#ifndef REDUCEDMODELOPTIMIZER_STRUCTS_HPP #define REDUCEDMODELOPTIMIZER_STRUCTS_HPP #include "csvfile.hpp" #include "drmsimulationmodel.hpp" #include "linearsimulationmodel.hpp" #include "simulation_structs.hpp" #include "unordered_map" #include namespace ReducedModelOptimization { enum BaseSimulationScenario { Axial, Shear, Bending, Dome, Saddle, S, NumberOfBaseSimulationScenarios }; inline static std::vector baseSimulationScenarioNames{"Axial", "Shear", "Bending", "Dome", "Saddle", "S"}; struct Colors { inline static std::array fullInitial{0.094, 0.094, 0.094}; // inline static std::array fullDeformed{0.583333, 0.890196, 0.109804}; inline static std::array fullDeformed{0.094, 0.094, 0.094}; inline static std::array reducedInitial{0.890196, 0.109804, 0.193138}; inline static std::array reducedDeformed{0.262, 0.627, 0.910}; }; struct xRange { std::string label{}; double min{0}; double max{0}; inline bool operator<(const xRange &other) { return label < other.label; } std::string toString() const { return label + "=[" + std::to_string(min) + "," + std::to_string(max) + "]"; } void fromString(const std::string &s) { const std::size_t equalPos = s.find("="); label = s.substr(0, equalPos); const std::size_t commaPos = s.find(","); const size_t minBeginPos = equalPos + 2; min = std::stod(s.substr(minBeginPos, commaPos - minBeginPos)); const size_t maxBeginPos = commaPos + 1; const std::size_t closingBracketPos = s.find("]"); max = std::stod(s.substr(maxBeginPos, closingBracketPos - maxBeginPos)); } bool operator==(const xRange &xrange) const { return label == xrange.label && min == xrange.min && max == xrange.max; } std::tuple toTuple() const { return std::make_tuple(label, min, max); } void set(const std::tuple &inputTuple) { if (std::get<1>(inputTuple) > std::get<2>(inputTuple)) { std::cerr << "Invalid xRange tuple. Second argument(min) cant be smaller than the third(max)" << std::endl; std::terminate(); // return; } std::tie(label, min, max) = inputTuple; } }; enum OptimizationParameterIndex { E, A, I2, I3, J, R, Theta, NumberOfOptimizationVariables }; inline int getParameterIndex(const std::string &s) { if ("E" == s) { return E; } else if ("A" == s) { return A; } else if ("I2" == s) { return I2; } else if ("I3" == s) { return I3; } else if ("J" == s) { return J; } else if ("R" == s || "HexSize" == s) { return R; } else if ("Theta" == s || "HexAngle" == s) { return Theta; } else { std::cerr << "Input is not recognized as a valid optimization variable index:" << s << std::endl; return -1; } } struct Settings { inline static std::string defaultFilename{"OptimizationSettings.json"}; // std::array baseScenarioMaxMagnitudes{0.590241, // 0.888372, // 0.368304, // 0.0127508, // 1.18079, // 0}; //final std::array baseScenarioMaxMagnitudes{0.590241 / 3, 0.588372 / 3, 0.368304, 0.1, 1.18 / 2, 0}; //final // std::array baseScenarioMaxMagnitudes{0, 0, 0, 0.1, 0}; // std::array // baseScenarioMaxMagnitudes{20.85302947095844, // 1.8073431893126763, // 0.2864731720436702, // 0.14982243562639147, // 0.18514829631059054};//median // std::array // baseScenarioMaxMagnitudes{1.1725844893199244, // 0.3464275389927846, // 0.09527915004635197, // 0.06100757786262501, // 0.10631914784812076}; //5_1565 0.03axial // std::array // baseScenarioMaxMagnitudes{/*15*/ 0 /*1.711973658196369*/, // 1.878077115238504, // 0.8, // 0.15851675178327318, // 0.8, // /*1.711973658196369*/ 0}; //custom // std::array // baseScenarioMaxMagnitudes{0, // 14.531854387244818, // 0.38321932238436796, // 0.21381267870193282, // 0.28901381608791094, // 1.711973658196369}; //9_14423 // std::array // baseScenarioMaxMagnitudes{1.1725844893199244, // 0.3464275389927846, // 0.09527915004635197, // 0.06100757786262501, // 0.10631914784812076}; //5_1565 0.03axial // std::array // baseScenarioMagnitudes{9.82679, 0.138652, 0.247242, 0.739443, 0.00675865}; //Hyperparam opt // std::array baseScenarioMaxMagnitudes{ // 30, 8, 0.4421382884449713, 0.22758433903942452, 0.3247935583883217}; // std::array // baseScenarioMagnitudes{10 * 6.310485381644259, // 10 * 1.7100142258819078, // 10 * 0.18857048204421728, // 10 * 0.10813697502645818, // 10 * 0.11982893539207524}; //6_338 // std::array baseScenarioMagnitudes{7.72224, // 7.72224, // 0.89468, // 0.445912, // 0.625905}; // std::array baseScenarioMagnitudes{0.407714, // 22.3524, // 0.703164, // 0.0226138, // 0.161316}; // std::array // baseScenarioMagnitudes{2, 1, 0.4, 0.2, 0.2}; //8_15444 magnitudes from randomBending0 // std::array // baseScenarioMagnitudes{1.0600375226325425, // 0.6381040280710403, // 0.17201755995098306, // 0.0706601822149856, // 0.13578373479448072}; //8_15444 magnitudes from displacements // std::array // baseScenarioMagnitudes{10 * 1.0600375226325425, // 10 * 0.6381040280710403, // 10 * 0.17201755995098306, // 10 * 0.0706601822149856, // 10 * 0.13578373479448072}; //8_15444 magnitudes from displacements // std::array baseScenarioMaxMagnitudes; std::vector> optimizationStrategy = { // {E,A, I2, I3, J, R, Theta}}; {A, I2, I3, J, R, Theta}}; std::optional> optimizationVariablesGroupsWeights; //TODO:should be removed in the future if not a splitting