() -
|
||
|
// coincideEdges.size() -
|
||
|
// duplicateEdges.size());
|
||
|
|
||
|
PatternSet patternSet;
|
||
|
const std::vector<vcg::Point3d> nodes = patternGeometryAllEdges.getVertices();
|
||
|
const size_t numberOfNodes = nodes.size();
|
||
|
patternSet.nodes.resize(numberOfNodes);
|
||
|
for (size_t nodeIndex = 0; nodeIndex < numberOfNodes; nodeIndex++) {
|
||
|
patternSet.nodes[nodeIndex] =
|
||
|
vcg::Point2d(nodes[nodeIndex][0], nodes[nodeIndex][1]);
|
||
|
}
|
||
|
if (std::filesystem::exists(std::filesystem::path(resultsPath)
|
||
|
.append("patterns.patt")
|
||
|
.string())) {
|
||
|
std::filesystem::remove(
|
||
|
std::filesystem::path(resultsPath).append("patterns.patt"));
|
||
|
}
|
||
|
for (size_t numberOfEdges = 2; numberOfEdges < validEdges.size();
|
||
|
numberOfEdges++) {
|
||
|
// for (size_t numberOfEdges = 1; numberOfEdges < 3; numberOfEdges++) {
|
||
|
std::cout << "Computing " + setupString << " with " << numberOfEdges
|
||
|
<< " edges." << std::endl;
|
||
|
auto perEdgeResultPath = std::filesystem::path(resultsPath)
|
||
|
.append(std::to_string(numberOfEdges));
|
||
|
// if (std::filesystem::exists(perEdgeResultPath)) {
|
||
|
// continue;
|
||
|
// }
|
||
|
std::filesystem::create_directory(perEdgeResultPath);
|
||
|
computeValidPatterns(numberOfNodesPerSlot, numberOfEdges, perEdgeResultPath,
|
||
|
patternGeometryAllEdges.getVertices(),
|
||
|
intersectingEdges, validEdges, patternSet);
|
||
|
// statistics.print(setupString, perEdgeResultPath);
|
||
|
PatternIO::save(
|
||
|
std::filesystem::path(resultsPath).append("patterns.patt").string(),
|
||
|
patternSet);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void TopologyEnumerator::computeEdgeNodes(
|
||
|
const std::vector<size_t> &numberOfNodesPerSlot,
|
||
|
std::vector<size_t> &nodesEdge0, std::vector<size_t> &nodesEdge1,
|
||
|
std::vector<size_t> &nodesEdge2) {
|
||
|
// Create vectors holding the node indices of each pattern node of each
|
||
|
// triangle edge
|
||
|
size_t nodeIndex = 0;
|
||
|
if (numberOfNodesPerSlot[0] != 0) {
|
||
|
nodesEdge0.push_back(nodeIndex++);
|
||
|
}
|
||
|
if (numberOfNodesPerSlot[1] != 0)
|
||
|
nodesEdge1.push_back(nodeIndex++);
|
||
|
if (numberOfNodesPerSlot[2] != 0)
|
||
|
nodesEdge2.push_back(nodeIndex++);
|
||
|
|
||
|
if (numberOfNodesPerSlot[3] != 0) {
|
||
|
for (size_t edgeNodeIndex = 0; edgeNodeIndex < numberOfNodesPerSlot[3];
|
||
|
edgeNodeIndex++) {
|
||
|
nodesEdge0.push_back(nodeIndex++);
|
||
|
}
|
||
|
}
|
||
|
if (numberOfNodesPerSlot[4] != 0) {
|
||
|
for (size_t edgeNodeIndex = 0; edgeNodeIndex < numberOfNodesPerSlot[4];
|
||
|
edgeNodeIndex++) {
|
||
|
nodesEdge1.push_back(nodeIndex++);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (numberOfNodesPerSlot[5] != 0) {
|
||
|
for (size_t edgeNodeIndex = 0; edgeNodeIndex < numberOfNodesPerSlot[5];
|
||
|
edgeNodeIndex++) {
|
||
|
nodesEdge2.push_back(nodeIndex++);
|
||
|
}
|
||
|
}
|
||
|
if (numberOfNodesPerSlot[1] != 0) {
|
||
|
assert(numberOfNodesPerSlot[2]);
