Average residual forces norm. Alpha angles stored in vectors. Residual forces criterion applicable not only at local kinetic energy maxima
This commit is contained in:
parent
5ebf354dcf
commit
8391646d56
|
|
@ -222,7 +222,6 @@ void DRMSimulationModel::reset()
|
||||||
mCurrentSimulationStep = 0;
|
mCurrentSimulationStep = 0;
|
||||||
history.clear();
|
history.clear();
|
||||||
constrainedVertices.clear();
|
constrainedVertices.clear();
|
||||||
rigidSupports.clear();
|
|
||||||
pMesh.reset();
|
pMesh.reset();
|
||||||
plotYValues.clear();
|
plotYValues.clear();
|
||||||
plotHandle.reset();
|
plotHandle.reset();
|
||||||
|
|
@ -232,6 +231,8 @@ void DRMSimulationModel::reset()
|
||||||
numOfDampings = 0;
|
numOfDampings = 0;
|
||||||
shouldTemporarilyDampForces = false;
|
shouldTemporarilyDampForces = false;
|
||||||
externalLoadStep = 1;
|
externalLoadStep = 1;
|
||||||
|
isVertexConstrained.clear();
|
||||||
|
minTotalResidualForcesNorm = std::numeric_limits<double>::max();
|
||||||
}
|
}
|
||||||
|
|
||||||
VectorType DRMSimulationModel::computeDisplacementDifferenceDerivative(
|
VectorType DRMSimulationModel::computeDisplacementDifferenceDerivative(
|
||||||
|
|
@ -544,13 +545,18 @@ double DRMSimulationModel::computeTheta3(const EdgeType &e, const VertexType &v)
|
||||||
// Use nR as theta3 only for the first star edge
|
// Use nR as theta3 only for the first star edge
|
||||||
return nR;
|
return nR;
|
||||||
}
|
}
|
||||||
std::vector<int> incidentElementsIndices(node.incidentElements.size());
|
// std::vector<int> incidentElementsIndices(node.incidentElements.size());
|
||||||
for (int iei = 0; iei < incidentElementsIndices.size(); iei++) {
|
// for (int iei = 0; iei < incidentElementsIndices.size(); iei++) {
|
||||||
incidentElementsIndices[iei] = pMesh->getIndex(node.incidentElements[iei]);
|
// incidentElementsIndices[iei] = pMesh->getIndex(node.incidentElements[iei]);
|
||||||
}
|
// }
|
||||||
assert(pMesh->getIndex(e) == ei);
|
assert(pMesh->getIndex(e) == ei);
|
||||||
assert(node.alphaAngles.contains(ei));
|
// assert(node.alphaAngles.contains(ei));
|
||||||
const double alphaAngle = node.alphaAngles.at(elem.ei);
|
const double alphaAngle = std::find_if(node.alphaAngles.begin(),
|
||||||
|
node.alphaAngles.end(),
|
||||||
|
[&](const std::pair<EdgeIndex, double> &p) {
|
||||||
|
return elem.ei == p.first;
|
||||||
|
})
|
||||||
|
->second;
|
||||||
const EdgeType &refElem = *node.referenceElement;
|
const EdgeType &refElem = *node.referenceElement;
|
||||||
const double rotationAngle = nR + alphaAngle;
|
const double rotationAngle = nR + alphaAngle;
|
||||||
|
|
||||||
|
|
@ -591,8 +597,7 @@ double DRMSimulationModel::computeDerivativeTheta3(const EdgeType &e,
|
||||||
{
|
{
|
||||||
const Node &node = pMesh->nodes[v];
|
const Node &node = pMesh->nodes[v];
|
||||||
const VertexIndex &vi = pMesh->nodes[v].vi;
|
const VertexIndex &vi = pMesh->nodes[v].vi;
|
||||||
const bool isRigidSupport = rigidSupports.contains(vi);
|
if (&e == node.referenceElement && !isRigidSupport[vi]) {
|
||||||
if (&e == node.referenceElement && !isRigidSupport) {
|
|
||||||
if (dui.dofi == DoF::Nr && &dui.v == &v) {
|
if (dui.dofi == DoF::Nr && &dui.v == &v) {
|
||||||
return 1;
|
return 1;
|
||||||
} else {
|
} else {
|
||||||
|
|
@ -610,7 +615,7 @@ double DRMSimulationModel::computeDerivativeTheta3(const EdgeType &e,
|
||||||
const VertexPointer &vp_jplus1 = e.cV(1);
|
const VertexPointer &vp_jplus1 = e.cV(1);
|
||||||
|
|
||||||
double derivativeTheta3_dofi = 0;