strategy is used for the optimization enum NormalizationStrategy { NonNormalized, Epsilon }; inline static std::vector normalizationStrategyStrings{"NonNormalized", "Epsilon"}; NormalizationStrategy normalizationStrategy{Epsilon}; std::array variablesRanges{xRange{"E", 1e-3, 1e3}, xRange{"A", 1e-3, 1e3}, xRange{"I2", 1e-3, 1e3}, xRange{"I3", 1e-3, 1e3}, xRange{"J", 1e-3, 1e3}, xRange{"R", 0.05, 0.95}, xRange{"Theta", -30, 30}}; struct SettingsPSO { int numberOfParticles{200}; #ifdef USE_PSO inline static std::string optimizerName{"pso"}; #else inline static std::string optimizerName{"sa"}; #endif } pso; struct SettingsDlibGlobal { int numberOfFunctionCalls{100000}; } dlib; double solverAccuracy{1e-2}; double translationEpsilon{4e-3}; // double translationEpsilon{0}; // double angularDistanceEpsilon{vcg::math::ToRad(2.0)}; double angularDistanceEpsilon{vcg::math::ToRad(0.0)}; double targetBaseTriangleSize{0.03}; std::filesystem::path intermediateResultsDirectoryPath; struct ObjectiveWeights { double translational{1.2}; double rotational{0.8}; bool operator==(const ObjectiveWeights &other) const; }; std::array perBaseScenarioObjectiveWeights; // std::array perBaseScenarioObjectiveWeights{ // {{1.95, 0.05}, {0.87, 1.13}, {0.37, 1.63}, {0.01, 1.99}, {0.94, 1.06}, {1.2, 0.8}}}; std::array, NumberOfBaseSimulationScenarios> convertObjectiveWeightsToPairs() const { std::array, NumberOfBaseSimulationScenarios> objectiveWeightsPairs; for (int baseScenario = Axial; baseScenario != NumberOfBaseSimulationScenarios; baseScenario++) { objectiveWeightsPairs[baseScenario] = std::make_pair(perBaseScenarioObjectiveWeights[baseScenario].translational, perBaseScenarioObjectiveWeights[baseScenario].rotational); } return objectiveWeightsPairs; } struct JsonKeys { inline static std::string OptimizationStrategy{"OptimizationStrategy"}; inline static std::string OptimizationStrategyGroupWeights{ "OptimizationStrategyGroupWeights"}; inline static std::string OptimizationVariables{"OptimizationVariables"}; inline static std::string NumberOfFunctionCalls{"NumberOfFunctionCalls"}; inline static std::string SolverAccuracy{"SolverAccuracy"}; inline static std::string ObjectiveWeights{"ObjectiveWeight"}; }; nlohmann::json toJson() const { nlohmann::json json; json[GET_VARIABLE_NAME(optimizationStrategy)] = optimizationStrategy; if (optimizationVariablesGroupsWeights.has_value()) { json[GET_VARIABLE_NAME(ptimizationStrategyGroupWeights)] = optimizationVariablesGroupsWeights.value(); } //write x ranges const std::array, NumberOfOptimizationVariables> xRangesAsTuples = [=]() { std::array, NumberOfOptimizationVariables> xRangesAsTuples; for (int optimizationParameterIndex = E; optimizationParameterIndex != NumberOfOptimizationVariables; optimizationParameterIndex++) { xRangesAsTuples[optimizationParameterIndex] = variablesRanges[optimizationParameterIndex].toTuple(); } return xRangesAsTuples; }(); json[JsonKeys::OptimizationVariables] = xRangesAsTuples; // for (size_t xRangeIndex = 0; xRangeIndex < variablesRanges.size(); xRangeIndex++) { // const auto &xRange = variablesRanges[xRangeIndex]; // json[JsonKeys::OptimizationVariables + "_" + std::to_string(xRangeIndex)] // = xRange.toString(); // } json[GET_VARIABLE_NAME(solverAccuracy)] = solverAccuracy; //Objective weights std::array, NumberOfBaseSimulationScenarios> objectiveWeightsPairs; std::transform(perBaseScenarioObjectiveWeights.begin(), perBaseScenarioObjectiveWeights.end(), objectiveWeightsPairs.begin(), [](const ObjectiveWeights &objectiveWeights) { return std::make_pair(objectiveWeights.translational, objectiveWeights.rotational); }); json[JsonKeys::ObjectiveWeights] = objectiveWeightsPairs; json[GET_VARIABLE_NAME(translationEpsilon)] = translationEpsilon; json[GET_VARIABLE_NAME(angularDistanceEpsilon)] = vcg::math::ToDeg(angularDistanceEpsilon); json[GET_VARIABLE_NAME(targetBaseTriangleSize)] = targetBaseTriangleSize; json[GET_VARIABLE_NAME(baseScenarioMaxMagnitudes)] = baseScenarioMaxMagnitudes; #ifdef USE_ENSMALLEN #ifdef USE_PSO json[GET_VARIABLE_NAME(pso.numberOfParticles)] = pso.numberOfParticles; #endif json[GET_VARIABLE_NAME(pso.optimizerName)] = pso.optimizerName; #else json[GET_VARIABLE_NAME(dlib.numberOfFunctionCalls)] = dlib.numberOfFunctionCalls; #endif return json; } void save(const std::filesystem::path &saveToPath) { assert(std::filesystem::is_directory(saveToPath)); nlohmann::json json = toJson(); std::filesystem::path jsonFilePath( std::filesystem::path(saveToPath).append(defaultFilename)); std::ofstream jsonFile(jsonFilePath.string()); jsonFile << json; jsonFile.close(); } bool load(const std::filesystem::path &jsonFilePath) { if (!std::filesystem::exists(jsonFilePath)) { std::cerr << "Optimization settings could not be loaded because input filepath does " "not exist:" << jsonFilePath << std::endl; assert(false); return false; } std::ifstream ifs(jsonFilePath); nlohmann::json json; ifs >> json; if (json.contains(GET_VARIABLE_NAME(optimizationStrategy))) { optimizationStrategy = std::vector>( (json.at(GET_VARIABLE_NAME(optimizationStrategy)))); } if (json.contains(GET_VARIABLE_NAME(optimizationStrategyGroupWeights))) { optimizationVariablesGroupsWeights = std::vector( json[GET_VARIABLE_NAME(optimizationStrategyGroupWeights)]); } //read x ranges if (json.contains(JsonKeys::OptimizationVariables)) { const std::array, NumberOfOptimizationVariables> xRangesAsTuples = json.at(JsonKeys::OptimizationVariables); for (const auto &rangeTuple : xRangesAsTuples) { variablesRanges[getParameterIndex(std::get<0>(rangeTuple))].set(rangeTuple); } } else { //NOTE:legacy compatibility size_t xRangeIndex = 0; while (true) { const std::string jsonXRangeKey = JsonKeys::OptimizationVariables + "_" + std::to_string(xRangeIndex++); if (!json.contains(jsonXRangeKey)) { break; } xRange x; x.fromString(json.at(jsonXRangeKey)); variablesRanges[getParameterIndex(x.label)] = x; } } if (json.contains(GET_VARIABLE_NAME(dlib.numberOfFunctionCalls))) { dlib.numberOfFunctionCalls = json.at(GET_VARIABLE_NAME(dlib.numberOfFunctionCalls)); } if (json.contains(GET_VARIABLE_NAME(solverAccuracy))) { solverAccuracy = json.at(GET_VARIABLE_NAME(solverAccuracy)); } //Objective weights if (json.contains(JsonKeys::ObjectiveWeights)) { std::array, NumberOfBaseSimulationScenarios> objectiveWeightsPairs = json.at(JsonKeys::ObjectiveWeights); std::transform(objectiveWeightsPairs.begin(), objectiveWeightsPairs.end(), perBaseScenarioObjectiveWeights.begin(), [](const std::pair &objectiveWeightsPair) { return ObjectiveWeights{objectiveWeightsPair.first, objectiveWeightsPair.second}; }); } if (json.contains(GET_VARIABLE_NAME(translationalNormalizationEpsilon))) { translationEpsilon = json[GET_VARIABLE_NAME(translationalNormalizationEpsilon)]; } if (json.contains(GET_VARIABLE_NAME(angularDistanceEpsilon))) { angularDistanceEpsilon = vcg::math::ToRad( static_cast(json[GET_VARIABLE_NAME(angularDistanceEpsilon)])); } if (json.contains(GET_VARIABLE_NAME(targetBaseTriangleSize))) { targetBaseTriangleSize = static_cast( json[GET_VARIABLE_NAME(targetBaseTriangleSize)]); } if (json.contains(GET_VARIABLE_NAME(pso.numberOfParticles))) { pso.numberOfParticles = static_cast(json[GET_VARIABLE_NAME(pso.numberOfParticles)]); } // perBaseScenarioObjectiveWeights = json.at(JsonKeys::ObjectiveWeights); // objectiveWeights.translational = json.at(JsonKeys::ObjectiveWeights); // objectiveWeights.rotational = 2 - objectiveWeights.translational; return true; } std::string toString() const { return toJson().dump(); } void writeHeaderTo(csvFile &os) const { if (!variablesRanges.empty()) { for (const xRange &range : variablesRanges) { os << range.label + " max"; os << range.label + " min"; } } os << "Function Calls"; os << "Solution Accuracy"; os << "Normalization trans epsilon"; os << "Normalization rot epsilon(deg)"; os << JsonKeys::ObjectiveWeights; os << "Optimization parameters"; // os << std::endl; } void writeSettingsTo(csvFile &os) const { if (!variablesRanges.empty()) { for (const xRange &range : variablesRanges) { os << range.max; os << range.min; } } os << dlib.numberOfFunctionCalls; os << solverAccuracy; os << std::to_string(translationEpsilon); os << std::to_string(vcg::math::ToDeg(angularDistanceEpsilon)); std::string objectiveWeightsString; objectiveWeightsString += "{"; for (int baseScenario = Axial; baseScenario != NumberOfBaseSimulationScenarios; baseScenario++) { objectiveWeightsString += "{" + std::to_string(perBaseScenarioObjectiveWeights[baseScenario].translational) + "," + std::to_string(perBaseScenarioObjectiveWeights[baseScenario].rotational) + "}"; } objectiveWeightsString += "}"; os << objectiveWeightsString; //export optimization parameters std::vector> vv; for (const std::vector &v : optimizationStrategy) { std::vector vi; vi.reserve(v.size()); for (const OptimizationParameterIndex ¶meter : v) { vi.emplace_back(parameter); } vv.push_back(vi); } os << Utilities::toString(vv); } }; inline bool operator==(const Settings &settings1, const Settings &settings2) noexcept { const bool haveTheSameObjectiveWeights = std::mismatch(settings1.perBaseScenarioObjectiveWeights.begin(), settings1.perBaseScenarioObjectiveWeights.end(), settings2.perBaseScenarioObjectiveWeights.begin()) .first == settings1.perBaseScenarioObjectiveWeights.end(); return settings1.dlib.numberOfFunctionCalls == settings2.dlib.numberOfFunctionCalls && settings1.variablesRanges == settings2.variablesRanges && settings1.solverAccuracy == settings2.solverAccuracy && haveTheSameObjectiveWeights && settings1.translationEpsilon == settings2.translationEpsilon; } inline void updateMeshWithOptimalVariables(const std::vector &x, SimulationMesh &m) { assert(CrossSectionType::name == RectangularBeamDimensions::name); const double E = x[0]; const double A = x[1]; const double beamWidth = std::sqrt(A); const double beamHeight = beamWidth; const double J = x[2]; const double I2 = x[3]; const double I3 = x[4]; for (EdgeIndex ei = 0; ei < m.EN(); ei++) { Element &e = m.elements[ei]; e.setDimensions(CrossSectionType(beamWidth, beamHeight)); e.setMaterial(ElementMaterial(e.material.poissonsRatio, E)); e.dimensions.inertia.J = J; e.dimensions.inertia.I2 = I2; e.dimensions.inertia.I3 = I3; } CoordType center_barycentric(1, 0, 0); CoordType