|
||
|
nodesEdge0.push_back(1);
|
||
|
nodesEdge1.push_back(2);
|
||
|
}
|
||
|
|
||
|
if (numberOfNodesPerSlot[0] != 0) {
|
||
|
nodesEdge2.push_back(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
std::unordered_set<size_t> TopologyEnumerator::computeCoincideEdges(
|
||
|
const std::vector<size_t> &numberOfNodesPerSlot) {
|
||
|
/*
|
||
|
* A coincide edge is defined as an edge connection between two nodes that lay
|
||
|
* on a triangle edge and which have another node in between
|
||
|
* */
|
||
|
std::vector<size_t> nodesEdge0; // left edge
|
||
|
std::vector<size_t> nodesEdge1; // bottom edge
|
||
|
std::vector<size_t> nodesEdge2; // right edge
|
||
|
computeEdgeNodes(numberOfNodesPerSlot, nodesEdge0, nodesEdge1, nodesEdge2);
|
||
|
|
||
|
std::vector<size_t> coincideEdges0 = getCoincideEdges(nodesEdge0);
|
||
|
std::vector<size_t> coincideEdges1 = getCoincideEdges(nodesEdge1);
|
||
|
std::vector<size_t> coincideEdges2 = getCoincideEdges(nodesEdge2);
|
||
|
std::unordered_set<size_t> coincideEdges{coincideEdges0.begin(),
|
||
|
coincideEdges0.end()};
|
||
|
std::copy(coincideEdges1.begin(), coincideEdges1.end(),
|
||
|
std::inserter(coincideEdges, coincideEdges.end()));
|
||
|
std::copy(coincideEdges2.begin(), coincideEdges2.end(),
|
||
|
std::inserter(coincideEdges, coincideEdges.end()));
|
||
|
|
||
|
if (numberOfNodesPerSlot[0] && numberOfNodesPerSlot[1]) {
|
||
|
coincideEdges.insert(getEdgeIndex(0, 2));
|
||
|
}
|
||
|
|
||
|
if (numberOfNodesPerSlot[0] && numberOfNodesPerSlot[2]) {
|
||
|
assert(numberOfNodesPerSlot[1]);
|
||
|
coincideEdges.insert(getEdgeIndex(0, 3));
|
||
|
}
|
||
|
|
||
|
return coincideEdges;
|
||
|
}
|
||
|
|
||
|
std::unordered_set<size_t> TopologyEnumerator::computeDuplicateEdges(
|
||
|
const std::vector<size_t> &numberOfNodesPerSlot) {
|
||
|
/*
|
||
|
* A duplicate edges are all edges the "right" edge since due to rotational
|
||
|
* symmetry "left" edge=="right" edge
|
||
|
* */
|
||
|
std::unordered_set<size_t> duplicateEdges;
|
||
|
std::vector<size_t> nodesEdge0; // left edge
|
||
|
std::vector<size_t> nodesEdge1; // bottom edge
|
||
|
std::vector<size_t> nodesEdge2; // right edge
|
||
|
computeEdgeNodes(numberOfNodesPerSlot, nodesEdge0, nodesEdge1, nodesEdge2);
|
||
|
if (numberOfNodesPerSlot[5]) {
|
||
|
for (size_t edge2NodeIndex = 0; edge2NodeIndex < nodesEdge2.size() - 1;
|
||
|
edge2NodeIndex++) {
|
||
|
const size_t nodeIndex = nodesEdge2[edge2NodeIndex];
|
||
|
const size_t nextNodeIndex = nodesEdge2[edge2NodeIndex + 1];
|
||
|
duplicateEdges.insert(getEdgeIndex(nodeIndex, nextNodeIndex));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return duplicateEdges;
|
||
|
}
|
||
|
|
||
|
std::vector<vcg::Point2i> TopologyEnumerator::getValidEdges(
|
||
|
const std::vector<size_t> &numberOfNodesPerSlot,
|
||
|
const std::filesystem::path &resultsPath,
|
||
|
const FlatPatternGeometry &patternGeometryAllEdges,
|
||
|
const std::vector<vcg::Point2i> &allPossibleEdges) {
|
||
|
|
||
|
