Windows refactoring

This commit is contained in:
iasonmanolas 2021-12-23 21:11:27 +02:00
commit cd89112936
12 changed files with 642 additions and 485 deletions

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.0)
cmake_minimum_required(VERSION 2.8)
project(MySources)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
@ -9,30 +9,42 @@ if (CMAKE_VERSION VERSION_LESS 3.2)
else()
set(UPDATE_DISCONNECTED_IF_AVAILABLE "UPDATE_DISCONNECTED 1")
endif()
<<<<<<< HEAD
#set(EXTERNAL_DEPS_DIR "/home/iason/Coding/build/external dependencies")
if(NOT EXISTS EXTERNAL_DEPS_DIR)
=======
set(EXTERNAL_DEPS_DIR "/home/iason/Coding/build/external dependencies")
if(NOT EXISTS ${EXTERNAL_DEPS_DIR})
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb
set(EXTERNAL_DEPS_DIR ${CMAKE_CURRENT_BINARY_DIR})
message("External dependencies directory set:" ${EXTERNAL_DEPS_DIR})
endif()
##Create directory for the external libraries
file(MAKE_DIRECTORY ${EXTERNAL_DEPS_DIR})
<<<<<<< HEAD
#message(${POLYSCOPE_ALREADY_COMPILED})
if(NOT DEFINED USE_POLYSCOPE)
message(FATAL_ERROR "Use polyscope was not defined")
endif()
=======
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb
if(${USE_POLYSCOPE})
set(POLYSCOPE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/polyscope)
download_project(PROJ POLYSCOPE
GIT_REPOSITORY https://github.com/nmwsharp/polyscope.git
GIT_TAG master
PREFIX ${EXTERNAL_DEPS_DIR}
BINARY_DIR ${POLYSCOPE_BINARY_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
add_subdirectory(${POLYSCOPE_SOURCE_DIR} ${POLYSCOPE_BINARY_DIR})
add_compile_definitions(POLYSCOPE_DEFINED)
endif()
<<<<<<< HEAD
##dlib
#set(DLIB_BIN_DIR ${CMAKE_CURRENT_BINARY_DIR}/dlib_bin)
@ -45,6 +57,8 @@ endif()
# ${UPDATE_DISCONNECTED_IF_AVAILABLE}
#)
#add_subdirectory(${DLIB_SOURCE_DIR} ${DLIB_BINARY_DIR})
=======
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb
##vcglib devel branch
download_project(PROJ vcglib_devel
GIT_REPOSITORY https://github.com/IasonManolas/vcglib.git
@ -63,53 +77,80 @@ download_project(PROJ EIGEN
)
add_subdirectory(${EIGEN_SOURCE_DIR} ${EIGEN_BINARY_DIR})
##matplot++ lib
set(MATPLOTPLUSPLUS_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/matplot)
download_project(PROJ MATPLOTPLUSPLUS
GIT_REPOSITORY https://github.com/alandefreitas/matplotplusplus
GIT_TAG master
BINARY_DIR ${MATPLOTPLUSPLUS_BINARY_DIR}
PREFIX ${EXTERNAL_DEPS_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
add_subdirectory(${MATPLOTPLUSPLUS_SOURCE_DIR} ${MATPLOTPLUSPLUS_BINARY_DIR})
##threed-beam-fea
set(threed-beam-fea_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/threed-beam-fea)
download_project(PROJ threed-beam-fea
GIT_REPOSITORY https://gitea-s2i2s.isti.cnr.it/manolas/threed-beam-fea.git
GIT_TAG master
BINARY_DIR ${threed-beam-fea_BINARY_DIR}
PREFIX ${EXTERNAL_DEPS_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
add_subdirectory(${threed-beam-fea_SOURCE_DIR} ${threed-beam-fea_BINARY_DIR})
<<<<<<< HEAD
=======
##TBB
set(TBB_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/tbb)
download_project(PROJ TBB
GIT_REPOSITORY https://github.com/wjakob/tbb.git
GIT_TAG master
PREFIX ${EXTERNAL_DEPS_DIR}
BINARY_DIR ${TBB_BINARY_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
option(TBB_BUILD_TESTS "Build TBB tests and enable testing infrastructure" OFF)
add_subdirectory(${TBB_SOURCE_DIR} ${TBB_BINARY_DIR})
link_directories(${TBB_BINARY_DIR})
###Eigen 3 NOTE: Eigen is required on the system the code is ran
find_package(Eigen3 3.3 REQUIRED)
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb
if(MSVC)
add_compile_definitions(_HAS_STD_BYTE=0)
endif(MSVC)
#link_directories(${CMAKE_CURRENT_LIST_DIR}/boost_graph/libs)
file(GLOB MySourcesFiles ${CMAKE_CURRENT_LIST_DIR}/*.hpp ${CMAKE_CURRENT_LIST_DIR}/*.cpp)
add_library(${PROJECT_NAME} ${MySourcesFiles} ${vcglib_devel_SOURCE_DIR}/wrap/ply/plylib.cpp)
set(USE_TBB true)
if(${USE_TBB})
##TBB
download_project(PROJ TBB
GIT_REPOSITORY https://github.com/wjakob/tbb.git
GIT_TAG master
PREFIX ${EXTERNAL_DEPS_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
option(TBB_BUILD_TESTS "Build TBB tests and enable testing infrastructure" OFF)
option(TBB_BUILD_STATIC "Build TBB static library" ON)
add_subdirectory(${TBB_SOURCE_DIR} ${TBB_BINARY_DIR})
link_directories(${TBB_BINARY_DIR})
if(${MYSOURCES_STATIC_LINK})
target_link_libraries(${PROJECT_NAME} PUBLIC -static tbb_static)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC tbb)
target_include_directories(${PROJECT_NAME}
PUBLIC ${CMAKE_CURRENT_LIST_DIR}/boost_graph
PUBLIC ${vcglib_devel_SOURCE_DIR}
PUBLIC ${threed-beam-fea_SOURCE_DIR}
)
if(${MYSOURCES_STATIC_LINK})
message("Linking statically")
target_link_libraries(${PROJECT_NAME} -static Eigen3::Eigen matplot ThreedBeamFEA ${TBB_BINARY_DIR}/libtbb_static.a pthread gfortran quadmath)
else()
target_link_libraries(${PROJECT_NAME} Eigen3::Eigen matplot ThreedBeamFEA tbb pthread)
if(${USE_POLYSCOPE})
target_link_libraries(${PROJECT_NAME} polyscope)
endif()
endif()
target_link_directories(MySources PUBLIC ${CMAKE_CURRENT_LIST_DIR}/boost_graph/libs)
if(USE_ENSMALLEN)
##ENSMALLEN
set(ENSMALLEN_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}/ensmallen)
download_project(PROJ ENSMALLEN
GIT_REPOSITORY https://github.com/mlpack/ensmallen.git
GIT_TAG master
BINARY_DIR ${ENSMALLEN_BINARY_DIR}
PREFIX ${EXTERNAL_DEPS_DIR}
${UPDATE_DISCONNECTED_IF_AVAILABLE}
)
add_subdirectory(${ENSMALLEN_SOURCE_DIR} ${ENSMALLEN_BINARY_DIR})
<<<<<<< HEAD
download_project(PROJ ARMADILLO
GIT_REPOSITORY https://gitlab.com/conradsnicta/armadillo-code.git
@ -120,14 +161,18 @@ if(USE_ENSMALLEN)
add_subdirectory(${ARMADILLO_SOURCE_DIR} ${ARMADILLO_BINARY_DIR})
target_include_directories(${PROJECT_NAME} PUBLIC armadillo )
=======
set(ARMADILLO_SOURCE_DIR "/home/iason/Coding/Libraries/armadillo")
add_subdirectory(${ARMADILLO_SOURCE_DIR} ${EXTERNAL_DEPS_DIR}/armadillo_build)
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb
if(${MYSOURCES_STATIC_LINK})
target_link_libraries(${PROJECT_NAME} PUBLIC "-static" ensmallen ${EXTERNAL_DEPS_DIR}/armadillo_build/libarmadillo.a)
else()
target_link_libraries(${PROJECT_NAME} PUBLIC armadillo ensmallen)
endif()
target_include_directories(${PROJECT_NAME} PUBLIC ${ARMADILLO_SOURCE_DIR}/include)
endif()
<<<<<<< HEAD
target_include_directories(${PROJECT_NAME}
PUBLIC ${CMAKE_CURRENT_LIST_DIR}/boost_graph
@ -183,3 +228,5 @@ endif()
#target_link_libraries(${PROJECT_NAME} PUBLIC GSL)
#target_include_directories(${PROJECT_NAME} PUBLIC GSL)
=======
>>>>>>> c9fc6ccd0877f92308795b99e51c8e5dfd1e31eb