|
double derivativeTheta3_dofi = 0;
|
||||||
if (isRigidSupport) {
|
if (isRigidSupport[vi]) {
|
||||||
const VectorType &t1Initial = computeT1Vector(pMesh->nodes[vp_j].initialLocation,
|
const VectorType &t1Initial = computeT1Vector(pMesh->nodes[vp_j].initialLocation,
|
||||||
pMesh->nodes[vp_jplus1].initialLocation);
|
pMesh->nodes[vp_jplus1].initialLocation);
|
||||||
VectorType g1 = Cross(t1, t1Initial);
|
VectorType g1 = Cross(t1, t1Initial);
|
||||||
|
|
@ -800,9 +805,9 @@ void DRMSimulationModel::updateResidualForcesOnTheFly(
|
||||||
pMesh->EN(), std::vector<std::pair<int, Vector6d>>(4, {-1, Vector6d()}));
|
pMesh->EN(), std::vector<std::pair<int, Vector6d>>(4, {-1, Vector6d()}));
|
||||||
// omp_lock_t writelock;
|
// omp_lock_t writelock;
|
||||||
// omp_init_lock(&writelock);
|
// omp_init_lock(&writelock);
|
||||||
//#ifdef ENABLE_OPENMP
|
#ifdef ENABLE_OPENMP
|
||||||
//#pragma omp parallel for schedule(static) num_threads(8)
|
#pragma omp parallel for schedule(static) num_threads(5)
|
||||||
//#endif
|
#endif
|
||||||
for (int ei = 0; ei < pMesh->EN(); ei++) {
|
for (int ei = 0; ei < pMesh->EN(); ei++) {
|
||||||
const EdgeType &e = pMesh->edge[ei];
|
const EdgeType &e = pMesh->edge[ei];
|
||||||
const SimulationMesh::VertexType &ev_j = *e.cV(0);
|
const SimulationMesh::VertexType &ev_j = *e.cV(0);
|
||||||
|
|
@ -843,7 +848,7 @@ void DRMSimulationModel::updateResidualForcesOnTheFly(
|
||||||
const size_t vi = edgeNode.vi;
|
const size_t vi = edgeNode.vi;
|
||||||
// #pragma omp parallel for schedule(static) num_threads(6)
|
// #pragma omp parallel for schedule(static) num_threads(6)
|
||||||
for (DoFType dofi = DoF::Ux; dofi < DoF::NumDoF; dofi++) {
|
for (DoFType dofi = DoF::Ux; dofi < DoF::NumDoF; dofi++) {
|
||||||
const bool isDofConstrainedFor_ev = fixedVertices.contains(edgeNode.vi)
|
const bool isDofConstrainedFor_ev = isVertexConstrained[edgeNode.vi]
|
||||||
&& fixedVertices.at(edgeNode.vi).contains(dofi);
|
&& fixedVertices.at(edgeNode.vi).contains(dofi);
|
||||||
if (!isDofConstrainedFor_ev) {
|
if (!isDofConstrainedFor_ev) {
|
||||||
DifferentiateWithRespectTo dui{ev, dofi};
|
DifferentiateWithRespectTo dui{ev, dofi};
|
||||||
|
|
@ -924,7 +929,7 @@ void DRMSimulationModel::updateResidualForcesOnTheFly(
|
||||||
}
|
}
|
||||||
if (edgeNode.referenceElement != &e) {
|
if (edgeNode.referenceElement != &e) {
|
||||||
const bool isDofConstrainedFor_refElemOtherVertex
|
const bool isDofConstrainedFor_refElemOtherVertex
|
||||||
= fixedVertices.contains(refElemOtherVertexNode.vi)
|
= isVertexConstrained[refElemOtherVertexNode.vi]
|
||||||
&& fixedVertices.at(refElemOtherVertexNode.vi).contains(dofi);
|
&& fixedVertices.at(refElemOtherVertexNode.vi).contains(dofi);
|
||||||
if (!isDofConstrainedFor_refElemOtherVertex) {
|
if (!isDofConstrainedFor_refElemOtherVertex) {
|
||||||
DifferentiateWithRespectTo dui{*refElemOtherVertex, dofi};
|
DifferentiateWithRespectTo dui{*refElemOtherVertex, dofi};
|
||||||
|
|
@ -1012,6 +1017,11 @@ void DRMSimulationModel::updateResidualForcesOnTheFly(
|
||||||
}
|
}
|
||||||
pMesh->previousTotalResidualForcesNorm = pMesh->totalResidualForcesNorm;
|
pMesh->previousTotalResidualForcesNorm = pMesh->totalResidualForcesNorm;
|
||||||
pMesh->totalResidualForcesNorm = totalResidualForcesNorm;
|
pMesh->totalResidualForcesNorm = totalResidualForcesNorm;
|
||||||
|
if (mSettings.beVerbose) {
|
||||||
|
if (minTotalResidualForcesNorm > pMesh->totalResidualForcesNorm) {
|
||||||
|