interfaceEdgeMiddle_barycentric(0, 0.5, 0.5); CoordType movableVertex_barycentric((center_barycentric + interfaceEdgeMiddle_barycentric) * x[x.size() - 2]); CoordType patternCoord0 = CoordType(0, 0, 0); double bottomEdgeHalfSize = 0.03 / std::tan(M_PI / 3); CoordType interfaceNodePosition(0, -0.03, 0); CoordType patternBottomRight = interfaceNodePosition + CoordType(bottomEdgeHalfSize, 0, 0); CoordType patternBottomLeft = interfaceNodePosition - CoordType(bottomEdgeHalfSize, 0, 0); vcg::Triangle3 baseTriangle(patternCoord0, patternBottomLeft, patternBottomRight); CoordType baseTriangleMovableVertexPosition = baseTriangle.cP(0) * movableVertex_barycentric[0] + baseTriangle.cP(1) * movableVertex_barycentric[1] + baseTriangle.cP(2) * movableVertex_barycentric[2]; VectorType patternPlaneNormal(0, 0, 1); baseTriangleMovableVertexPosition = vcg::RotationMatrix(patternPlaneNormal, vcg::math::ToRad(x[x.size() - 1])) * baseTriangleMovableVertexPosition; const int fanSize = 6; for (int rotationCounter = 0; rotationCounter < fanSize; rotationCounter++) { m.vert[2 * rotationCounter + 1].P() = vcg::RotationMatrix(patternPlaneNormal, vcg::math::ToRad( 60.0 * rotationCounter)) * baseTriangleMovableVertexPosition; } m.reset(); } struct Results { std::string label{"EmptyLabel"}; double time{-1}; bool wasSuccessful{true}; // int numberOfSimulationCrashes{0}; Settings settings; std::vector> optimalXNameValuePairs; std::vector> fullPatternSimulationJobs; std::vector> reducedPatternSimulationJobs; double fullPatternYoungsModulus{0}; PatternGeometry baseTriangleFullPattern; //non-fanned,non-tiled full pattern vcg::Triangle3 baseTriangle; // std::string notes; //Data gathered for csv exporting struct ObjectiveValues { double totalRaw; double total; std::vector perSimulationScenario_rawTranslational; std::vector perSimulationScenario_rawRotational; std::vector perSimulationScenario_translational; std::vector perSimulationScenario_rotational; std::vector perSimulationScenario_total; std::vector perSimulationScenario_total_unweighted; } objectiveValue; std::vector perScenario_fullPatternPotentialEnergy; std::vector objectiveValueHistory; std::vector objectiveValueHistory_iteration; inline static std::string DefaultFileName{"OptimizationResults.json"}; struct CSVExportingSettings { bool exportPE{false}; bool exportIterationOfMinima{false}; bool exportRawObjectiveValue{false}; CSVExportingSettings() {} }; const CSVExportingSettings exportSettings; struct JsonKeys { inline static std::string optimizationVariables{"OptimizationVariables"}; inline static std::string baseTriangle{"BaseTriangle"}; inline static std::string Label{"Label"}; inline static std::string FullPatternLabel{"FullPatternLabel"}; inline static std::string Settings{"OptimizationSettings"}; inline static std::string FullPatternPotentialEnergies{"PE"}; inline static std::string fullPatternYoungsModulus{"youngsModulus"}; }; void saveObjectiveValuePlot(const std::filesystem::path &outputImageDirPath) const { std::vector scenarioLabels(objectiveValue.perSimulationScenario_total.size()); const double colorAxial = 1; const double colorShear = 3; const double colorBending = 5; const double colorDome = 0.1; const double colorSaddle = 0; std::vector colors(objectiveValue.perSimulationScenario_total.size()); for (int scenarioIndex = 0; scenarioIndex < scenarioLabels.size(); scenarioIndex++) { scenarioLabels[scenarioIndex] = reducedPatternSimulationJobs[scenarioIndex]->getLabel(); if (scenarioLabels[scenarioIndex].rfind("Axial", 0) == 0) { colors[scenarioIndex] = colorAxial; } else if (scenarioLabels[scenarioIndex].rfind("Shear", 0) == 0) { colors[scenarioIndex] = colorShear; } else if (scenarioLabels[scenarioIndex].rfind("Bending", 0) == 0) { colors[scenarioIndex] = colorBending; } else if (scenarioLabels[scenarioIndex].rfind("Dome", 0) == 0) { colors[scenarioIndex] = colorDome; } else if (scenarioLabels[scenarioIndex].rfind("Saddle", 0) == 0) { colors[scenarioIndex] = colorSaddle; } else { std::cerr << "Label could not be identified" << std::endl; } } std::vector y(objectiveValue.perSimulationScenario_total.size()); for (int scenarioIndex = 0; scenarioIndex < scenarioLabels.size(); scenarioIndex++) { y[scenarioIndex] // = optimizationResults.objectiveValue.perSimulationScenario_rawTranslational[scenarioIndex] // + optimizationResults.objectiveValue.perSimulationScenario_rawRotational[scenarioIndex]; = objectiveValue.perSimulationScenario_total_unweighted[scenarioIndex]; } std::vector x = matplot::linspace(0, y.size() - 1, y.size()); std::vector markerSizes(y.size(), 5); Utilities::createPlot("scenario index", "error", x, y, markerSizes, colors, std::filesystem::path(outputImageDirPath) .append("perScenarioObjectiveValues.svg")); } void save(const std::string &saveToPath, const bool shouldExportDebugFiles = false) { //clear directory if (std::filesystem::exists(saveToPath)) { for (const auto &entry : std::filesystem::directory_iterator(saveToPath)) { std::error_code ec; std::filesystem::remove_all(entry.path(), ec); } } std::filesystem::create_directories(saveToPath); //Save optimal X nlohmann::json