std::unordered_set<size_t> coincideEdges =
|
||
|
computeCoincideEdges(numberOfNodesPerSlot);
|
||
|
// Export each coincide edge into a ply file
|
||
|
if (!coincideEdges.empty() && debugIsOn) {
|
||
|
auto coincideEdgesPath =
|
||
|
std::filesystem::path(resultsPath).append("Coincide_edges");
|
||
|
std::filesystem::create_directories(coincideEdgesPath);
|
||
|
for (auto coincideEdgeIndex : coincideEdges) {
|
||
|
FlatPatternGeometry::EdgeType e =
|
||
|
patternGeometryAllEdges.edge[coincideEdgeIndex];
|
||
|
FlatPatternGeometry singleEdgeMesh;
|
||
|
vcg::Point3d p0 = e.cP(0);
|
||
|
vcg::Point3d p1 = e.cP(1);
|
||
|
std::vector<vcg::Point3d> edgeVertices;
|
||
|
edgeVertices.push_back(p0);
|
||
|
edgeVertices.push_back(p1);
|
||
|
singleEdgeMesh.add(edgeVertices);
|
||
|
singleEdgeMesh.add(std::vector<vcg::Point2i>{vcg::Point2i{0, 1}});
|
||
|
singleEdgeMesh.savePly(std::filesystem::path(coincideEdgesPath)
|
||
|
.append(std::to_string(coincideEdgeIndex))
|
||
|
.string() +
|
||
|
".ply");
|
||
|
}
|
||
|
}
|
||
|
statistics.numberOfCoincideEdges = coincideEdges.size();
|
||
|
|
||
|
// Compute duplicate edges
|
||
|
std::unordered_set<size_t> duplicateEdges =
|
||
|
computeDuplicateEdges(numberOfNodesPerSlot);
|
||
|
if (!duplicateEdges.empty() && debugIsOn) {
|
||
|
// Export duplicate edges in a single ply file
|
||
|
auto duplicateEdgesPath =
|
||
|
std::filesystem::path(resultsPath).append("duplicate");
|
||
|
std::filesystem::create_directory(duplicateEdgesPath);
|
||
|
FlatPatternGeometry patternDuplicateEdges;
|
||
|
for (auto duplicateEdgeIndex : duplicateEdges) {
|
||
|
FlatPatternGeometry::EdgeType e =
|
||
|
patternGeometryAllEdges.edge[duplicateEdgeIndex];
|
||
|
vcg::Point3d p0 = e.cP(0);
|
||
|
vcg::Point3d p1 = e.cP(1);
|
||
|
vcg::tri::Allocator<FlatPatternGeometry>::AddEdge(
|
||
|
patternDuplicateEdges, p0, p1);
|
||
|
}
|
||
|
patternDuplicateEdges.savePly(
|
||
|
std::filesystem::path(duplicateEdgesPath).append("duplicateEdges.ply"));
|
||
|
}
|
||
|
statistics.numberOfDuplicateEdges = duplicateEdges.size();
|
||
|
|
||
|
// Create the set of all possible edges without coincide and duplicate edges
|
||
|
std::vector<vcg::Point2i> validEdges;
|
||
|
for (size_t edgeIndex = 0; edgeIndex < allPossibleEdges.size(); edgeIndex++) {
|
||
|
if (coincideEdges.count(edgeIndex) == 0 &&
|
||
|
duplicateEdges.count(edgeIndex) == 0) {
|
||
|
validEdges.push_back(allPossibleEdges[edgeIndex]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return validEdges;
|
||
|
}
|
||
|
|
||
|
void TopologyEnumerator::computeValidPatterns(
|
||
|
const std::vector<size_t> &numberOfNodesPerSlot,
|
||
|
const size_t &numberOfDesiredEdges,
|
||
|
const std::filesystem::path &resultsPath,
|
||
|
const std::vector<vcg::Point3d> &allVertices,
|
||
|
const std::unordered_map<size_t, std::unordered_set<size_t>>
|
||
|
&intersectingEdges,
|
||
|
const std::vector<vcg::Point2i> &validEdges, PatternSet &patternsSet) {
|
||
|
assert(numberOfNodesPerSlot.size() == 7);
|
||
|
|
||
|