View File

@ -9,15 +9,36 @@ struct RectangularBeamDimensions {
inline static std::string name{"Rectangular"};
double b;
double h;
RectangularBeamDimensions(const double &width, const double &height)
: b(width), h(height) {
assert(width > 0 && height > 0);
double A{0}; // cross sectional area
struct MomentsOfInertia
{
double I2{0}; // second moment of inertia
double I3{0}; // third moment of inertia
double J{0}; // torsional constant (polar moment of inertia)
} inertia;
RectangularBeamDimensions(const double &width, const double &height) : b(width), h(height)
{
assert(width > 0 && height > 0);
updateProperties();
}
RectangularBeamDimensions() : b(0.002), h(0.002) {}
RectangularBeamDimensions() : b(0.002), h(0.002) { updateProperties(); }
std::string toString() const {
return std::string("b=") + std::to_string(b) + std::string(" h=") +
std::to_string(h);
}
void updateProperties()
{
A = b * h;
inertia.I2 = b * std::pow(h, 3) / 12;
inertia.I3 = h * std::pow(b, 3) / 12;
inertia.J = inertia.I2 + inertia.I3;
}
static void computeMomentsOfInertia(const RectangularBeamDimensions &dimensions,
MomentsOfInertia &inertia);
};
struct CylindricalBeamDimensions {
@ -39,18 +60,21 @@ struct ElementMaterial
{
double poissonsRatio;
double youngsModulus;
double G;
ElementMaterial(const double &poissonsRatio, const double &youngsModulus)
: poissonsRatio(poissonsRatio), youngsModulus(youngsModulus)
{
assert(poissonsRatio <= 0.5 && poissonsRatio >= -1);
updateProperties();
}
ElementMaterial() : poissonsRatio(0.3), youngsModulus(200 * 1e9) {}
ElementMaterial() : poissonsRatio(0.3), youngsModulus(200 * 1e9) { updateProperties(); }
std::string toString() const
{
return std::string("Material:") + std::string("\nPoisson's ratio=")
+ std::to_string(poissonsRatio) + std::string("\nYoung's Modulus(GPa)=")
+ std::to_string(youngsModulus / 1e9);
}
void updateProperties() { G = youngsModulus / (2 * (1 + poissonsRatio)); }
};
#endif // BEAM_HPP

View File

@ -796,21 +796,21 @@ double DRMSimulationModel::computeTotalInternalPotentialEnergy()
const EdgeIndex ei = pMesh->getIndex(e);
const double e_k = element.length - element.initialLength;
const double axialPE = pow(e_k, 2) * element.material.youngsModulus * element.A
const double axialPE = pow(e_k, 2) * element.material.youngsModulus * element.dimensions.A
/ (2 * element.initialLength);
const double theta1Diff = theta1_jplus1 - theta1_j;
const double torsionalPE = element.G * element.inertia.J * pow(theta1Diff, 2)
/ (2 * element.initialLength);
const double torsionalPE = element.material.G * element.dimensions.inertia.J
* pow(theta1Diff, 2) / (2 * element.initialLength);
const double firstBendingPE_inBracketsTerm = 4 * pow(theta2_j, 2)
+ 4 * theta2_j * theta2_jplus1
+ 4 * pow(theta2_jplus1, 2);
const double firstBendingPE = firstBendingPE_inBracketsTerm * element.material.youngsModulus
* element.inertia.I2 / (2 * element.initialLength);
* element.dimensions.inertia.I2 / (2 * element.initialLength);
const double secondBendingPE_inBracketsTerm = 4 * pow(theta3_j, 2)
+ 4 * theta3_j * theta3_jplus1
+ 4 * pow(theta3_jplus1, 2);
const double secondBendingPE = secondBendingPE_inBracketsTerm
* element.material.youngsModulus * element.inertia.I3
* element.material.youngsModulus * element.dimensions.inertia.I3
/ (2 * element.initialLength);
totalInternalPotentialEnergy += axialPE + torsionalPE + firstBendingPE + secondBendingPE;
@ -1261,14 +1261,15 @@ void DRMSimulationModel::updateNodalMasses()
for (const EdgePointer &ep : pMesh->nodes[v].incidentElements) {
const size_t ei = pMesh->getIndex(ep);
const Element &elem = pMesh->elements[ep];
const double SkTranslational = elem.material.youngsModulus * elem.A / elem.length;
const double SkTranslational = elem.material.youngsModulus * elem.dimensions.A
/ elem.length;
translationalSumSk += SkTranslational;
const double lengthToThe3 = std::pow(elem.length, 3);
const long double SkRotational_I2 = elem.material.youngsModulus * elem.inertia.I2
const long double SkRotational_I2 = elem.material.youngsModulus * elem.dimensions.inertia.I2
/ lengthToThe3;
const long double SkRotational_I3 = elem.material.youngsModulus * elem.inertia.I3
const long double SkRotational_I3 = elem.material.youngsModulus * elem.dimensions.inertia.I3
/ lengthToThe3;
const long double SkRotational_J = elem.material.youngsModulus * elem.inertia.J
const long double SkRotational_J = elem.material.youngsModulus * elem.dimensions.inertia.J
/ lengthToThe3;
rotationalSumSk_I2 += SkRotational_I2;
rotationalSumSk_I3 += SkRotational_I3;
@ -1627,14 +1628,15 @@ void DRMSimulationModel::updatePositionsOnTheFly(
double rotationalSumSk_J = 0;
for (const EdgePointer &ep : pMesh->nodes[v].incidentElements) {
const Element &elem = pMesh->elements[ep];
const double SkTranslational = elem.material.youngsModulus * elem.A / elem.length;
const double SkTranslational = elem.material.youngsModulus * elem.dimensions.A
/ elem.length;
translationalSumSk += SkTranslational;
const double lengthToThe3 = std::pow(elem.length, 3);
const double SkRotational_I2 = elem.material.youngsModulus * elem.inertia.I2
const double SkRotational_I2 = elem.material.youngsModulus * elem.dimensions.inertia.I2
/ lengthToThe3; // TODO: I2->t2,I3->t3,t1->polar inertia
const double SkRotational_I3 = elem.material.youngsModulus * elem.inertia.I3
const double SkRotational_I3 = elem.material.youngsModulus * elem.dimensions.inertia.I3
/ lengthToThe3; // TODO: I2->t2,I3->t3,t1->polar inertia
const double SkRotational_J = elem.material.youngsModulus * elem.inertia.J
const double SkRotational_J = elem.material.youngsModulus * elem.dimensions.inertia.J
/ lengthToThe3; // TODO: I2->t2,I3->t3,t1->polar inertia
rotationalSumSk_I2 += SkRotational_I2;
rotationalSumSk_I3 += SkRotational_I3;
@ -1831,10 +1833,13 @@ SimulationResults DRMSimulationModel::computeResults(const std::shared_ptr<Simul
results.debug_q_normal[vi] = q_normal;
results.debug_q_nr[vi] = q_nr_nInit;
results.rotationalDisplacementQuaternion[vi]
//Eigen::Quaterniond R
= (q_normal
* (q_f1_nInit * q_nr_nInit)); //q_f1_nDeformed * q_nr_nDeformed * q_normal;
//Update the displacement vector to contain the euler angles
const Eigen::Vector3d eulerAngles = results.rotationalDisplacementQuaternion[vi]
const Eigen::Vector3d eulerAngles = results
.rotationalDisplacementQuaternion[vi]
// R
.toRotationMatrix()
.eulerAngles(0, 1, 2);
results.displacements[vi][3] = eulerAngles[0];
@ -2007,10 +2012,10 @@ void DRMSimulationModel::draw(const std::string &screenshotsFolder)
std::vector<double> I3(pMesh->EN());
for (const EdgeType &e : pMesh->edge) {
const size_t ei = pMesh->getIndex(e);
A[ei] = pMesh->elements[e].A;
J[ei] = pMesh->elements[e].inertia.J;
I2[ei] = pMesh->elements[e].inertia.I2;
I3[ei] = pMesh->elements[e].inertia.I3;
A[ei] = pMesh->elements[e].dimensions.A;
J[ei] = pMesh->elements[e].dimensions.inertia.J;
I2[ei] = pMesh->elements[e].dimensions.inertia.I2;
I3[ei] = pMesh->elements[e].dimensions.inertia.I3;
}
polyscope::getCurveNetwork(meshPolyscopeLabel)->addEdgeScalarQuantity("A", A);