minTotalResidualForcesNorm = pMesh->totalResidualForcesNorm;
|
||||||
|
}
|
||||||
|
}
|
||||||
pMesh->averageResidualForcesNorm = totalResidualForcesNorm / pMesh->VN();
|
pMesh->averageResidualForcesNorm = totalResidualForcesNorm / pMesh->VN();
|
||||||
// pMesh->averageResidualForcesNorm = sumOfResidualForces.norm() / pMesh->VN();
|
// pMesh->averageResidualForcesNorm = sumOfResidualForces.norm() / pMesh->VN();
|
||||||
|
|
||||||
|
|
@ -1078,6 +1088,8 @@ void DRMSimulationModel::updateResidualForces()
|
||||||
|
|
||||||
void DRMSimulationModel::computeRigidSupports()
|
void DRMSimulationModel::computeRigidSupports()
|
||||||
{
|
{
|
||||||
|
isRigidSupport.clear();
|
||||||
|
isRigidSupport.resize(pMesh->VN(), false);
|
||||||
for (const VertexType &v : pMesh->vert) {
|
for (const VertexType &v : pMesh->vert) {
|
||||||
const VertexIndex vi = pMesh->nodes[v].vi;
|
const VertexIndex vi = pMesh->nodes[v].vi;
|
||||||
const bool isVertexConstrained = constrainedVertices.contains(vi);
|
const bool isVertexConstrained = constrainedVertices.contains(vi);
|
||||||
|
|
@ -1090,7 +1102,7 @@ void DRMSimulationModel::computeRigidSupports()
|
||||||
&& constrainedDoFType.contains(DoF::Ny)
|
&& constrainedDoFType.contains(DoF::Ny)
|
||||||
&& constrainedDoFType.contains(DoF::Nr);
|
&& constrainedDoFType.contains(DoF::Nr);
|
||||||
if (hasAllDoFTypeConstrained) {
|
if (hasAllDoFTypeConstrained) {
|
||||||
rigidSupports.insert(vi);
|
isRigidSupport[vi] = true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -1180,8 +1192,9 @@ void DRMSimulationModel::updateNodalMasses()
|
||||||
if (shouldTemporarilyDampForces && mCurrentSimulationStep < untilStep) {
|
if (shouldTemporarilyDampForces && mCurrentSimulationStep < untilStep) {
|
||||||
gamma *= 1e6 * (1 - static_cast<double>(mCurrentSimulationStep) / untilStep);
|
gamma *= 1e6 * (1 - static_cast<double>(mCurrentSimulationStep) / untilStep);
|
||||||
}
|
}
|
||||||
if (mCurrentSimulationStep == untilStep && shouldTemporarilyDampForces) {
|
if (mCurrentSimulationStep == static_cast<size_t>(1.2 * untilStep)
|
||||||
Dt = mSettings.Dtini * 0.95;
|
&& shouldTemporarilyDampForces) {
|
||||||
|
Dt = mSettings.Dtini;
|
||||||
}
|
}
|
||||||
for (VertexType &v : pMesh->vert) {
|
for (VertexType &v : pMesh->vert) {
|
||||||
const size_t vi = pMesh->getIndex(v);
|
const size_t vi = pMesh->getIndex(v);
|
||||||
|
|
@ -1328,7 +1341,7 @@ void DRMSimulationModel::updateNodeNr(VertexType &v)
|
||||||
{
|
{
|
||||||
const VertexIndex &vi = pMesh->nodes[v].vi;
|
const VertexIndex &vi = pMesh->nodes[v].vi;
|
||||||
Node &node = pMesh->nodes[v];
|
Node &node = pMesh->nodes[v];
|
||||||
if (!rigidSupports.contains(vi)) {
|
if (!isRigidSupport[vi]) {
|
||||||
node.nR = node.displacements[5];
|
node.nR = node.displacements[5];
|
||||||
} else {
|
} else {
|
||||||
const EdgePointer &refElem = node.referenceElement;
|
const EdgePointer &refElem = node.referenceElement;
|
||||||
|
|
@ -1509,11 +1522,11 @@ void DRMSimulationModel::resetVelocities()
|
||||||
{
|
{
|
||||||
for (const VertexType &v : pMesh->vert) {
|
for (const VertexType &v : pMesh->vert) {
|
||||||
pMesh->nodes[v].velocity =
|
pMesh->nodes[v].velocity =
|
||||||
// pMesh->nodes[v].acceleration
|
// pMesh->nodes[v].acceleration * Dt
|
||||||
// * Dt; // NOTE: Do I reset the previous
|
// * 0.5; // NOTE: Do I reset the previous
|
||||||
// velocity?
|
// // velocity?
|
||||||
// reset
|
// // reset
|
||||||
// current to 0 or this?
|
// // current to 0 or this?