// Iterate over all patterns which have numberOfDesiredEdges edges from
|
||
|
// from the validEdges Identify patterns that contain dangling edges
|
||
|
const bool enoughValidEdgesExist = validEdges.size() >= numberOfDesiredEdges;
|
||
|
if (!enoughValidEdgesExist) {
|
||
|
std::filesystem::remove_all(resultsPath); // delete previous results folder
|
||
|
return;
|
||
|
}
|
||
|
assert(enoughValidEdgesExist);
|
||
|
|
||
|
// Create pattern result paths
|
||
|
auto validPatternsPath = std::filesystem::path(resultsPath).append("Valid");
|
||
|
std::filesystem::create_directory(validPatternsPath);
|
||
|
|
||
|
const size_t numberOfPatterns = FlatPatternGeometry::binomialCoefficient(
|
||
|
validEdges.size(), numberOfDesiredEdges);
|
||
|
statistics.numberOfPatterns = numberOfPatterns;
|
||
|
|
||
|
// Initialize pattern binary representation
|
||
|
std::string patternBinaryRepresentation;
|
||
|
patternBinaryRepresentation = std::string(numberOfDesiredEdges, '1');
|
||
|
patternBinaryRepresentation +=
|
||
|
std::string(validEdges.size() - numberOfDesiredEdges, '0');
|
||
|
std::sort(patternBinaryRepresentation.begin(),
|
||
|
patternBinaryRepresentation.end());
|
||
|
size_t patternIndex = 0;
|
||
|
do {
|
||
|
patternIndex++;
|
||
|
const std::string patternName = std::to_string(patternIndex);
|
||
|
// std::cout << "Pattern name:" + patternBinaryRepresentation <<
|
||
|
// std::endl; isValidPattern(patternBinaryRepresentation, validEdges,
|
||
|
// numberOfDesiredEdges);
|
||
|
// Create the geometry of the pattern
|
||
|
// Compute the pattern edges from the binary representation
|
||
|
std::vector<vcg::Point2i> patternEdges(numberOfDesiredEdges);
|
||
|
size_t patternEdgeIndex = 0;
|
||
|
for (size_t validEdgeIndex = 0;
|
||
|
validEdgeIndex < patternBinaryRepresentation.size();
|
||
|
validEdgeIndex++) {
|
||
|
if (patternBinaryRepresentation[validEdgeIndex] == '1') {
|
||
|
assert(patternEdgeIndex < numberOfDesiredEdges);
|
||
|
patternEdges[patternEdgeIndex++] = validEdges[validEdgeIndex];
|
||
|
}
|
||
|
}
|
||
|
Pattern pattern;
|
||
|
pattern.edges = patternEdges;
|
||
|
|
||
|
FlatPatternGeometry patternGeometry;
|
||
|
patternGeometry.add(allVertices, patternEdges);
|
||
|
|
||
|
// Check if pattern contains intersecting edges
|
||
|
const bool patternContainsIntersectingEdges =
|
||
|
patternGeometry.hasIntersectingEdges(patternBinaryRepresentation,
|
||
|
intersectingEdges);
|
||
|
// Export the tiled ply file if it contains intersecting edges
|
||
|
if (patternContainsIntersectingEdges) {
|
||
|
// create the tiled geometry of the pattern
|
||
|
statistics.numberOfPatternsWithIntersectingEdges++;
|
||
|
if (debugIsOn) {
|
||
|
if (savePlyFiles) {
|
||
|
FlatPatternGeometry tiledPatternGeometry =
|
||
|
FlatPatternGeometry::createTile(patternGeometry);
|
||
|
auto intersectingPatternsPath =
|
||
|
std::filesystem::path(resultsPath).append("Intersecting");
|
||
|
std::filesystem::create_directory(intersectingPatternsPath);
|
||
|
patternGeometry.savePly(