View File

@ -2,7 +2,8 @@
#define BEAMFORMFINDER_HPP
//#ifdef USE_MATPLOT
#include "matplot/matplot.h"
//#include "matplot.h"
#include <matplot/matplot.h>
//#endif
#include "simulationmesh.hpp"
#include "simulationmodel.hpp"

View File

@ -1,5 +1,5 @@
#include "linearsimulationmodel.hpp"
#include "gsl/gsl"
//#include "gsl/gsl"
std::vector<fea::Elem> LinearSimulationModel::getFeaElements(
const std::shared_ptr<SimulationMesh> &pMesh)
@ -14,10 +14,10 @@ std::vector<fea::Elem> LinearSimulationModel::getFeaElements(
(evn0[2] + evn1[2]) / 2};
const Element &element = pMesh->elements[edgeIndex];
const double E = element.material.youngsModulus;
fea::Props feaProperties(E * element.A,
E * element.inertia.I3,
E * element.inertia.I2,
element.G * element.inertia.J,
fea::Props feaProperties(E * element.dimensions.A,
E * element.dimensions.inertia.I3,
E * element.dimensions.inertia.I2,
element.material.G * element.dimensions.inertia.J,
nAverageVector);
const int vi0 = pMesh->getIndex(pMesh->edge[edgeIndex].cV(0));
const int vi1 = pMesh->getIndex(pMesh->edge[edgeIndex].cV(1));
@ -139,26 +139,30 @@ SimulationResults LinearSimulationModel::getResults(
const double elementPotentialEnergy_axial_v0 = std::pow(elementForces[0], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.A);
* element.dimensions.A);
const double elementPotentialEnergy_axial_v1 = std::pow(elementForces[6], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.A);
* element.dimensions.A);
const double elementPotentialEnergy_axial = elementPotentialEnergy_axial_v0
+ elementPotentialEnergy_axial_v1;
//Shear
const double elementPotentialEnergy_shearY_v0 = std::pow(elementForces[1], 2)
* element.initialLength
/ (4 * element.A * element.G);
/ (4 * element.dimensions.A
* element.material.G);
const double elementPotentialEnergy_shearZ_v0 = std::pow(elementForces[2], 2)
* element.initialLength
/ (4 * element.A * element.G);
/ (4 * element.dimensions.A
* element.material.G);
const double elementPotentialEnergy_shearY_v1 = std::pow(elementForces[7], 2)
* element.initialLength
/ (4 * element.A * element.G);
/ (4 * element.dimensions.A
* element.material.G);
const double elementPotentialEnergy_shearZ_v1 = std::pow(elementForces[8], 2)
* element.initialLength
/ (4 * element.A * element.G);
/ (4 * element.dimensions.A
* element.material.G);
const double elementPotentialEnergy_shear = elementPotentialEnergy_shearY_v0
+ elementPotentialEnergy_shearZ_v0
+ elementPotentialEnergy_shearY_v1
@ -167,19 +171,19 @@ SimulationResults LinearSimulationModel::getResults(
const double elementPotentialEnergy_bendingY_v0 = std::pow(elementForces[4], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.inertia.I2);
* element.dimensions.inertia.I2);
const double elementPotentialEnergy_bendingZ_v0 = std::pow(elementForces[5], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.inertia.I3);
* element.dimensions.inertia.I3);
const double elementPotentialEnergy_bendingY_v1 = std::pow(elementForces[10], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.inertia.I2);
* element.dimensions.inertia.I2);
const double elementPotentialEnergy_bendingZ_v1 = std::pow(elementForces[11], 2)
* element.initialLength
/ (4 * element.material.youngsModulus
* element.inertia.I3);
* element.dimensions.inertia.I3);
const double elementPotentialEnergy_bending = elementPotentialEnergy_bendingY_v0
+ elementPotentialEnergy_bendingZ_v0
+ elementPotentialEnergy_bendingY_v1
@ -187,10 +191,12 @@ SimulationResults LinearSimulationModel::getResults(
//Torsion
const double elementPotentialEnergy_torsion_v0 = std::pow(elementForces[3], 2)
* element.initialLength
/ (4 * element.inertia.J * element.G);
/ (4 * element.dimensions.inertia.J
* element.material.G);
const double elementPotentialEnergy_torsion_v1 = std::pow(elementForces[9], 2)
* element.initialLength
/ (4 * element.inertia.J * element.G);
/ (4 * element.dimensions.inertia.J
* element.material.G);
const double elementPotentialEnergy_torsion = elementPotentialEnergy_torsion_v0
+ elementPotentialEnergy_torsion_v1;
const double elementInternalPotentialEnergy = elementPotentialEnergy_axial

View File

@ -1,7 +1,7 @@
#ifndef MESH_HPP
#define MESH_HPP
#include <Eigen/Core>
//#include <Eigen/Core>
#include <string>
class Mesh