json_optimizationResults; json_optimizationResults[JsonKeys::Label] = label; if (wasSuccessful) { std::string jsonValue_optimizationVariables; for (const auto &optimalXNameValuePair : optimalXNameValuePairs) { jsonValue_optimizationVariables.append(optimalXNameValuePair.first + ","); } jsonValue_optimizationVariables.pop_back(); // for deleting the last comma json_optimizationResults[JsonKeys::optimizationVariables] = jsonValue_optimizationVariables; for (const auto &optimalXNameValuePair : optimalXNameValuePairs) { json_optimizationResults[optimalXNameValuePair.first] = optimalXNameValuePair .second; } } //base triangle json_optimizationResults[JsonKeys::baseTriangle] = std::vector{baseTriangle.cP0(0)[0], baseTriangle.cP0(0)[1], baseTriangle.cP0(0)[2], baseTriangle.cP1(0)[0], baseTriangle.cP1(0)[1], baseTriangle.cP1(0)[2], baseTriangle.cP2(0)[0], baseTriangle.cP2(0)[1], baseTriangle.cP2(0)[2]}; baseTriangleFullPattern.save(std::filesystem::path(saveToPath).string()); json_optimizationResults[JsonKeys::FullPatternLabel] = baseTriangleFullPattern.getLabel(); //potential energies // const int numberOfSimulationJobs = fullPatternSimulationJobs.size(); // std::vector fullPatternPE(numberOfSimulationJobs); // for (int simulationScenarioIndex = 0; simulationScenarioIndex < numberOfSimulationJobs; // simulationScenarioIndex++) { // fullPatternPE[simulationScenarioIndex] // = perScenario_fullPatternPotentialEnergy[simulationScenarioIndex]; // } // json_optimizationResults[JsonKeys::FullPatternPotentialEnergies] = fullPatternPE; json_optimizationResults[JsonKeys::fullPatternYoungsModulus] = fullPatternYoungsModulus; ////Save to json file std::filesystem::path jsonFilePath( std::filesystem::path(saveToPath).append(DefaultFileName)); std::ofstream jsonFile_optimizationResults(jsonFilePath.string()); jsonFile_optimizationResults << json_optimizationResults; /*TODO: Refactor since the meshes are saved for each simulation scenario although they do not change*/ //Save jobs and meshes for each simulation scenario if (shouldExportDebugFiles) { //Save the reduced and full patterns const std::filesystem::path simulationJobsPath( std::filesystem::path(saveToPath).append("SimulationJobs")); const int numberOfSimulationJobs = fullPatternSimulationJobs.size(); for (int simulationScenarioIndex = 0; simulationScenarioIndex < numberOfSimulationJobs; simulationScenarioIndex++) { const std::shared_ptr &pFullPatternSimulationJob = fullPatternSimulationJobs[simulationScenarioIndex]; std::filesystem::path simulationJobFolderPath( std::filesystem::path(simulationJobsPath) .append(std::to_string(simulationScenarioIndex) + "_" + pFullPatternSimulationJob->label)); std::filesystem::create_directories(simulationJobFolderPath); const auto fullPatternDirectoryPath = std::filesystem::path(simulationJobFolderPath).append("Full"); std::filesystem::create_directory(fullPatternDirectoryPath); pFullPatternSimulationJob->save(fullPatternDirectoryPath.string()); const std::shared_ptr &pReducedPatternSimulationJob = reducedPatternSimulationJobs[simulationScenarioIndex]; const auto reducedPatternDirectoryPath = std::filesystem::path(simulationJobFolderPath).append("Reduced"); if (!std::filesystem::exists(reducedPatternDirectoryPath)) { std::filesystem::create_directory(reducedPatternDirectoryPath); } pReducedPatternSimulationJob->save(reducedPatternDirectoryPath.string()); } // constexpr bool shouldSaveObjectiveValuePlot = shouldExportDebugFiles; // if (shouldSaveObjectiveValuePlot) { saveObjectiveValuePlot(saveToPath); // } } csvFile csv_resultsLocalFile(std::filesystem::path(saveToPath).append("results.csv"), true); csv_resultsLocalFile << "Name"; writeHeaderTo(csv_resultsLocalFile); settings.writeHeaderTo(csv_resultsLocalFile); csv_resultsLocalFile << endrow; csv_resultsLocalFile << baseTriangleFullPattern.getLabel(); writeResultsTo(csv_resultsLocalFile); settings.writeSettingsTo(csv_resultsLocalFile); csv_resultsLocalFile << endrow; //save minima info // std::filesystem::path csvFilepathMinimaInfo = std::filesystem::path(saveToPath) // .append("minimaInfo.csv"); // csvFile csv_minimaInfo(csvFilepathMinimaInfo, false); // writeMinimaInfoTo(csv_minimaInfo); settings.save(saveToPath); #ifdef POLYSCOPE_DEFINED std::cout << "Saved optimization results to:" << saveToPath << std::endl; #endif } bool load(const std::filesystem::path &loadFromPath, const bool &shouldLoadDebugFiles = false) { assert(std::filesystem::is_directory(loadFromPath)); std::filesystem::path jsonFilepath( std::filesystem::path(loadFromPath).append(DefaultFileName)); if (!std::filesystem::exists(jsonFilepath)) { std::cerr << "Input path does not exist:" << loadFromPath << std::endl; return false; } //Load optimal X nlohmann::json json_optimizationResults; std::ifstream ifs(std::filesystem::path(loadFromPath).append(DefaultFileName)); ifs >> json_optimizationResults; // std::cout << json_optimizationResults.dump() << std::endl; label = json_optimizationResults.at(JsonKeys::Label); std::string optimizationVariablesString = *json_optimizationResults.find( JsonKeys::optimizationVariables); std::string optimizationVariablesDelimeter = ","; size_t pos = 