|
||||||
0;
|
0;
|
||||||
}
|
}
|
||||||
updateKineticEnergy();
|
updateKineticEnergy();
|
||||||
|
|
@ -1616,7 +1629,7 @@ void DRMSimulationModel::updatePositionsOnTheFly(
|
||||||
VectorType newNormal(nx, ny, nz);
|
VectorType newNormal(nx, ny, nz);
|
||||||
v.N() = newNormal;
|
v.N() = newNormal;
|
||||||
}
|
}
|
||||||
if (!rigidSupports.contains(vi)) {
|
if (!isRigidSupport[vi]) {
|
||||||
node.nR = node.displacements[5];
|
node.nR = node.displacements[5];
|
||||||
} else {
|
} else {
|
||||||
}
|
}
|
||||||
|
|
@ -1650,15 +1663,18 @@ void DRMSimulationModel::printCurrentState() const
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "Kinetic energy:" << pMesh->currentTotalKineticEnergy << std::endl;
|
std::cout << "Kinetic energy:" << pMesh->currentTotalKineticEnergy << std::endl;
|
||||||
static std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
|
static std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
|
||||||
const auto timePerNodePerIteration = std::chrono::duration_cast<std::chrono::microseconds>(
|
const double timePerNodePerIteration = std::chrono::duration_cast<std::chrono::microseconds>(
|
||||||
std::chrono::steady_clock::now() - begin)
|
std::chrono::steady_clock::now() - begin)
|
||||||
.count()
|
.count()
|
||||||
* 1e-6 / (mCurrentSimulationStep * pMesh->VN());
|
* 1e-6
|
||||||
|
/ (static_cast<double>(mCurrentSimulationStep)
|
||||||
|
* pMesh->VN());
|
||||||
std::cout << "Total potential:" << pMesh->currentTotalPotentialEnergykN << " kNm" << std::endl;
|
std::cout << "Total potential:" << pMesh->currentTotalPotentialEnergykN << " kNm" << std::endl;
|
||||||
std::cout << "time(s)/(iterations*node) = " << timePerNodePerIteration << std::endl;
|
std::cout << "time(s)/(iterations*node) = " << timePerNodePerIteration << std::endl;
|
||||||
std::cout << "Mov aver deriv norm:" << pMesh->residualForcesMovingAverageDerivativeNorm
|
std::cout << "Mov aver deriv norm:" << pMesh->residualForcesMovingAverageDerivativeNorm
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
std::cout << "xi:" << mSettings.xi << std::endl;
|
std::cout << "xi:" << mSettings.xi << std::endl;
|
||||||
|
std::cout << "Dt:" << Dt << std::endl;
|
||||||
}
|
}
|
||||||
|
|
||||||
void DRMSimulationModel::printDebugInfo() const
|
void DRMSimulationModel::printDebugInfo() const
|
||||||
|
|
@ -1936,7 +1952,7 @@ void DRMSimulationModel::applySolutionGuess(const SimulationResults &solutionGue
|
||||||
node.displacements[5] = nr;
|
node.displacements[5] = nr;
|
||||||
}
|
}
|
||||||
// const double nr_asin = q_nr.x()
|
// const double nr_asin = q_nr.x()
|
||||||
if (rigidSupports.contains(vi)) {
|
if (isRigidSupport[vi]) {
|
||||||
const EdgePointer &refElem = node.referenceElement;
|
const EdgePointer &refElem = node.referenceElement;
|
||||||
const VectorType &refT1 = computeT1Vector(refElem->cP(0), refElem->cP(1));
|
const VectorType &refT1 = computeT1Vector(refElem->cP(0), refElem->cP(1));
|
||||||
|
|
||||||
|
|
@ -2046,8 +2062,9 @@ SimulationResults DRMSimulationModel::executeSimulation(const std::shared_ptr<Si
|
||||||
}
|
}
|
||||||
vcg::tri::UpdateBounding<SimulationMesh>::Box(*pMesh);
|
vcg::tri::UpdateBounding<SimulationMesh>::Box(*pMesh);
|
||||||
computeRigidSupports();
|
computeRigidSupports();
|
||||||
|
isVertexConstrained.resize(pMesh->VN(), false);
|
||||||
for (auto fixedVertex : pJob->constrainedVertices) {
|
for (auto fixedVertex : pJob->constrainedVertices) {
|
||||||
assert(fixedVertex.first < pMesh->VN());
|
isVertexConstrained[fixedVertex.first] = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef POLYSCOPE_DEFINED
|
#ifdef POLYSCOPE_DEFINED
|
||||||
|
|
@ -2058,7 +2075,8 @@ SimulationResults DRMSimulationModel::executeSimulation(const std::shared_ptr<Si
|
||||||
pMesh->getEigenEdges());
|
pMesh->getEigenEdges());
|
||||||
polyscope::registerCurveNetwork("Initial_" + meshPolyscopeLabel,
|
polyscope::registerCurveNetwork("Initial_" + meshPolyscopeLabel,
|
||||||