View File

@ -62,140 +62,159 @@ struct xRange
}
};
struct Settings
{
enum NormalizationStrategy { NonNormalized, Epsilon };
std::vector<xRange> parameterRanges;
inline static vector<std::string> normalizationStrategyStrings{"NonNormalized", "Epsilon"};
int numberOfFunctionCalls{100000};
double solverAccuracy{1e-2};
NormalizationStrategy normalizationStrategy{Epsilon};
double translationNormalizationParameter{0.003};
double rotationNormalizationParameter{3};
bool splitGeometryMaterialOptimization{false};
struct ObjectiveWeights
{
double translational{1};
double rotational{1};
} objectiveWeights;
enum OptimizationParameterIndex { E, A, I2, I3, J, R, Theta, NumberOfOptimizationParameters };
struct JsonKeys
{
inline static std::string filename{"OptimizationSettings.json"};
inline static std::string OptimizationVariables{"OptimizationVariables"};
inline static std::string NumberOfFunctionCalls{"NumberOfFunctionCalls"};
inline static std::string SolverAccuracy{"SolverAccuracy"};
inline static std::string TranslationalObjectiveWeight{"TransObjWeight"};
};
struct Settings
{
std::filesystem::path intermediateResultsDirectoryPath;
std::vector<std::vector<OptimizationParameterIndex>> optimizationVariables;
enum NormalizationStrategy { NonNormalized, Epsilon };
std::vector<xRange> parameterRanges;
inline static vector<std::string> normalizationStrategyStrings{"NonNormalized", "Epsilon"};
int numberOfFunctionCalls{100000};
double solverAccuracy{1e-2};
NormalizationStrategy normalizationStrategy{Epsilon};
double translationNormalizationParameter{0.003};
double rotationNormalizationParameter{3};
struct ObjectiveWeights
{
double translational{1};
double rotational{1};
} objectiveWeights;
void save(const std::filesystem::path &saveToPath)
{
assert(std::filesystem::is_directory(saveToPath));
struct JsonKeys
{
inline static std::string filename{"OptimizationSettings.json"};
inline static std::string OptimizationVariables{"OptimizationVariables"};
inline static std::string NumberOfFunctionCalls{"NumberOfFunctionCalls"};
inline static std::string SolverAccuracy{"SolverAccuracy"};
inline static std::string TranslationalObjectiveWeight{"TransObjWeight"};
inline static std::string OptimizationParameters{"OptimizationParameters"};
};
nlohmann::json json;
//write x ranges
for (size_t xRangeIndex = 0; xRangeIndex < parameterRanges.size(); xRangeIndex++) {
const auto &xRange = parameterRanges[xRangeIndex];
json[JsonKeys::OptimizationVariables + "_" + std::to_string(xRangeIndex)]
= xRange.toString();
}
void save(const std::filesystem::path &saveToPath)
{
assert(std::filesystem::is_directory(saveToPath));
json[JsonKeys::NumberOfFunctionCalls] = numberOfFunctionCalls;
json[JsonKeys::SolverAccuracy] = solverAccuracy;
json[JsonKeys::TranslationalObjectiveWeight] = objectiveWeights.translational;
nlohmann::json json;
//write x ranges
for (size_t xRangeIndex = 0; xRangeIndex < parameterRanges.size(); xRangeIndex++) {
const auto &xRange = parameterRanges[xRangeIndex];
json[JsonKeys::OptimizationVariables + "_" + std::to_string(xRangeIndex)]
= xRange.toString();
}
std::filesystem::path jsonFilePath(
std::filesystem::path(saveToPath).append(JsonKeys::filename));
std::ofstream jsonFile(jsonFilePath.string());
jsonFile << json;
}
json[JsonKeys::NumberOfFunctionCalls] = numberOfFunctionCalls;
json[JsonKeys::SolverAccuracy] = solverAccuracy;
json[JsonKeys::TranslationalObjectiveWeight] = objectiveWeights.translational;
json[JsonKeys::OptimizationParameters] = optimizationVariables;
bool load(const std::filesystem::path &loadFromPath)
{
assert(std::filesystem::is_directory(loadFromPath));
//Load optimal X
nlohmann::json json;
std::filesystem::path jsonFilepath(
std::filesystem::path(loadFromPath).append(JsonKeys::filename));
if (!std::filesystem::exists(jsonFilepath)) {
return false;
}
std::ifstream ifs(jsonFilepath);
ifs >> json;
std::filesystem::path jsonFilePath(
std::filesystem::path(saveToPath).append(JsonKeys::filename));
std::ofstream jsonFile(jsonFilePath.string());
jsonFile << json;
}
//read x ranges
size_t xRangeIndex = 0;
while (true) {
const std::string jsonXRangeKey = JsonKeys::OptimizationVariables + "_"
+ std::to_string(xRangeIndex);
if (!json.contains(jsonXRangeKey)) {
break;
}
xRange x;
x.fromString(json.at(jsonXRangeKey));
parameterRanges.push_back(x);
xRangeIndex++;
}
bool load(const std::filesystem::path &loadFromPath)
{
assert(std::filesystem::is_directory(loadFromPath));
//Load optimal X
nlohmann::json json;
std::filesystem::path jsonFilepath(
std::filesystem::path(loadFromPath).append(JsonKeys::filename));
if (!std::filesystem::exists(jsonFilepath)) {
return false;
}
std::ifstream ifs(jsonFilepath);
ifs >> json;
numberOfFunctionCalls = json.at(JsonKeys::NumberOfFunctionCalls);
solverAccuracy = json.at(JsonKeys::SolverAccuracy);
objectiveWeights.translational = json.at(JsonKeys::TranslationalObjectiveWeight);
objectiveWeights.rotational = 2 - objectiveWeights.translational;
return true;
}
//read x ranges
size_t xRangeIndex = 0;
while (true) {
const std::string jsonXRangeKey = JsonKeys::OptimizationVariables + "_"
+ std::to_string(xRangeIndex);
if (!json.contains(jsonXRangeKey)) {
break;
}
xRange x;
x.fromString(json.at(jsonXRangeKey));
parameterRanges.push_back(x);
xRangeIndex++;
}
std::string toString() const
{
std::string settingsString;
if (!parameterRanges.empty()) {
std::string xRangesString;
for (const xRange &range : parameterRanges) {
xRangesString += range.toString() + " ";
}
settingsString += xRangesString;
}
settingsString += "FuncCalls=" + std::to_string(numberOfFunctionCalls)
+ " Accuracy=" + std::to_string(solverAccuracy)
+ " TransWeight=" + std::to_string(objectiveWeights.translational)
+ " RotWeight=" + std::to_string(objectiveWeights.rotational);
optimizationVariables
= std::vector<std::vector<ReducedPatternOptimization::OptimizationParameterIndex>>(
(json.at(JsonKeys::OptimizationParameters)));
numberOfFunctionCalls = json.at(JsonKeys::NumberOfFunctionCalls);
solverAccuracy = json.at(JsonKeys::SolverAccuracy);
objectiveWeights.translational = json.at(JsonKeys::TranslationalObjectiveWeight);
objectiveWeights.rotational = 2 - objectiveWeights.translational;
return true;
}
return settingsString;
}
std::string toString() const
{
std::string settingsString;
if (!parameterRanges.empty()) {
std::string xRangesString;
for (const xRange &range : parameterRanges) {
xRangesString += range.toString() + " ";
}
settingsString += xRangesString;
}
settingsString += "FuncCalls=" + std::to_string(numberOfFunctionCalls)
+ " Accuracy=" + std::to_string(solverAccuracy)
+ " TransWeight=" + std::to_string(objectiveWeights.translational)
+ " RotWeight=" + std::to_string(objectiveWeights.rotational);
void writeHeaderTo(csvFile &os) const
{
if (!parameterRanges.empty()) {
for (const xRange &range : parameterRanges) {
os << range.label + " max";
os << range.label + " min";
}
}
os << "Function Calls";
os << "Solution Accuracy";
os << "Normalization strategy";
os << "Trans weight";
os << "Rot weight";
os << "Splitted geo from mat opt";
// os << std::endl;
}
return settingsString;
}
void writeSettingsTo(csvFile &os) const
{
if (!parameterRanges.empty()) {
for (const xRange &range : parameterRanges) {
os << range.max;
os << range.min;
}
}
os << numberOfFunctionCalls;
os << solverAccuracy;
os << normalizationStrategyStrings[normalizationStrategy] + "_"
+ std::to_string(translationNormalizationParameter);
os << objectiveWeights.translational;
os << objectiveWeights.rotational;
os << (splitGeometryMaterialOptimization == true ? "true" : "false");
}
};
void writeHeaderTo(csvFile &os) const
{
if (!parameterRanges.empty()) {
for (const xRange &range : parameterRanges) {
os << range.label + " max";
os << range.label + " min";
}
}
os << "Function Calls";
os << "Solution Accuracy";
os << "Normalization strategy";
os << "Trans weight";
os << "Rot weight";
os << "Optimization parameters";
// os << std::endl;
}
void writeSettingsTo(csvFile &os) const
{
if (!parameterRanges.empty()) {
for (const xRange &range : parameterRanges) {
os << range.max;
os << range.min;
}
}
os << numberOfFunctionCalls;
os << solverAccuracy;
os << normalizationStrategyStrings[normalizationStrategy] + "_"
+ std::to_string(translationNormalizationParameter);
os << objectiveWeights.translational;
os << objectiveWeights.rotational;
//export optimization parameters
std::vector<std::vector<int>> vv;
for (const std::vector<OptimizationParameterIndex> &v : optimizationVariables) {
std::vector<int> vi;
vi.reserve(v.size());
for (const OptimizationParameterIndex &parameter : v) {
vi.emplace_back(parameter);
}
vv.push_back(vi);
}
os << Utilities::toString(vv);
}
};
inline bool operator==(const Settings &settings1, const Settings &settings2) noexcept
{
@ -222,9 +241,9 @@ struct xRange
Element &e = m.elements[ei];
e.setDimensions(CrossSectionType(beamWidth, beamHeight));
e.setMaterial(ElementMaterial(e.material.poissonsRatio, E));
e.inertia.J = J;
e.inertia.I2 = I2;
e.inertia.I3 = I3;
e.dimensions.inertia.J = J;
e.dimensions.inertia.I2 = I2;
e.dimensions.inertia.I3 = I3;
}
CoordType center_barycentric(1, 0, 0);
@ -606,7 +625,7 @@ struct xRange
const double J = optimalXVariables.at(JLabel);
for (int ei = 0; ei < pTiledReducedPattern_simulationMesh->EN(); ei++) {
Element &e = pTiledReducedPattern_simulationMesh->elements[ei];
e.inertia.J = J;
e.dimensions.inertia.J = J;
}
}
@ -615,7 +634,7 @@ struct xRange
const double I2 = optimalXVariables.at(I2Label);
for (int ei = 0; ei < pTiledReducedPattern_simulationMesh->EN(); ei++) {
Element &e = pTiledReducedPattern_simulationMesh->elements[ei];
e.inertia.I2 = I2;
e.dimensions.inertia.I2 = I2;
}
}
@ -624,7 +643,7 @@ struct xRange
const double I3 = optimalXVariables.at(I3Label);
for (int ei = 0; ei < pTiledReducedPattern_simulationMesh->EN(); ei++) {
Element &e = pTiledReducedPattern_simulationMesh->elements[ei];
e.inertia.I3 = I3;
e.dimensions.inertia.I3 = I3;
}
}
pTiledReducedPattern_simulationMesh->reset();