0; std::vector optimizationVariablesNames; while ((pos = optimizationVariablesString.find(optimizationVariablesDelimeter)) != std::string::npos) { const std::string variableName = optimizationVariablesString.substr(0, pos); optimizationVariablesNames.push_back(variableName); optimizationVariablesString.erase(0, pos + optimizationVariablesDelimeter.length()); } optimizationVariablesNames.push_back(optimizationVariablesString); //add last variable name optimalXNameValuePairs.resize(optimizationVariablesNames.size()); for (int xVariable_index = 0; xVariable_index < optimizationVariablesNames.size(); xVariable_index++) { const std::string xVariable_name = optimizationVariablesNames[xVariable_index]; const double xVariable_value = *json_optimizationResults.find(xVariable_name); optimalXNameValuePairs[xVariable_index] = std::make_pair(xVariable_name, xVariable_value); } const std::string fullPatternLabel = json_optimizationResults.at( JsonKeys::FullPatternLabel); if (!baseTriangleFullPattern.load( std::filesystem::path(loadFromPath).append(fullPatternLabel + ".ply").string())) { !baseTriangleFullPattern.load(std::filesystem::path(loadFromPath) .append(loadFromPath.stem().string() + ".ply") .string()); } std::vector baseTriangleVertices = json_optimizationResults.at( JsonKeys::baseTriangle); baseTriangle.P0(0) = CoordType(baseTriangleVertices[0], baseTriangleVertices[1], baseTriangleVertices[2]); baseTriangle.P1(0) = CoordType(baseTriangleVertices[3], baseTriangleVertices[4], baseTriangleVertices[5]); baseTriangle.P2(0) = CoordType(baseTriangleVertices[6], baseTriangleVertices[7], baseTriangleVertices[8]); if (json_optimizationResults.contains(JsonKeys::fullPatternYoungsModulus)) { fullPatternYoungsModulus = json_optimizationResults.at( JsonKeys::fullPatternYoungsModulus); } else { fullPatternYoungsModulus = 1 * 1e9; } if (shouldLoadDebugFiles) { const std::filesystem::path simulationJobsFolderPath( std::filesystem::path(loadFromPath).append("SimulationJobs")); const std::vector scenariosSortedByName = [&]() { std::vector sortedByName; for (auto &entry : std::filesystem::directory_iterator(simulationJobsFolderPath)) sortedByName.push_back(entry.path()); std::sort(sortedByName.begin(), sortedByName.end(), &Utilities::compareNat); return sortedByName; }(); for (const auto &simulationScenarioPath : scenariosSortedByName) { if (!std::filesystem::is_directory(simulationScenarioPath)) { continue; } // Load full job const auto fullJobFilepath = Utilities::getFilepathWithExtension( std::filesystem::path(simulationScenarioPath).append("Full"), ".json"); SimulationJob fullJob; fullJob.load(fullJobFilepath.string()); fullJob.pMesh->setBeamMaterial(0.3, fullPatternYoungsModulus); fullPatternSimulationJobs.push_back(std::make_shared(fullJob)); // Load reduced job const auto reducedJobFilepath = Utilities::getFilepathWithExtension( std::filesystem::path(simulationScenarioPath).append("Reduced"), ".json"); SimulationJob reducedJob; reducedJob.load(reducedJobFilepath.string()); applyOptimizationResults_elements(*this, reducedJob.pMesh); reducedPatternSimulationJobs.push_back( std::make_shared(reducedJob)); } } settings.load(std::filesystem::path(loadFromPath).append(Settings::defaultFilename)); return true; } template static void applyOptimizationResults_reducedModel_nonFanned( const ReducedModelOptimization::Results &reducedPattern_optimizationResults, const vcg::Triangle3 &patternBaseTriangle, MeshType &reducedPattern) { std::unordered_map optimalXVariables(reducedPattern_optimizationResults.optimalXNameValuePairs.begin(), reducedPattern_optimizationResults.optimalXNameValuePairs.end()); assert( (optimalXVariables.contains("R") && optimalXVariables.contains("Theta")) || (optimalXVariables.contains("HexSize") && optimalXVariables.contains("HexAngle"))); if (optimalXVariables.contains("HexSize")) { applyOptimizationResults_reducedModel_nonFanned(optimalXVariables.at("HexSize"), optimalXVariables.at("HexAngle"), patternBaseTriangle, reducedPattern); return; } applyOptimizationResults_reducedModel_nonFanned(optimalXVariables.at("R"), optimalXVariables.at("Theta"), patternBaseTriangle, reducedPattern); } template static void applyOptimizationResults_reducedModel_nonFanned( const double &hexSize, const double &hexAngle, const vcg::Triangle3 &patternBaseTriangle, MeshType &reducedPattern) { //Set optimal geometrical params of the reduced pattern // CoordType center_barycentric(1, 0, 0); // CoordType interfaceEdgeMiddle_barycentric(0, 0.5, 0.5); // CoordType movableVertex_barycentric( // (center_barycentric * (1 - hexSize) + interfaceEdgeMiddle_barycentric)); CoordType movableVertex_barycentric(1 - hexSize, hexSize / 2, hexSize / 2); reducedPattern.vert[0].P() = patternBaseTriangle.cP(0) * movableVertex_barycentric[0] + patternBaseTriangle.cP(1) * movableVertex_barycentric[1] + patternBaseTriangle.cP(2) * movableVertex_barycentric[2]; if (hexAngle != 0) { reducedPattern.vert[0].P() = vcg::RotationMatrix(CoordType{0, 0, 1}, vcg::math::ToRad(hexAngle)) * reducedPattern.vert[0].cP(); } // for (int rotationCounter = 0; // rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) { // pReducedPatternSimulationMesh->vert[2 * rotationCounter].P() // = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, // vcg::math::ToRad(60.0 * rotationCounter)) // * baseTriangleMovableVertexPosition; // } // reducedPattern.registerForDrawing(); // polyscope::show(); // CoordType p0 = reducedPattern.vert[0].P(); // CoordType p1 = reducedPattern.vert[1].P(); // int i = 0; // i++; } static void applyOptimizationResults_elements( const ReducedModelOptimization::Results &reducedPattern_optimizationResults, const std::shared_ptr &pReducedPattern_simulationMesh) { assert(CrossSectionType::name == RectangularBeamDimensions::name); // Set reduced parameters fron the optimization results std::unordered_map optimalXVariables(reducedPattern_optimizationResults.optimalXNameValuePairs.begin(), reducedPattern_optimizationResults.optimalXNameValuePairs.end()); const std::string ALabel = "A"; if (optimalXVariables.contains(ALabel)) { const double A = optimalXVariables.at(ALabel); const double beamWidth = std::sqrt(A); const double beamHeight = beamWidth; CrossSectionType elementDimensions(beamWidth, beamHeight); for (int ei = 0; ei < pReducedPattern_simulationMesh->EN(); ei++) { Element &e = pReducedPattern_simulationMesh->elements[ei]; e.setDimensions(elementDimensions); } } const double poissonsRatio = 0.3; const std::string ymLabel = "E"; if (optimalXVariables.contains(ymLabel)) { const double E = optimalXVariables.at(ymLabel); const ElementMaterial elementMaterial(poissonsRatio, E); for (int ei = 0; ei < pReducedPattern_simulationMesh->EN(); ei++) { Element &e = pReducedPattern_simulationMesh->elements[ei]; e.setMaterial(elementMaterial); } } const std::string JLabel = "J"; if (optimalXVariables.contains(JLabel)) { const double J = optimalXVariables.at(JLabel); for (int ei = 0; ei < pReducedPattern_simulationMesh->EN(); ei++) { Element &e = pReducedPattern_simulationMesh->elements[ei]; e.dimensions.inertia.J = J; } } const std::string I2Label = "I2"; if (optimalXVariables.contains(I2Label)) { const double I2 = optimalXVariables.at(I2Label); for (int ei = 0; ei < pReducedPattern_simulationMesh->EN(); ei++) { Element &e = pReducedPattern_simulationMesh->elements[ei]; e.dimensions.inertia.I2 = I2; } } const std::string I3Label = "I3"; if (optimalXVariables.contains(I3Label)) { const double I3 = optimalXVariables.at(I3Label); for (int ei = 0; ei < pReducedPattern_simulationMesh->EN(); ei++) { Element &e = pReducedPattern_simulationMesh->elements[ei]; e.dimensions.inertia.I3 = I3; } } pReducedPattern_simulationMesh->reset(); } #if POLYSCOPE_DEFINED void draw(const std::vector &desiredSimulationScenariosIndices = std::vector()) const { PolyscopeInterface::init(); DRMSimulationModel drmSimulator; LinearSimulationModel linearSimulator; assert(fullPatternSimulationJobs.size() == reducedPatternSimulationJobs.size()); fullPatternSimulationJobs[0]->pMesh->registerForDrawing(Colors::fullInitial); reducedPatternSimulationJobs[0]->pMesh->registerForDrawing(Colors::reducedInitial, false); const int numberOfSimulationJobs = fullPatternSimulationJobs.size(); const std::vector scenariosToDraw = [&]() { if (desiredSimulationScenariosIndices.empty()) { std::vector v(numberOfSimulationJobs); std::iota(v.begin(), v.end(), 0); //draw all return v; } else { return desiredSimulationScenariosIndices; } }(); for (const int &simulationJobIndex : scenariosToDraw) { // Drawing of full pattern results const std::shared_ptr &pFullPatternSimulationJob = fullPatternSimulationJobs[simulationJobIndex]; pFullPatternSimulationJob->registerForDrawing( fullPatternSimulationJobs[0]->pMesh->getLabel()); DRMSimulationModel::Settings drmSettings; SimulationResults fullModelResults = drmSimulator.executeSimulation(pFullPatternSimulationJob, drmSettings); fullModelResults.registerForDrawing(Colors::fullDeformed, true); // SimulationResults fullModelLinearResults = // linearSimulator.executeSimulation(pFullPatternSimulationJob); // fullModelLinearResults.setLabelPrefix("linear"); // fullModelLinearResults.registerForDrawing(Colors::fullDeformed,false); // Drawing of reduced pattern results const std::shared_ptr &pReducedPatternSimulationJob = reducedPatternSimulationJobs[simulationJobIndex]; // pReducedPatternSimulationJob->pMesh->registerForDrawing(); // polyscope::show(); // SimulationResults reducedModelResults = drmSimulator.executeSimulation( // pReducedPatternSimulationJob); // reducedModelResults.registerForDrawing(Colors::reducedDeformed, false); // SimulationResults reducedModelResults // = drmSimulator.executeSimulation(pReducedPatternSimulationJob, // DRMSimulationModel::Settings()); SimulationResults reducedModelResults = linearSimulator.executeSimulation( pReducedPatternSimulationJob); reducedModelResults.setLabelPrefix("linear"); reducedModelResults.registerForDrawing(Colors::reducedDeformed, true); polyscope::options::programName = fullPatternSimulationJobs[0]->pMesh->getLabel(); // polyscope::view::resetCameraToHomeView(); polyscope::show(); // Save a screensh const std::string screenshotFilename = "/home/iason/Coding/Projects/Approximating shapes with flat " "patterns/RodModelOptimizationForPatterns/Results/Images/" + fullPatternSimulationJobs[0]->pMesh->getLabel() + "_" + pFullPatternSimulationJob->getLabel(); polyscope::screenshot(screenshotFilename, false); pFullPatternSimulationJob->unregister(fullPatternSimulationJobs[0]->pMesh->getLabel()); fullModelResults.unregister(); // reducedModelResults.unregister(); reducedModelResults.unregister(); // fullModelLinearResults.unregister(); // double error = computeError(reducedModelLinearResults.displacements, // fullModelResults.displacements); // std::cout << "Error of simulation scenario " // << simulationScenarioStrings[simulationScenarioIndex] << " is " << error // << std::endl; } } #endif // POLYSCOPE_DEFINED void saveMeshFiles() const { const int numberOfSimulationJobs = fullPatternSimulationJobs.size(); assert(numberOfSimulationJobs != 0 && fullPatternSimulationJobs.size() == reducedPatternSimulationJobs.size()); fullPatternSimulationJobs[0]->pMesh->save( "undeformed " + fullPatternSimulationJobs[0]->pMesh->getLabel() + ".ply"); reducedPatternSimulationJobs[0]->pMesh->save( "undeformed " + reducedPatternSimulationJobs[0]->pMesh->getLabel() + ".ply"); DRMSimulationModel simulator_drm; LinearSimulationModel simulator_linear; for (int simulationJobIndex = 0; simulationJobIndex < numberOfSimulationJobs; simulationJobIndex++) { // Drawing of full pattern results const std::shared_ptr &pFullPatternSimulationJob = fullPatternSimulationJobs[simulationJobIndex]; DRMSimulationModel::Settings drmSettings; SimulationResults fullModelResults = simulator_drm.executeSimulation(pFullPatternSimulationJob, drmSettings); fullModelResults.saveDeformedModel(); // Drawing of reduced pattern results const std::shared_ptr &pReducedPatternSimulationJob = reducedPatternSimulationJobs[simulationJobIndex]; SimulationResults reducedModelResults = simulator_linear.executeSimulation( pReducedPatternSimulationJob); reducedModelResults.saveDeformedModel(); } } void writeHeaderTo(csvFile &os) const { if (exportSettings.exportRawObjectiveValue) { os << "Total raw Obj value"; } os << "Total Obj value"; if (exportSettings.exportIterationOfMinima) { os << "Iteration of minima"; } for (int simulationScenarioIndex = 0; simulationScenarioIndex < fullPatternSimulationJobs.size(); simulationScenarioIndex++) { const std::string simulationScenarioName = fullPatternSimulationJobs[simulationScenarioIndex]->getLabel(); os << "Obj value Trans " + simulationScenarioName; os << "Obj value Rot " + simulationScenarioName; os << "Obj value Total " + simulationScenarioName; } if (exportSettings.exportPE) { for (int simulationScenarioIndex = 0; simulationScenarioIndex < fullPatternSimulationJobs.size(); simulationScenarioIndex++) { const std::string simulationScenarioName = fullPatternSimulationJobs[simulationScenarioIndex]->getLabel(); os << "PE " + simulationScenarioName; } } for (const auto &nameValuePair : optimalXNameValuePairs) { os << nameValuePair.first; } os << "Time(s)"; // os << "#Crashes"; // os << "notes"; } void writeHeaderTo(std::vector &vectorOfPointersToOutputStreams) const { for (csvFile *outputStream : vectorOfPointersToOutputStreams) { writeHeaderTo(*outputStream); } } void writeResultsTo(csvFile &os) const { if (exportSettings.exportRawObjectiveValue) { os << objectiveValue.totalRaw; } os << objectiveValue.total; if (exportSettings.exportIterationOfMinima && !objectiveValueHistory_iteration.empty()) { os << objectiveValueHistory_iteration.back(); } for (int simulationScenarioIndex = 0; simulationScenarioIndex < fullPatternSimulationJobs.size(); simulationScenarioIndex++) { os << objectiveValue.perSimulationScenario_translational[simulationScenarioIndex]; os << objectiveValue.perSimulationScenario_rotational[simulationScenarioIndex]; os << objectiveValue.perSimulationScenario_total[simulationScenarioIndex]; } if (exportSettings.exportPE) { for (int simulationScenarioIndex = 0; simulationScenarioIndex < fullPatternSimulationJobs.size(); simulationScenarioIndex++) { os << perScenario_fullPatternPotentialEnergy[simulationScenarioIndex]; } } for (const auto &optimalXNameValuePair : optimalXNameValuePairs) { os << optimalXNameValuePair.second; } os << time; // if (numberOfSimulationCrashes == 0) { // os << "-"; // } else { // os << numberOfSimulationCrashes; // } // os << notes; } void writeResultsTo(std::vector &vectorOfPointersToOutputStreams) const { for (csvFile *&outputStream : vectorOfPointersToOutputStreams) { writeResultsTo(*outputStream); } } void writeMinimaInfoTo(csvFile &outputCsv) { outputCsv << "Iteration"; outputCsv << "Objective value"; for (int objectiveValueIndex = 0; objectiveValueIndex < objectiveValueHistory.size(); objectiveValueIndex++) { outputCsv.endrow(); outputCsv << objectiveValueHistory_iteration[objectiveValueIndex]; outputCsv << objectiveValueHistory[objectiveValueIndex]; } } }; enum SimulationModelTag { DRM, Linear }; inline bool Settings::ObjectiveWeights::operator==(const ObjectiveWeights &other) const { return this->translational == other.translational && this->rotational == other.rotational; } } // namespace ReducedModelOptimization #endif // REDUCEDMODELOPTIMIZER_STRUCTS_HPP