pMesh->getEigenVertices(),
|
pMesh->getEigenVertices(),
|
||||||
pMesh->getEigenEdges());
|
pMesh->getEigenEdges())
|
||||||
|
->setRadius(0.002);
|
||||||
// registerWorldAxes();
|
// registerWorldAxes();
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
@ -2120,9 +2138,9 @@ SimulationResults DRMSimulationModel::executeSimulation(const std::shared_ptr<Si
|
||||||
// pJob->save("./PatternOptimizationNonConv");
|
// pJob->save("./PatternOptimizationNonConv");
|
||||||
// Dt = mSettings.Dtini;
|
// Dt = mSettings.Dtini;
|
||||||
}
|
}
|
||||||
if (mCurrentSimulationStep == 500 && shouldTemporarilyDampForces) {
|
// if (mCurrentSimulationStep == 500 && shouldTemporarilyDampForces) {
|
||||||
Dt = mSettings.Dtini;
|
// Dt = mSettings.Dtini;
|
||||||
}
|
// }
|
||||||
// while (true) {
|
// while (true) {
|
||||||
updateNormalDerivatives();
|
updateNormalDerivatives();
|
||||||
updateT1Derivatives();
|
updateT1Derivatives();
|
||||||
|
|
@ -2208,19 +2226,19 @@ SimulationResults DRMSimulationModel::executeSimulation(const std::shared_ptr<Si
|
||||||
// = std::chrono::duration_cast<std::chrono::minutes>(t2 - beginTime).count();
|
// = std::chrono::duration_cast<std::chrono::minutes>(t2 - beginTime).count();
|
||||||
// std::cout << "Execution time(min):" << executionTime_min << std::endl;
|
// std::cout << "Execution time(min):" << executionTime_min << std::endl;
|
||||||
if (mSettings.useAverage) {
|
if (mSettings.useAverage) {
|
||||||
std::cout << "Percentage of target (average):"
|
std::cout << "Best percentage of target (average):"
|
||||||
<< 100 * mSettings.averageResidualForcesCriterionThreshold
|
<< 100 * mSettings.averageResidualForcesCriterionThreshold
|
||||||
* totalExternalForcesNorm
|
* totalExternalForcesNorm
|
||||||
/ (pMesh->totalResidualForcesNorm / pMesh->VN())
|
/ (minTotalResidualForcesNorm / pMesh->VN())
|
||||||
<< "%" << std::endl;
|
<< "%" << std::endl;
|
||||||
}
|
}
|
||||||
std::cout << "Percentage of target:"
|
std::cout << "Best percentage of target:"
|
||||||
<< 100 * mSettings.totalExternalForcesNormPercentageTermination
|
<< 100 * mSettings.totalExternalForcesNormPercentageTermination
|
||||||
* totalExternalForcesNorm / pMesh->totalResidualForcesNorm
|
* totalExternalForcesNorm / minTotalResidualForcesNorm
|
||||||
<< "%" << std::endl;
|
<< "%" << std::endl;
|
||||||
SimulationResultsReporter::createPlot("Number of Steps",
|
// SimulationResultsReporter::createPlot("Number of Steps",
|
||||||
"Residual Forces mov aver",
|
// "Residual Forces mov aver",
|
||||||
history.residualForcesMovingAverage);
|
// history.residualForcesMovingAverage);
|
||||||
// SimulationResultsReporter::createPlot("Number of Steps",
|
// SimulationResultsReporter::createPlot("Number of Steps",
|
||||||
// "Residual Forces mov aver deriv",
|
// "Residual Forces mov aver deriv",
|
||||||
// movingAveragesDerivatives);
|
// movingAveragesDerivatives);
|
||||||
|
|
@ -2297,8 +2315,18 @@ currentSimulationStep > maxDRMIterations*/
|
||||||
// << std::endl;
|
// << std::endl;
|
||||||
// std::cout << "Residual forces norm:" << mesh.totalResidualForcesNorm
|
// std::cout << "Residual forces norm:" << mesh.totalResidualForcesNorm
|
||||||
// << std::endl;
|
// << std::endl;
|
||||||
|
const bool fullfillsResidualForcesNormTerminationCriterion
|
||||||
|
= !mSettings.useAverage
|
||||||
|
&& pMesh->totalResidualForcesNorm / totalExternalForcesNorm
|
||||||
|
< mSettings.totalExternalForcesNormPercentageTermination;
|
||||||
|
const bool fullfillsAverageResidualForcesNormTerminationCriterion
|
||||||
|
= mSettings.useAverage
|
||||||
|
&& (pMesh->totalResidualForcesNorm / pMesh->VN()) / totalExternalForcesNorm
|
||||||
|
< mSettings.averageResidualForcesCriterionThreshold;
|
||||||
// Residual forces norm convergence
|
// Residual forces norm convergence
|
||||||
if ((pMesh->previousTotalKineticEnergy > pMesh->currentTotalKineticEnergy
|
if (((pMesh->previousTotalKineticEnergy > pMesh->currentTotalKineticEnergy