View File

@ -539,7 +539,7 @@ struct SimulationResults
const std::filesystem::path outputFolderPath = outputFolder.empty()
? std::filesystem::current_path()
: std::filesystem::path(outputFolder);
std::cout << "Saving results to:" << outputFolderPath << std::endl;
// std::cout << "Saving results to:" << outputFolderPath << std::endl;
std::filesystem::path simulationJobOutputFolderPath
= std::filesystem::path(outputFolderPath).append("SimulationJob");
std::filesystem::create_directories(simulationJobOutputFolderPath);
@ -569,8 +569,173 @@ struct SimulationResults
void load(const std::filesystem::path &loadFromPath, const std::filesystem::path &loadJobFrom)
{
//load job
pJob->load(std::filesystem::path(loadJobFrom).append("SimulationJob.json").string());
load(loadFromPath);
}
void load(const std::filesystem::path &loadFromPath, const std::shared_ptr<SimulationJob> &pJob)
{
this->pJob = pJob;
load(loadFromPath);
}
#ifdef POLYSCOPE_DEFINED
void unregister() const
{
if (!polyscope::hasCurveNetwork(getLabel())) {
std::cerr << "No curve network registered with a name: " << getLabel() << std::endl;
std::cerr << "Nothing to remove." << std::endl;
return;
}
pJob->unregister(getLabel());
polyscope::removeCurveNetwork(getLabel());
}
polyscope::CurveNetwork *registerForDrawing(
const std::optional<std::array<double, 3>> &desiredColor = std::nullopt,
const bool &shouldEnable = true,
const double &desiredRadius = 0.001,
// const double &desiredRadius = 0.0001,
const bool &shouldShowFrames = false) const
{
PolyscopeInterface::init();
const std::shared_ptr<SimulationMesh> &mesh = pJob->pMesh;
polyscope::CurveNetwork *polyscopeHandle_deformedEdmeMesh;
if (!polyscope::hasStructure(getLabel())) {
const auto verts = mesh->getEigenVertices();
const auto edges = mesh->getEigenEdges();
polyscopeHandle_deformedEdmeMesh = polyscope::registerCurveNetwork(getLabel(),
verts,
edges);
} else {
polyscopeHandle_deformedEdmeMesh = polyscope::getCurveNetwork(getLabel());
}
polyscopeHandle_deformedEdmeMesh->setEnabled(shouldEnable);
polyscopeHandle_deformedEdmeMesh->setRadius(desiredRadius, true);
if (desiredColor.has_value()) {
const glm::vec3 desiredColor_glm(desiredColor.value()[0],
desiredColor.value()[1],
desiredColor.value()[2]);
polyscopeHandle_deformedEdmeMesh->setColor(desiredColor_glm);
}
Eigen::MatrixX3d nodalDisplacements(mesh->VN(), 3);
Eigen::MatrixX3d framesX(mesh->VN(), 3);
Eigen::MatrixX3d framesY(mesh->VN(), 3);
Eigen::MatrixX3d framesZ(mesh->VN(), 3);
Eigen::MatrixX3d framesX_initial(mesh->VN(), 3);
Eigen::MatrixX3d framesY_initial(mesh->VN(), 3);
Eigen::MatrixX3d framesZ_initial(mesh->VN(), 3);
// std::unordered_set<int> interfaceNodes{1, 3, 5, 7, 9, 11};
// std::unordered_set<int> interfaceNodes{3, 7, 11, 15, 19, 23};
// std::unordered_set<int> interfaceNodes{};
for (VertexIndex vi = 0; vi < mesh->VN(); vi++) {
const Vector6d &nodalDisplacement = displacements[vi];
nodalDisplacements.row(vi) = Eigen::Vector3d(nodalDisplacement[0],
nodalDisplacement[1],
nodalDisplacement[2]);
// Eigen::Quaternion<double> Rx(Eigen::AngleAxis(nodalDisplacement[2],Eigen::Vector3d(1, 0, 0)));
// Eigen::Quaternion<double> Ry(Eigen::AngleAxis(nodalDisplacement[4],Eigen::Vector3d(0, 1, 0)));
// Eigen::Quaternion<double> Rz(Eigen::AngleAxis(nodalDisplacement[5],Eigen::Vector3d(0, 0, 1)));
// Eigen::Quaternion<double> R=Rx*Ry*Rz;
// if (interfaceNodes.contains(vi)) {
auto deformedNormal = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(0, 0, 1);
auto deformedFrameY = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(0, 1, 0);
auto deformedFrameX = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(1, 0, 0);
framesX.row(vi) = Eigen::Vector3d(deformedFrameX[0],
deformedFrameX[1],
deformedFrameX[2]);
framesY.row(vi) = Eigen::Vector3d(deformedFrameY[0],
deformedFrameY[1],
deformedFrameY[2]);
framesZ.row(vi) = Eigen::Vector3d(deformedNormal[0],
deformedNormal[1],
deformedNormal[2]);
framesX_initial.row(vi) = Eigen::Vector3d(1, 0, 0);
framesY_initial.row(vi) = Eigen::Vector3d(0, 1, 0);
framesZ_initial.row(vi) = Eigen::Vector3d(0, 0, 1);
// } else {
// framesX.row(vi) = Eigen::Vector3d(0, 0, 0);
// framesY.row(vi) = Eigen::Vector3d(0, 0, 0);
// framesZ.row(vi) = Eigen::Vector3d(0, 0, 0);
// framesX_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
// framesY_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
// framesZ_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
// }
}
polyscopeHandle_deformedEdmeMesh->updateNodePositions(mesh->getEigenVertices()
+ nodalDisplacements);
const double frameRadius_default = 0.035;
const double frameLength_default = 0.035;
const bool shouldEnable_default = true;
//if(showFramesOn.contains(vi)){
auto polyscopeHandle_frameX = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameX", framesX);
polyscopeHandle_frameX->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameX->setVectorRadius(frameRadius_default);
polyscopeHandle_frameX->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(1, 0, 0));
auto polyscopeHandle_frameY = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameY", framesY);
polyscopeHandle_frameY->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameY->setVectorRadius(frameRadius_default);
polyscopeHandle_frameY->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(0, 1, 0));
auto polyscopeHandle_frameZ = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameZ", framesZ);
polyscopeHandle_frameZ->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameZ->setVectorRadius(frameRadius_default);
polyscopeHandle_frameZ->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(0, 0, 1));
auto polyscopeHandle_initialMesh = polyscope::getCurveNetwork(mesh->getLabel());
if (!polyscopeHandle_initialMesh) {
polyscopeHandle_initialMesh = mesh->registerForDrawing();
}
// auto polyscopeHandle_frameX_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameX", framesX_initial);
// polyscopeHandle_frameX_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameX_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameX_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(1, 0, 0));
// auto polyscopeHandle_frameY_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameY", framesY_initial);
// polyscopeHandle_frameY_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameY_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameY_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(0, 1, 0));
// auto polyscopeHandle_frameZ_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameZ", framesZ_initial);
// polyscopeHandle_frameZ_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameZ_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameZ_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(0, 0, 1));
// //}
pJob->registerForDrawing(getLabel());
static bool wasExecuted = false;
if (!wasExecuted) {
std::function<void()> callback = [&]() {