|
||
|
std::filesystem::path(intersectingPatternsPath)
|
||
|
.append(patternName)
|
||
|
.string() +
|
||
|
".ply");
|
||
|
tiledPatternGeometry.savePly(
|
||
|
std::filesystem::path(intersectingPatternsPath)
|
||
|
.append(patternName + "_tiled")
|
||
|
.string() +
|
||
|
".ply");
|
||
|
}
|
||
|
pattern.labels.push_back(PatternLabel::IntersectingEdges);
|
||
|
} else {
|
||
|
continue; // should be uncommented in order to improve performance
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Compute the tiled valence
|
||
|
const bool tiledPatternHasDanglingEdges = patternGeometry.hasDanglingEdges(
|
||
|
numberOfNodesPerSlot); // marks the nodes with valence>=1
|
||
|
// Create the tiled geometry of the pattern
|
||
|
const bool hasFloatingComponents =
|
||
|
!patternGeometry.isFullyConnectedWhenTiled();
|
||
|
FlatPatternTopology topology(numberOfNodesPerSlot, patternEdges);
|
||
|
const bool hasArticulationPoints = topology.containsArticulationPoints();
|
||
|
FlatPatternGeometry tiledPatternGeometry =
|
||
|
FlatPatternGeometry::createTile(
|
||
|
patternGeometry); // the marked nodes of hasDanglingEdges are
|
||
|
// duplicated here
|
||
|
// Check dangling edges with vcg method
|
||
|
// const bool vcg_tiledPatternHasDangling =
|
||
|
// tiledPatternGeometry.hasUntiledDanglingEdges();
|
||
|
if (tiledPatternHasDanglingEdges /*&& !hasFloatingComponents &&
|
||
|
!hasArticulationPoints*/) {
|
||
|
statistics.numberOfPatternsWithADanglingEdgeOrNode++;
|
||
|
if (debugIsOn) {
|
||
|
if (savePlyFiles) {
|
||
|
auto danglingEdgesPath =
|
||
|
std::filesystem::path(resultsPath).append("Dangling");
|
||
|
std::filesystem::create_directory(danglingEdgesPath);
|
||
|
patternGeometry.savePly(std::filesystem::path(danglingEdgesPath)
|
||
|
.append(patternName)
|
||
|
.string() +
|
||
|
".ply");
|
||
|
tiledPatternGeometry.savePly(std::filesystem::path(danglingEdgesPath)
|
||
|
.append(patternName + "_tiled")
|
||
|
.string() +
|
||
|
".ply");
|
||
|
}
|
||
|
pattern.labels.push_back(PatternLabel::DanglingEdge);
|
||
|
} else {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (hasFloatingComponents /*&& !hasArticulationPoints &&
|
||
|
!tiledPatternHasDanglingEdges*/) {
|
||
|
statistics.numberOfPatternsWithMoreThanASingleCC++;
|
||
|
if (debugIsOn) {
|
||
|
if (savePlyFiles) {
|
||
|
auto moreThanOneCCPath =
|
||
|
std::filesystem::path(resultsPath).append("MoreThanOneCC");
|
||
|
std::filesystem::create_directory(moreThanOneCCPath);
|
||
|
patternGeometry.savePly(std::filesystem::path(moreThanOneCCPath)
|
||
|
.append(patternName)
|
||
|
.string() +
|
||
|
".ply");
|
||
|
tiledPatternGeometry.savePly(std::filesystem::path(moreThanOneCCPath)
|
||
|
.append(patternName + "_tiled")
|
||
|
.string() +
|
||
|
".ply");
|
||
|
}
|
||
|
pattern.labels.push_back(PatternLabel::MultipleCC);
|
||
|
} else {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (hasArticulationPoints /*&& !hasFloatingComponents &&
|
||
|
!tiledPatternHasDanglingEdges*/) {
|
||
|