|
||||||
|
|| fullfillsAverageResidualForcesNormTerminationCriterion
|
||||||
|
|| fullfillsResidualForcesNormTerminationCriterion)
|
||||||
// && mCurrentSimulationStep > movingAverageSampleSize
|
// && mCurrentSimulationStep > movingAverageSampleSize
|
||||||
&& (pJob->nodalForcedDisplacements.empty()
|
&& (pJob->nodalForcedDisplacements.empty()
|
||||||
|| mCurrentSimulationStep > mSettings.gradualForcedDisplacementSteps))
|
|| mCurrentSimulationStep > mSettings.gradualForcedDisplacementSteps))
|
||||||
|
|
@ -2314,13 +2342,6 @@ mesh->currentTotalPotentialEnergykN*/
|
||||||
&& pMesh->currentTotalTranslationalKineticEnergy
|
&& pMesh->currentTotalTranslationalKineticEnergy
|
||||||
< mSettings.totalTranslationalKineticEnergyThreshold
|
< mSettings.totalTranslationalKineticEnergyThreshold
|
||||||
&& mCurrentSimulationStep > 20 && numOfDampings > 0;
|
&& mCurrentSimulationStep > 20 && numOfDampings > 0;
|
||||||
const bool fullfillsResidualForcesNormTerminationCriterion
|
|
||||||
= pMesh->totalResidualForcesNorm / totalExternalForcesNorm
|
|
||||||
< mSettings.totalExternalForcesNormPercentageTermination;
|
|
||||||
const bool fullfillsAverageResidualForcesNormTerminationCriterion
|
|
||||||
= mSettings.useAverage
|
|
||||||
&& (pMesh->totalResidualForcesNorm / pMesh->VN()) / totalExternalForcesNorm
|
|
||||||
< mSettings.averageResidualForcesCriterionThreshold;
|
|
||||||
const bool fullfillsMovingAverageNormTerminationCriterion
|
const bool fullfillsMovingAverageNormTerminationCriterion
|
||||||
= pMesh->residualForcesMovingAverage
|
= pMesh->residualForcesMovingAverage
|
||||||
< mSettings.residualForcesMovingAverageNormThreshold;
|
< mSettings.residualForcesMovingAverageNormThreshold;
|
||||||
|
|
@ -2341,7 +2362,7 @@ mesh->currentTotalPotentialEnergykN*/
|
||||||
std::cout << "Converged using residual forces norm threshold criterion"
|
std::cout << "Converged using residual forces norm threshold criterion"
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
} else if (fullfillsKineticEnergyTerminationCriterion) {
|
} else if (fullfillsKineticEnergyTerminationCriterion) {
|
||||||
std::cout << "Warning: The kinetic energy of the system was "
|
std::cout << "The kinetic energy of the system was "
|
||||||
" used as a convergence criterion"
|
" used as a convergence criterion"
|
||||||
<< std::endl;
|
<< std::endl;
|
||||||
} else if (fullfillsMovingAverageNormTerminationCriterion) {
|
} else if (fullfillsMovingAverageNormTerminationCriterion) {
|
||||||
|
|
@ -2377,25 +2398,25 @@ mesh->currentTotalPotentialEnergykN*/
|
||||||
// }
|
// }
|
||||||
}
|
}
|
||||||
|
|
||||||
// const bool shouldCapDisplacements = mSettings.displacementCap.has_value();
|
const bool shouldCapDisplacements = mSettings.displacementCap.has_value();
|
||||||
// for (VertexType &v : pMesh->vert) {
|
for (VertexType &v : pMesh->vert) {
|
||||||
// Node &node = pMesh->nodes[v];
|
Node &node = pMesh->nodes[v];
|
||||||
// Vector6d stepDisplacement = node.velocity * Dt;
|
Vector6d stepDisplacement = node.velocity * 0.5 * Dt;
|
||||||
// if (shouldCapDisplacements
|
if (shouldCapDisplacements
|
||||||
// && stepDisplacement.getTranslation().norm() > mSettings.displacementCap) {
|
&& stepDisplacement.getTranslation().norm() > mSettings.displacementCap) {
|
||||||
// stepDisplacement = stepDisplacement
|
stepDisplacement = stepDisplacement
|
||||||
// * (*mSettings.displacementCap
|
* (*mSettings.displacementCap
|
||||||
// / stepDisplacement.getTranslation().norm());
|
/ stepDisplacement.getTranslation().norm());
|
||||||
// }
|
}
|
||||||
// node.displacements = node.displacements - stepDisplacement;
|
node.displacements = node.displacements - stepDisplacement;
|
||||||
// }
|
}
|
||||||
// applyDisplacements(constrainedVertices);
|
applyDisplacements(constrainedVertices);
|
||||||
// if (!pJob->nodalForcedDisplacements.empty()) {
|
if (!pJob->nodalForcedDisplacements.empty()) {
|
||||||
// applyForcedDisplacements(