static bool showFrames = shouldShowFrames;
if (ImGui::Checkbox("Show Frames", &showFrames) && showFrames) {
polyscopeHandle_frameX->setEnabled(showFrames);
polyscopeHandle_frameY->setEnabled(showFrames);
polyscopeHandle_frameZ->setEnabled(showFrames);
}
};
PolyscopeInterface::addUserCallback(callback);
wasExecuted = true;
}
return polyscopeHandle_deformedEdmeMesh;
}
#endif
private:
void load(const std::filesystem::path &loadFromPath)
{
converged = true; //assuming it has converged
assert(pJob != nullptr);
//load job
//Use the first .eigenBin file for loading the displacements
for (auto const &entry : std::filesystem::recursive_directory_iterator(loadFromPath)) {
if (filesystem::is_regular_file(entry) && entry.path().extension() == ".eigenBin") {
@ -591,156 +756,6 @@ struct SimulationResults
Eigen::Vector3d::UnitZ());
}
}
#ifdef POLYSCOPE_DEFINED
void unregister() const {
if (!polyscope::hasCurveNetwork(getLabel())) {
std::cerr << "No curve network registered with a name: " << getLabel()
<< std::endl;
std::cerr << "Nothing to remove." << std::endl;
return;
}
pJob->unregister(getLabel());
polyscope::removeCurveNetwork(getLabel());
}
polyscope::CurveNetwork *registerForDrawing(
const std::optional<std::array<double, 3>> &desiredColor = std::nullopt,
const bool &shouldEnable = true,
const double &desiredRadius = 0.001,
// const double &desiredRadius = 0.0001,
const bool &shouldShowFrames = false) const
{
PolyscopeInterface::init();
const std::shared_ptr<SimulationMesh> &mesh = pJob->pMesh;
polyscope::CurveNetwork *polyscopeHandle_deformedEdmeMesh;
if (!polyscope::hasStructure(getLabel())) {
const auto verts = mesh->getEigenVertices();
const auto edges = mesh->getEigenEdges();
polyscopeHandle_deformedEdmeMesh = polyscope::registerCurveNetwork(getLabel(),
verts,
edges);
} else {
polyscopeHandle_deformedEdmeMesh = polyscope::getCurveNetwork(getLabel());
}
polyscopeHandle_deformedEdmeMesh->setEnabled(shouldEnable);
polyscopeHandle_deformedEdmeMesh->setRadius(desiredRadius, true);
if (desiredColor.has_value()) {
const glm::vec3 desiredColor_glm(desiredColor.value()[0],
desiredColor.value()[1],
desiredColor.value()[2]);
polyscopeHandle_deformedEdmeMesh->setColor(desiredColor_glm);
}
Eigen::MatrixX3d nodalDisplacements(mesh->VN(), 3);
Eigen::MatrixX3d framesX(mesh->VN(), 3);
Eigen::MatrixX3d framesY(mesh->VN(), 3);
Eigen::MatrixX3d framesZ(mesh->VN(), 3);
Eigen::MatrixX3d framesX_initial(mesh->VN(), 3);
Eigen::MatrixX3d framesY_initial(mesh->VN(), 3);
Eigen::MatrixX3d framesZ_initial(mesh->VN(), 3);
// std::unordered_set<int> interfaceNodes{1, 3, 5, 7, 9, 11};
// std::unordered_set<int> interfaceNodes{3, 7, 11, 15, 19, 23};
std::unordered_set<int> interfaceNodes{};
for (VertexIndex vi = 0; vi < mesh->VN(); vi++) {
const Vector6d &nodalDisplacement = displacements[vi];
nodalDisplacements.row(vi) = Eigen::Vector3d(nodalDisplacement[0],
nodalDisplacement[1],
nodalDisplacement[2]);
if (interfaceNodes.contains(vi)) {
auto deformedNormal = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(0, 0, 1);
auto deformedFrameY = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(0, 1, 0);
auto deformedFrameX = rotationalDisplacementQuaternion[vi] * Eigen::Vector3d(1, 0, 0);
framesX.row(vi) = Eigen::Vector3d(deformedFrameX[0],
deformedFrameX[1],
deformedFrameX[2]);
framesY.row(vi) = Eigen::Vector3d(deformedFrameY[0],
deformedFrameY[1],
deformedFrameY[2]);
framesZ.row(vi) = Eigen::Vector3d(deformedNormal[0],
deformedNormal[1],
deformedNormal[2]);
framesX_initial.row(vi) = Eigen::Vector3d(1, 0, 0);
framesY_initial.row(vi) = Eigen::Vector3d(0, 1, 0);
framesZ_initial.row(vi) = Eigen::Vector3d(0, 0, 1);
} else {
framesX.row(vi) = Eigen::Vector3d(0, 0, 0);
framesY.row(vi) = Eigen::Vector3d(0, 0, 0);
framesZ.row(vi) = Eigen::Vector3d(0, 0, 0);
framesX_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
framesY_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
framesZ_initial.row(vi) = Eigen::Vector3d(0, 0, 0);
}
}
polyscopeHandle_deformedEdmeMesh->updateNodePositions(mesh->getEigenVertices()
+ nodalDisplacements);
const double frameRadius_default = 0.035;
const double frameLength_default = 0.035;
const bool shouldEnable_default = true;
//if(showFramesOn.contains(vi)){
auto polyscopeHandle_frameX = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameX", framesX);
polyscopeHandle_frameX->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameX->setVectorRadius(frameRadius_default);
polyscopeHandle_frameX->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(1, 0, 0));
auto polyscopeHandle_frameY = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameY", framesY);
polyscopeHandle_frameY->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameY->setVectorRadius(frameRadius_default);
polyscopeHandle_frameY->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(0, 1, 0));
auto polyscopeHandle_frameZ = polyscopeHandle_deformedEdmeMesh
->addNodeVectorQuantity("FrameZ", framesZ);
polyscopeHandle_frameZ->setVectorLengthScale(frameLength_default);
polyscopeHandle_frameZ->setVectorRadius(frameRadius_default);
polyscopeHandle_frameZ->setVectorColor(
/*polyscope::getNextUniqueColor()*/ glm::vec3(0, 0, 1));
auto polyscopeHandle_initialMesh = polyscope::getCurveNetwork(mesh->getLabel());
if (!polyscopeHandle_initialMesh) {
polyscopeHandle_initialMesh = mesh->registerForDrawing();
}
// auto polyscopeHandle_frameX_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameX", framesX_initial);
// polyscopeHandle_frameX_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameX_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameX_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(1, 0, 0));
// auto polyscopeHandle_frameY_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameY", framesY_initial);
// polyscopeHandle_frameY_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameY_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameY_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(0, 1, 0));
// auto polyscopeHandle_frameZ_initial = polyscopeHandle_initialMesh
// ->addNodeVectorQuantity("FrameZ", framesZ_initial);
// polyscopeHandle_frameZ_initial->setVectorLengthScale(frameLength_default);
// polyscopeHandle_frameZ_initial->setVectorRadius(frameRadius_default);
// polyscopeHandle_frameZ_initial->setVectorColor(
// /*polyscope::getNextUniqueColor()*/ glm::vec3(0, 0, 1));
// //}
pJob->registerForDrawing(getLabel());
static bool wasExecuted = false;
if (!wasExecuted) {
std::function<void()> callback = [&]() {
static bool showFrames = shouldShowFrames;
if (ImGui::Checkbox("Show Frames", &showFrames) && showFrames) {
polyscopeHandle_frameX->setEnabled(showFrames);
polyscopeHandle_frameY->setEnabled(showFrames);
polyscopeHandle_frameZ->setEnabled(showFrames);
}
};
PolyscopeInterface::addUserCallback(callback);
wasExecuted = true;
}
return polyscopeHandle_deformedEdmeMesh;
}
#endif
};
#endif // SIMULATIONHISTORY_HPP