statistics.numberOfPatternsWithArticulationPoints++;
|
||
|
if (exportArticulationPointsPatterns || debugIsOn) {
|
||
|
if (savePlyFiles) {
|
||
|
auto articulationPointsPath =
|
||
|
std::filesystem::path(resultsPath).append("ArticulationPoints");
|
||
|
std::filesystem::create_directory(articulationPointsPath);
|
||
|
patternGeometry.savePly(std::filesystem::path(articulationPointsPath)
|
||
|
.append(patternName)
|
||
|
.string() +
|
||
|
".ply");
|
||
|
tiledPatternGeometry.savePly(
|
||
|
std::filesystem::path(articulationPointsPath)
|
||
|
.append(patternName + "_tiled")
|
||
|
.string() +
|
||
|
".ply");
|
||
|
|
||
|
// std::cout << "Pattern:" << patternName << std::endl;
|
||
|
}
|
||
|
pattern.labels.push_back(PatternLabel::ArticulationPoints);
|
||
|
} else {
|
||
|
continue;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
const bool isValidPattern =
|
||
|
!patternContainsIntersectingEdges && !tiledPatternHasDanglingEdges &&
|
||
|
!hasFloatingComponents && !hasArticulationPoints;
|
||
|
if (isValidPattern) {
|
||
|
statistics.numberOfValidPatterns++;
|
||
|
if (savePlyFiles) {
|
||
|
// if (numberOfDesiredEdges == 4) {
|
||
|
// std::cout << "Saving:"
|
||
|
// << std::filesystem::path(validPatternsPath)
|
||
|
// .append(patternName)
|
||
|
// .string() +
|
||
|
// ".ply"
|
||
|
// << std::endl;
|
||
|
// }
|
||
|
patternGeometry.savePly(std::filesystem::path(validPatternsPath)
|
||
|
.append(patternName)
|
||
|
.string() +
|
||
|
".ply");
|
||
|
tiledPatternGeometry.savePly(std::filesystem::path(validPatternsPath)
|
||
|
.append(patternName + "_tiled")
|
||
|
.string() +
|
||
|
".ply");
|
||
|
}
|
||
|
pattern.labels.push_back(PatternLabel::Valid);
|
||
|
}
|
||
|
|
||
|
assert(!pattern.labels.empty());
|
||
|
patternsSet.patterns.push_back(pattern);
|
||
|
// assert(vcg_tiledPatternHasDangling == tiledPatternHasDanglingEdges);
|
||
|
} while (std::next_permutation(patternBinaryRepresentation.begin(),
|
||
|
patternBinaryRepresentation.end()));
|
||
|
}
|
||
|
|
||
|
std::vector<size_t> TopologyEnumerator::getCoincideEdges(
|
||
|
const std::vector<size_t> &edgeNodeIndices) const {
|
||
|
std::vector<size_t> coincideEdges;
|
||
|
if (edgeNodeIndices.size() < 3)
|
||
|
return coincideEdges;
|
||
|
for (size_t edgeNodeIndex = 0; edgeNodeIndex < edgeNodeIndices.size() - 2;
|
||
|
edgeNodeIndex++) {
|
||
|
const size_t &firstNodeIndex = edgeNodeIndices[edgeNodeIndex];
|
||
|
for (size_t secondEdgeNodeIndex = edgeNodeIndex + 2;
|
||
|
secondEdgeNodeIndex < edgeNodeIndices.size(); secondEdgeNodeIndex++) {
|
||
|
const size_t &secondNodeIndex = edgeNodeIndices[secondEdgeNodeIndex];
|
||
|
coincideEdges.push_back(getEdgeIndex(firstNodeIndex, secondNodeIndex));
|
||
|
}
|
||
|
}
|
||
|
return coincideEdges;
|
||
|
}
|
||
|
|
||
|
bool TopologyEnumerator::isValidPattern(
|
||
|
const std::string &patternBinaryRepresentation,
|
||
|
const std::vector<vcg::Point2i> &validEdges,
|
||
|
const size_t &numberOfDesiredEdges) const {
|
||
|
return true;
|
||
|
}
|