|
applyForcedDisplacements(
|
||||||
|
|
||||||
// pJob->nodalForcedDisplacements);
|
pJob->nodalForcedDisplacements);
|
||||||
// }
|
}
|
||||||
// updateElementalLengths();
|
updateElementalLengths();
|
||||||
|
|
||||||
// const double triggerPercentage = 0.01;
|
// const double triggerPercentage = 0.01;
|
||||||
// const double xi_min = 0.55;
|
// const double xi_min = 0.55;
|
||||||
|
|
@ -2408,11 +2429,11 @@ mesh->currentTotalPotentialEnergykN*/
|
||||||
// + xi_init - triggerPercentage * xi_min)
|
// + xi_init - triggerPercentage * xi_min)
|
||||||
// / (1 - triggerPercentage);
|
// / (1 - triggerPercentage);
|
||||||
// }
|
// }
|
||||||
|
resetVelocities();
|
||||||
Dt *= mSettings.xi;
|
Dt *= mSettings.xi;
|
||||||
// if (mSettings.isDebugMode) {
|
// if (mSettings.isDebugMode) {
|
||||||
// std::cout << Dt << std::endl;
|
// std::cout << Dt << std::endl;
|
||||||
// }
|
// }
|
||||||
resetVelocities();
|
|
||||||
++numOfDampings;
|
++numOfDampings;
|
||||||
if (mSettings.shouldCreatePlots) {
|
if (mSettings.shouldCreatePlots) {
|
||||||
history.redMarks.push_back(mCurrentSimulationStep);
|
history.redMarks.push_back(mCurrentSimulationStep);
|
||||||
|
|
|
||||||
|
|
@ -45,7 +45,7 @@ public:
|
||||||
double totalResidualForcesNormThreshold{1e-3};
|
double totalResidualForcesNormThreshold{1e-3};
|
||||||
double totalExternalForcesNormPercentageTermination{1e-3};
|
double totalExternalForcesNormPercentageTermination{1e-3};
|
||||||
bool useAverage{false};
|
bool useAverage{false};
|
||||||
double averageResidualForcesCriterionThreshold{1e-3};
|
double averageResidualForcesCriterionThreshold{1e-5};
|
||||||
Settings() {}
|
Settings() {}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
@ -61,6 +61,9 @@ private:
|
||||||
std::vector<double> plotYValues;
|
std::vector<double> plotYValues;
|
||||||
size_t numOfDampings{0};
|
size_t numOfDampings{0};
|
||||||
int externalLoadStep{1};
|
int externalLoadStep{1};
|
||||||
|
std::vector<bool> isVertexConstrained;
|
||||||
|
std::vector<bool> isRigidSupport;
|
||||||
|
double minTotalResidualForcesNorm{std::numeric_limits<double>::max()};
|
||||||
|
|
||||||
const std::string meshPolyscopeLabel{"Simulation mesh"};
|
const std::string meshPolyscopeLabel{"Simulation mesh"};
|
||||||
std::unique_ptr<SimulationMesh> pMesh;
|
std::unique_ptr<SimulationMesh> pMesh;
|
||||||
|
|
@ -69,7 +72,6 @@ private:
|
||||||
// Eigen::Tensor<double, 4> theta3Derivatives;
|
// Eigen::Tensor<double, 4> theta3Derivatives;
|
||||||
// std::unordered_map<MyKeyType, double, key_hash> theta3Derivatives;
|
// std::unordered_map<MyKeyType, double, key_hash> theta3Derivatives;
|
||||||
bool shouldApplyInitialDistortion = false;
|
bool shouldApplyInitialDistortion = false;
|
||||||
std::unordered_set<VertexIndex> rigidSupports;
|
|
||||||
|
|
||||||
void reset();
|
void reset();
|
||||||
void updateNodalInternalForces(
|
void updateNodalInternalForces(
|
||||||
|
|
@ -156,10 +158,9 @@ private:
|
||||||
|
|
||||||
void updateElementalFrames();
|
void updateElementalFrames();
|
||||||
|
|
||||||
VectorType computeDerivativeOfR(const EdgeType &e,
|
VectorType computeDerivativeOfR(const EdgeType &e, const DifferentiateWithRespectTo &dui) const;
|
||||||
const DifferentiateWithRespectTo &dui) const;
|
|
||||||
|
|
||||||
bool isRigidSupport(const VertexType &v) const;
|
// bool isRigidSupport(const VertexType &v) const;
|
||||||
|
|
||||||
static double computeDerivativeOfNorm(const VectorType &x,
|
static double computeDerivativeOfNorm(const VectorType &x,
|
||||||
const VectorType &derivativeOfX);
|
const VectorType &derivativeOfX);
|
||||||
|
|
|
||||||
|
|
@ -140,6 +140,7 @@ void SimulationMesh::initializeNodes() {
|
||||||
const EdgeType &referenceElement = *node.referenceElement;
|
const EdgeType &referenceElement = *node.referenceElement;
|
||||||
const VectorType t01 = computeT1Vector(referenceElement.cP(0), referenceElement.cP(1));
|