View File

@ -114,93 +114,81 @@ struct SimulationResultsReporter {
if (YvaluesToPlot.size() < 2) {
return;
}
auto x = matplot::linspace(0, YvaluesToPlot.size() - 1, YvaluesToPlot.size());
std::vector<double> colors(x.size(), 0.5);
std::vector<double> markerSizes(x.size(), 5);
std::vector<double> colors(YvaluesToPlot.size(), 0.5);
std::vector<double> markerSizes(YvaluesToPlot.size(), 5);
if (!markPoints.empty()) {
for (const auto pointIndex : markPoints) {
colors[pointIndex] = 0.9;
markerSizes[pointIndex] = 14;
}
}
std::vector<double> x = matplot::linspace(0, YvaluesToPlot.size() - 1, YvaluesToPlot.size());
createPlot(xLabel, yLabel, x, YvaluesToPlot, markerSizes, colors, saveTo);
// matplot::figure(true);
// matplot::hold(matplot::on);
// ->marker_indices(history.redMarks)
// ->marker_indices(truncatedRedMarks)
// .marker_color("r")
// ->marker_size(1)
// ;
// auto greenMarksY = matplot::transform(history.greenMarks,
// [&](auto x) { return YvaluesToPlot[x]; });
// matplot::scatter(history.greenMarks, greenMarksY)->color("green").marker_size(10);
// matplot::hold(matplot::off);
}
void createPlots(const SimulationHistory &history,
const std::string &reportFolderPath,
const std::string &graphSuffix) {
const auto graphsFolder =
std::filesystem::path(reportFolderPath).append("Graphs");
std::filesystem::remove_all(graphsFolder);
std::filesystem::create_directory(graphsFolder.string());
const std::string &graphSuffix)
{
const auto graphsFolder = std::filesystem::path(reportFolderPath).append("Graphs");
std::filesystem::remove_all(graphsFolder);
std::filesystem::create_directory(graphsFolder.string());
if (!history.kineticEnergy.empty()) {
createPlot("Number of Iterations",
"Log of Kinetic Energy log",
history.kineticEnergy,
std::filesystem::path(graphsFolder)
.append("KineticEnergyLog_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.kineticEnergy.empty()) {
createPlot("Number of Iterations",
"Log of Kinetic Energy log",
history.kineticEnergy,
std::filesystem::path(graphsFolder)
.append("KineticEnergyLog_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.logResidualForces.empty()) {
createPlot("Number of Iterations",
"Residual Forces norm log",
history.logResidualForces,
std::filesystem::path(graphsFolder)
.append("ResidualForcesLog_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.logResidualForces.empty()) {
createPlot("Number of Iterations",
"Residual Forces norm log",
history.logResidualForces,
std::filesystem::path(graphsFolder)
.append("ResidualForcesLog_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.potentialEnergies.empty()) {
createPlot("Number of Iterations",
"Potential energy",
history.potentialEnergies,
std::filesystem::path(graphsFolder)
.append("PotentialEnergy_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.residualForcesMovingAverage.empty()) {
createPlot("Number of Iterations",
"Residual forces moving average",
history.residualForcesMovingAverage,
std::filesystem::path(graphsFolder)
.append("ResidualForcesMovingAverage_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
// if (!history.residualForcesMovingAverageDerivativesLog.empty()) {
// createPlot("Number of Iterations",
// "Residual forces moving average derivative log",
// history.residualForcesMovingAverageDerivativesLog,
// std::filesystem::path(graphsFolder)
// .append("ResidualForcesMovingAverageDerivativesLog_" + graphSuffix + ".png")
// .string());
// }
if (!history.sumOfNormalizedDisplacementNorms.empty()) {
createPlot("Number of Iterations",
"Sum of normalized displacement norms",
history.sumOfNormalizedDisplacementNorms,
std::filesystem::path(graphsFolder)
.append("SumOfNormalizedDisplacementNorms_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.potentialEnergies.empty()) {
createPlot("Number of Iterations",
"Potential energy",
history.potentialEnergies,
std::filesystem::path(graphsFolder)
.append("PotentialEnergy_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
if (!history.residualForcesMovingAverage.empty()) {
createPlot("Number of Iterations",
"Residual forces moving average",
history.residualForcesMovingAverage,
std::filesystem::path(graphsFolder)
.append("ResidualForcesMovingAverage_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
// if (!history.residualForcesMovingAverageDerivativesLog.empty()) {
// createPlot("Number of Iterations",
// "Residual forces moving average derivative log",
// history.residualForcesMovingAverageDerivativesLog,
// std::filesystem::path(graphsFolder)
// .append("ResidualForcesMovingAverageDerivativesLog_" + graphSuffix + ".png")
// .string());
// }
if (!history.sumOfNormalizedDisplacementNorms.empty()) {
createPlot("Number of Iterations",
"Sum of normalized displacement norms",
history.sumOfNormalizedDisplacementNorms,
std::filesystem::path(graphsFolder)
.append("SumOfNormalizedDisplacementNorms_" + graphSuffix + ".png")
.string(),
history.redMarks);
}
}
};

View File

@ -198,7 +198,6 @@ void SimulationMesh::reset() {
}
void SimulationMesh::initializeElements() {
computeElementalProperties();
for (const EdgeType &e : edge) {
Element &element = elements[e];
element.ei = getIndex(e);
@ -258,7 +257,6 @@ void SimulationMesh::setBeamCrossSection(
const CrossSectionType &beamDimensions) {
for (size_t ei = 0; ei < EN(); ei++) {
elements[ei].dimensions = beamDimensions;
elements[ei].computeDimensionsProperties(beamDimensions);
elements[ei].updateRigidity();
}
}
@ -455,60 +453,59 @@ double computeAngle(const VectorType &vector0, const VectorType &vector1,
return angle;
}
void Element::computeMaterialProperties(const ElementMaterial &material) {
G = material.youngsModulus / (2 * (1 + material.poissonsRatio));
}
//void Element::computeMaterialProperties(const ElementMaterial &material) {
// G = material.youngsModulus / (2 * (1 + material.poissonsRatio));
//}
void Element::computeCrossSectionArea(const RectangularBeamDimensions &dimensions, double &A)
{
A = dimensions.b * dimensions.h;
}
//void Element::computeCrossSectionArea(const RectangularBeamDimensions &dimensions, double &A)
//{
// A = dimensions.b * dimensions.h;
//}
void Element::computeDimensionsProperties(
const RectangularBeamDimensions &dimensions) {
assert(typeid(CrossSectionType) == typeid(RectangularBeamDimensions));
computeCrossSectionArea(dimensions, A);
computeMomentsOfInertia(dimensions, inertia);
}
//void Element::computeDimensionsProperties(
// const RectangularBeamDimensions &dimensions) {
// assert(typeid(CrossSectionType) == typeid(RectangularBeamDimensions));
// computeCrossSectionArea(dimensions, A);
// computeMomentsOfInertia(dimensions, dimensions.inertia);
//}
void Element::computeDimensionsProperties(
const CylindricalBeamDimensions &dimensions) {
assert(typeid(CrossSectionType) == typeid(CylindricalBeamDimensions));
A = M_PI * (std::pow(dimensions.od / 2, 2) - std::pow(dimensions.id / 2, 2));
inertia.I2 = M_PI * (std::pow(dimensions.od, 4) - std::pow(dimensions.id, 4)) / 64;
inertia.I3 = inertia.I2;
inertia.J = inertia.I2 + inertia.I3;
}
//void Element::computeDimensionsProperties(
// const CylindricalBeamDimensions &dimensions) {
// assert(typeid(CrossSectionType) == typeid(CylindricalBeamDimensions));
// A = M_PI * (std::pow(dimensions.od / 2, 2) - std::pow(dimensions.id / 2, 2));
// dimensions.inertia.I2 = M_PI * (std::pow(dimensions.od, 4) - std::pow(dimensions.id, 4)) / 64;
// dimensions.inertia.I3 = dimensions.inertia.I2;
// dimensions.inertia.J = dimensions.inertia.I2 + dimensions.inertia.I3;
//}
void Element::setDimensions(const CrossSectionType &dimensions) {
this->dimensions = dimensions;
computeDimensionsProperties(dimensions);
assert(this->dimensions.A == dimensions.A);
// computeDimensionsProperties(dimensions);
updateRigidity();
}
void Element::setMaterial(const ElementMaterial &material) {
this->material = material;
computeMaterialProperties(material);
updateRigidity();
void Element::setMaterial(const ElementMaterial &material)
{
this->material = material;
// computeMaterialProperties(material);
updateRigidity();
}
double Element::getMass(const double &materialDensity)
{
const double beamVolume = A * length;
const double beamVolume = dimensions.A * length;
return beamVolume * materialDensity;
}
void Element::computeMomentsOfInertia(const RectangularBeamDimensions &dimensions,
Element::MomentsOfInertia &inertia)
{
inertia.I2 = dimensions.b * std::pow(dimensions.h, 3) / 12;
inertia.I3 = dimensions.h * std::pow(dimensions.b, 3) / 12;
inertia.J = inertia.I2 + inertia.I3;
}
void Element::updateRigidity() {
rigidity.axial = material.youngsModulus * A / initialLength;
rigidity.torsional = G * inertia.J / initialLength;
rigidity.firstBending = 2 * material.youngsModulus * inertia.I2 / initialLength;
rigidity.secondBending = 2 * material.youngsModulus * inertia.I3 / initialLength;
// assert(initialLength != 0);
rigidity.axial = material.youngsModulus * dimensions.A / initialLength;
// assert(rigidity.axial != 0);
rigidity.torsional = material.G * dimensions.inertia.J / initialLength;
// assert(rigidity.torsional != 0);
rigidity.firstBending = 2 * material.youngsModulus * dimensions.inertia.I2 / initialLength;
// assert(rigidity.firstBending != 0);
rigidity.secondBending = 2 * material.youngsModulus * dimensions.inertia.I3 / initialLength;
// assert(rigidity.secondBending != 0);
}

View File

@ -1,9 +1,9 @@
#ifndef SIMULATIONMESH_HPP
#define SIMULATIONMESH_HPP
#include "Eigen/Dense"
#include "edgemesh.hpp"
#include "trianglepatterngeometry.hpp"
#include <Eigen/Dense>
//extern bool drawGlobal;
struct Element;
@ -62,26 +62,14 @@ struct Element {
CrossSectionType dimensions;
ElementMaterial material;
double G{0};
double A{0}; // cross sectional area
void computeMaterialProperties(const ElementMaterial &material);
void computeDimensionsProperties(const RectangularBeamDimensions &dimensions);
void computeDimensionsProperties(const CylindricalBeamDimensions &dimensions);
// void computeDimensionsProperties(const RectangularBeamDimensions &dimensions);
// void computeDimensionsProperties(const CylindricalBeamDimensions &dimensions);
void setDimensions(const CrossSectionType &dimensions);
void setMaterial(const ElementMaterial &material);
double getMass(const double &matrialDensity);
struct MomentsOfInertia
{
double I2{0}; // second moment of inertia
double I3{0}; // third moment of inertia
double J{0}; // torsional constant (polar moment of inertia)
} inertia;
static void computeMomentsOfInertia(const RectangularBeamDimensions &dimensions,
MomentsOfInertia &inertia);
struct LocalFrame {
VectorType t1;
VectorType t2;

View File

@ -2,12 +2,12 @@
#define UTILITIES_H
#include <Eigen/Dense>
#include <filesystem>
#include <fstream>
#include <regex>
#include <iterator>
#include <algorithm>
#include <array>
#include <filesystem>
#include <fstream>
#include <iterator>
#include <regex>
#define GET_VARIABLE_NAME(Variable) (#Variable)
@ -140,17 +140,85 @@ struct Vector6d : public std::array<double, 6> {
};
namespace Utilities {
inline void parseIntegers(const std::string &str, std::vector<size_t> &result) {
typedef std::regex_iterator<std::string::const_iterator> re_iterator;
typedef re_iterator::value_type re_iterated;
//inline std::vector<std::string> split(std::string text, char delim)
//{
// std::string line;
// std::vector<std::string> vec;
// std::stringstream ss(text);
// while (std::getline(ss, line, delim)) {
// vec.push_back(line);
// }
// return vec;
//}
std::regex re("(\\d+)");
inline std::string_view leftTrimSpaces(const std::string_view& str)
{
std::string_view trimmedString=str;
const auto pos(str.find_first_not_of(" \t\n\r\f\v"));
trimmedString.remove_prefix(std::min(pos, trimmedString.length()));
return trimmedString;
}
re_iterator rit(str.begin(), str.end(), re);
re_iterator rend;
inline std::string_view rightTrimSpaces(const std::string_view& str)
{
std::string_view trimmedString=str;
const auto pos(trimmedString.find_last_not_of(" \t\n\r\f\v"));
trimmedString.remove_suffix(std::min(trimmedString.length() - pos - 1,trimmedString.length()));
return trimmedString;
}
std::transform(rit, rend, std::back_inserter(result),
[](const re_iterated &it) { return std::stoi(it[1]); });
inline std::string_view trimLeftAndRightSpaces(std::string_view str)
{
std::string_view trimmedString=str;
trimmedString = leftTrimSpaces(trimmedString);
trimmedString = rightTrimSpaces(trimmedString);
return trimmedString;
}
inline std::vector<std::string> split(const std::string& text, std::string delim)
{
std::vector<std::string> vec;
size_t pos = 0, prevPos = 0;
while (1) {
pos = text.find(delim, prevPos);
if (pos == std::string::npos) {
vec.push_back(text.substr(prevPos));
return vec;
}
vec.push_back(text.substr(prevPos, pos - prevPos));
prevPos = pos + delim.length();
}
}
inline std::string toString(const std::vector<std::vector<int>> &vv)
{
std::string s;
s.append("{");
for (const std::vector<int> &v : vv) {
s.append("{");
for (const int &i : v) {
s.append(std::to_string(i) + ",");
}
s.pop_back();
s.append("}");
}
s.append("}");
return s;
}
inline void parseIntegers(const std::string &str, std::vector<size_t> &result)
{
typedef std::regex_iterator<std::string::const_iterator> re_iterator;
typedef re_iterator::value_type re_iterated;
std::regex re("(\\d+)");
re_iterator rit(str.begin(), str.end(), re);
re_iterator rend;
std::transform(rit, rend, std::back_inserter(result), [](const re_iterated &it) {
return std::stoi(it[1]);
});
}
inline Eigen::MatrixXd toEigenMatrix(const std::vector<Vector6d> &v) {
@ -179,7 +247,6 @@ inline std::vector<Vector6d> fromEigenMatrix(const Eigen::MatrixXd &m)
return v;
}
// std::string convertToLowercase(const std::string &s) {
// std::string lowercase;
// std::transform(s.begin(), s.end(), lowercase.begin(),