#ifndef UTILITIES_H #define UTILITIES_H #include #include #include #include struct Vector6d : public std::array { Vector6d() { for (size_t i = 0; i < 6; i++) { this->operator[](i) = 0; } } Vector6d(const double &d) { for (size_t i = 0; i < 6; i++) { this->operator[](i) = d; } } Vector6d(const std::array &arr) : std::array(arr) {} Vector6d(const std::initializer_list &initList) { std::copy(initList.begin(), initList.end(), this->begin()); } Vector6d operator*(const double &d) const { Vector6d result; for (size_t i = 0; i < 6; i++) { result[i] = this->operator[](i) * d; } return result; } Vector6d operator*(const Vector6d &v) const { Vector6d result; for (size_t i = 0; i < 6; i++) { result[i] = this->operator[](i) * v[i]; } return result; } Vector6d operator/(const double &d) const { Vector6d result; for (size_t i = 0; i < 6; i++) { result[i] = this->operator[](i) / d; } return result; } Vector6d operator+(const Vector6d &v) const { Vector6d result; for (size_t i = 0; i < 6; i++) { result[i] = this->operator[](i) + v[i]; } return result; } Vector6d operator-(const Vector6d &v) const { Vector6d result; for (size_t i = 0; i < 6; i++) { result[i] = this->operator[](i) - v[i]; } return result; } Vector6d inverted() const { Vector6d result; for (size_t i = 0; i < 6; i++) { assert(this->operator[](i) != 0); result[i] = 1 / this->operator[](i); } return result; } bool isZero() const { for (size_t i = 0; i < 6; i++) { if (this->operator[](i) != 0) return false; } return true; } double squaredNorm() const { double squaredNorm = 0; std::for_each(begin(), end(), [&](const double &v) { squaredNorm += pow(v, 2); }); return squaredNorm; } double norm() const { return sqrt(squaredNorm()); } bool isFinite() const { return std::any_of(begin(), end(), [](const double &v) { if (!std::isfinite(v)) { return false; } return true; }); } }; namespace Utilities { inline void parseIntegers(const std::string &str, std::vector &result) { typedef std::regex_iterator re_iterator; typedef re_iterator::value_type re_iterated; std::regex re("(\\d+)"); re_iterator rit(str.begin(), str.end(), re); re_iterator rend; std::transform(rit, rend, std::back_inserter(result), [](const re_iterated &it) { return std::stoi(it[1]); }); } inline Eigen::MatrixXd toEigenMatrix(const std::vector &v) { Eigen::MatrixXd m(v.size(), 6); for (size_t vi = 0; vi < v.size(); vi++) { const Vector6d &vec = v[vi]; for (size_t i = 0; i < 6; i++) { m(vi, i) = vec[i]; } } return m; } // std::string convertToLowercase(const std::string &s) { // std::string lowercase; // std::transform(s.begin(), s.end(), lowercase.begin(), // [](unsigned char c) { return std::tolower(c); }); // return lowercase; //} // bool hasExtension(const std::string &filename, const std::string &extension) // { // const std::filesystem::path path(filename); // if (!path.has_extension()) { // std::cerr << "Error: No file extension found in " << filename << // std::endl; return false; // } // const std::string detectedExtension = path.extension().string(); // if (convertToLowercase(detectedExtension) != convertToLowercase(extension)) // { // std::cerr << "Error: detected extension is " + detectedExtension + // " and not " + extension // << std::endl; // return false; // } // return true; //} } // namespace Utilities // namespace ConfigurationFile { //} //} // namespace ConfigurationFile #include "polyscope/curve_network.h" #include "polyscope/polyscope.h" inline void initPolyscope() { if (polyscope::state::initialized) { return; } polyscope::init(); polyscope::options::groundPlaneEnabled = false; polyscope::view::upDir = polyscope::view::UpDir::ZUp; } inline void registerWorldAxes() { if (!polyscope::state::initialized) { initPolyscope(); } Eigen::MatrixX3d axesPositions(4, 3); axesPositions.row(0) = Eigen::Vector3d(0, 0, 0); axesPositions.row(1) = Eigen::Vector3d(polyscope::state::lengthScale, 0, 0); axesPositions.row(2) = Eigen::Vector3d(0, polyscope::state::lengthScale, 0); axesPositions.row(3) = Eigen::Vector3d(0, 0, polyscope::state::lengthScale); Eigen::MatrixX2i axesEdges(3, 2); axesEdges.row(0) = Eigen::Vector2i(0, 1); axesEdges.row(1) = Eigen::Vector2i(0, 2); axesEdges.row(2) = Eigen::Vector2i(0, 3); Eigen::MatrixX3d axesColors(3, 3); axesColors.row(0) = Eigen::Vector3d(1, 0, 0); axesColors.row(1) = Eigen::Vector3d(0, 1, 0); axesColors.row(2) = Eigen::Vector3d(0, 0, 1); const std::string worldAxesName = "World Axes"; polyscope::registerCurveNetwork(worldAxesName, axesPositions, axesEdges); polyscope::getCurveNetwork(worldAxesName)->setRadius(0.0001, false); const std::string worldAxesColorName = worldAxesName + " Color"; polyscope::getCurveNetwork(worldAxesName) ->addEdgeColorQuantity(worldAxesColorName, axesColors) ->setEnabled(true); } template void constructInverseMap(const T1 &map, T2 &oppositeMap) { assert(!map.empty()); oppositeMap.clear(); for (const auto &mapIt : map) { oppositeMap[mapIt.second] = mapIt.first; } } #endif // UTILITIES_H