const VectorType t01 = computeT1Vector(referenceElement.cP(0), referenceElement.cP(1));
|
||||||
const VectorType f01 = (t01 - (v.cN() * (t01.dot(v.cN())))).Normalize();
|
const VectorType f01 = (t01 - (v.cN() * (t01.dot(v.cN())))).Normalize();
|
||||||
|
node.alphaAngles.reserve(incidentElements.size());
|
||||||
|
|
||||||
for (const VCGEdgeMesh::EdgePointer &ep : nodes[v].incidentElements) {
|
for (const VCGEdgeMesh::EdgePointer &ep : nodes[v].incidentElements) {
|
||||||
assert(referenceElement.cV(0) == ep->cV(0) || referenceElement.cV(0) == ep->cV(1)
|
assert(referenceElement.cV(0) == ep->cV(0) || referenceElement.cV(0) == ep->cV(1)
|
||||||
|
|
@ -148,7 +149,7 @@ void SimulationMesh::initializeNodes() {
|
||||||
const VectorType f1 = t1 - (v.cN() * (t1.dot(v.cN()))).Normalize();
|
const VectorType f1 = t1 - (v.cN() * (t1.dot(v.cN()))).Normalize();
|
||||||
const EdgeIndex ei = getIndex(ep);
|
const EdgeIndex ei = getIndex(ep);
|
||||||
const double alphaAngle = computeAngle(f01, f1, v.cN());
|
const double alphaAngle = computeAngle(f01, f1, v.cN());
|
||||||
node.alphaAngles[ei] = alphaAngle;
|
node.alphaAngles.emplace_back(std::make_pair(ei, alphaAngle));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
@ -182,7 +183,8 @@ void SimulationMesh::reset() {
|
||||||
const EdgeType &referenceElement = *getReferenceElement(v);
|
const EdgeType &referenceElement = *getReferenceElement(v);
|
||||||
const VectorType t01 = computeT1Vector(referenceElement.cP(0), referenceElement.cP(1));
|
const VectorType t01 = computeT1Vector(referenceElement.cP(0), referenceElement.cP(1));
|
||||||
const VectorType f01 = (t01 - (v.cN() * (t01.dot(v.cN())))).Normalize();
|
const VectorType f01 = (t01 - (v.cN() * (t01.dot(v.cN())))).Normalize();
|
||||||
|
node.alphaAngles.clear();
|
||||||
|
node.alphaAngles.reserve(node.incidentElements.size());
|
||||||
for (const VCGEdgeMesh::EdgePointer &ep : nodes[v].incidentElements) {
|
for (const VCGEdgeMesh::EdgePointer &ep : nodes[v].incidentElements) {
|
||||||
assert(referenceElement.cV(0) == ep->cV(0) || referenceElement.cV(0) == ep->cV(1)
|
assert(referenceElement.cV(0) == ep->cV(0) || referenceElement.cV(0) == ep->cV(1)
|
||||||
|| referenceElement.cV(1) == ep->cV(0) || referenceElement.cV(1) == ep->cV(1));
|
|| referenceElement.cV(1) == ep->cV(0) || referenceElement.cV(1) == ep->cV(1));
|
||||||
|
|
@ -190,7 +192,7 @@ void SimulationMesh::reset() {
|
||||||
const VectorType f1 = t1 - (v.cN() * (t1.dot(v.cN()))).Normalize();
|
const VectorType f1 = t1 - (v.cN() * (t1.dot(v.cN()))).Normalize();
|
||||||
const EdgeIndex ei = getIndex(ep);
|
const EdgeIndex ei = getIndex(ep);
|
||||||
const double alphaAngle = computeAngle(f01, f1, v.cN());
|
const double alphaAngle = computeAngle(f01, f1, v.cN());
|
||||||
node.alphaAngles[ei] = alphaAngle;
|
node.alphaAngles.emplace_back(std::make_pair(ei, alphaAngle));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
||||||
|
|
@ -157,10 +157,11 @@ struct Node {
|
||||||
double kineticEnergy{0};
|
double kineticEnergy{0};
|
||||||
Vector6d displacements{0};
|
Vector6d displacements{0};
|
||||||
double nR{0};
|
double nR{0};
|
||||||
std::unordered_map<EdgeIndex, double>
|
// std::unordered_map<EdgeIndex, double>
|
||||||
alphaAngles; // contains the initial angles between the first star element
|
// alphaAngles; // contains the initial angles between the first star element
|
||||||
// incident to this node and the other elements of the star
|
// // incident to this node and the other elements of the star
|
||||||
// has size equal to the valence of the vertex
|
// // has size equal to the valence of the vertex
|
||||||
|
std::vector<std::pair<EdgeIndex, double>> alphaAngles;
|
||||||
|
|
||||||
std::vector<VCGEdgeMesh::EdgePointer> incidentElements;
|
std::vector<VCGEdgeMesh::EdgePointer> incidentElements;
|
||||||
std::vector<VectorType> derivativeOfNormal;
|
std::vector<VectorType> derivativeOfNormal;
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue