MySources/trianglepatterngeometry.cpp

1159 lines
50 KiB
C++
Executable File

#include "trianglepatterngeometry.hpp"
#include "trianglepattterntopology.hpp"
#include <algorithm>
#include <iterator>
#include <numeric>
#include <vcg/complex/algorithms/update/position.h>
#include <vcg/simplex/edge/topology.h>
#include <vcg/space/intersection2.h>
#include <wrap/io_trimesh/export.h>
/* include the support for half edges */
#include <vcg/complex/algorithms/update/halfedge_indexed.h>
size_t PatternGeometry::computeTiledValence(
const size_t &nodeIndex,
const std::vector<size_t> &numberOfNodesPerSlot) const {
std::vector<PatternGeometry::EdgeType *> connectedEdges;
vcg::edge::VEStarVE(&vert[nodeIndex], connectedEdges);
const size_t nodeValence = connectedEdges.size();
assert(nodeToSlotMap.count(nodeIndex) != 0);
const size_t nodeSlotIndex = nodeToSlotMap.at(nodeIndex);
if (nodeSlotIndex == 0) {
return nodeValence * fanSize;
} else if (nodeSlotIndex == 1 || nodeSlotIndex == 2) {
size_t correspondingNodeIndex;
if (nodeSlotIndex == 1) {
correspondingNodeIndex = nodeIndex + 1;
} else {
correspondingNodeIndex = nodeIndex - 1;
}
std::vector<PatternGeometry::EdgeType *> connectedEdgesCorrespondingNode;
vcg::edge::VEStarVE(&vert[correspondingNodeIndex],
connectedEdgesCorrespondingNode);
size_t correspondingNodeValence = connectedEdgesCorrespondingNode.size();
return fanSize / 2 * nodeValence + fanSize / 2 * correspondingNodeValence;
} else if (nodeSlotIndex == 3 || nodeSlotIndex == 5) {
size_t correspondingNodeIndex;
size_t numberOfNodesBefore;
size_t numberOfNodesAfter;
if (nodeSlotIndex == 3) {
numberOfNodesBefore =
nodeIndex - std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 3, 0);
correspondingNodeIndex =
std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 6, 0) -
1 - numberOfNodesBefore;
} else {
numberOfNodesAfter =
std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 6, 0) -
1 - nodeIndex;
correspondingNodeIndex =
numberOfNodesAfter + std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 3,
0);
}
assert(correspondingNodeIndex < vn);
std::vector<PatternGeometry::EdgeType *> connectedEdgesCorrespondingNode;
vcg::edge::VEStarVE(&vert[correspondingNodeIndex],
connectedEdgesCorrespondingNode);
size_t correspondingNodeValence = connectedEdgesCorrespondingNode.size();
return nodeValence + correspondingNodeValence;
} else if (nodeSlotIndex == 4) {
return 2 * nodeValence;
} else if (nodeSlotIndex == 6) {
return nodeValence;
} else {
std::cerr << "Error in slot index computation" << std::endl;
}
assert(false);
return 0;
}
size_t PatternGeometry::getFanSize() const { return fanSize; }
double PatternGeometry::getTriangleEdgeSize() const { return triangleEdgeSize; }
PatternGeometry::PatternGeometry() {}
std::vector<vcg::Point3d> PatternGeometry::getVertices() const {
std::vector<VCGEdgeMesh::CoordType> verts(VN());
for (size_t vi = 0; vi < VN(); vi++) {
verts[vi] = vert[vi].cP();
}
return verts;
}
PatternGeometry PatternGeometry::createTile(PatternGeometry &pattern)
{
const size_t fanSize = PatternGeometry().getFanSize();
PatternGeometry fan(createFan(pattern));
PatternGeometry tile(fan);
if (fanSize % 2 == 1) {
vcg::Matrix44d R;
auto rotationAxis = vcg::Point3d(0, 0, 1);
R.SetRotateDeg(180, rotationAxis);
vcg::tri::UpdatePosition<PatternGeometry>::Matrix(fan, R);
}
vcg::Matrix44d T;
// const double centerAngle = 2 * M_PI / fanSize;
// const double triangleHeight = std::sin((M_PI - centerAngle) / 2)
// * PatternGeometry().triangleEdgeSize;
vcg::tri::UpdateBounding<PatternGeometry>::Box(fan);
const double triangleHeight = fan.bbox.DimY() / 2;
T.SetTranslate(0, -2 * triangleHeight, 0);
vcg::tri::UpdatePosition<PatternGeometry>::Matrix(fan, T);
// fan.registerForDrawing();
// polyscope::show();
PatternGeometry fanOfFan = createFan(fan);
vcg::tri::Append<PatternGeometry, PatternGeometry>::Mesh(tile, fanOfFan);
vcg::tri::Clean<PatternGeometry>::MergeCloseVertex(tile, 0.0000005);
vcg::tri::Allocator<PatternGeometry>::CompactEveryVector(tile);
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(tile);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(tile);
// for (size_t vi = 0; vi < pattern.vn; vi++) {
// tile.vert[vi].C() = vcg::Color4b::Blue;
// }
tile.setLabel("tilled_" + pattern.getLabel());
tile.updateEigenEdgeAndVertices();
return tile;
}
PatternGeometry PatternGeometry::createFan(PatternGeometry &pattern) {
const size_t fanSize = PatternGeometry().getFanSize();
PatternGeometry fan(pattern);
PatternGeometry rotatedPattern(pattern);
for (int rotationCounter = 1; rotationCounter < fanSize; rotationCounter++) {
vcg::Matrix44d R;
auto rotationAxis = vcg::Point3d(0, 0, 1);
R.SetRotateDeg(360 / fanSize, rotationAxis);
vcg::tri::UpdatePosition<PatternGeometry>::Matrix(rotatedPattern, R);
vcg::tri::Append<PatternGeometry, PatternGeometry>::Mesh(fan,
rotatedPattern);
}
return fan;
}
PatternGeometry::PatternGeometry(PatternGeometry &other) {
vcg::tri::Append<PatternGeometry, PatternGeometry>::MeshCopy(*this, other);
this->vertices = other.getVertices();
baseTriangle = other.getBaseTriangle();
baseTriangleHeight = computeBaseTriangleHeight();
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(*this);
}
bool PatternGeometry::load(const std::filesystem::__cxx11::path &meshFilePath)
{
if (!VCGEdgeMesh::load(meshFilePath)) {
return false;
}
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
baseTriangleHeight = computeBaseTriangleHeight();
baseTriangle = computeBaseTriangle();
updateEigenEdgeAndVertices();
return true;
}
void PatternGeometry::add(const std::vector<vcg::Point3d> &vertices) {
this->vertices = vertices;
std::for_each(vertices.begin(), vertices.end(), [&](const vcg::Point3d &p) {
vcg::tri::Allocator<PatternGeometry>::AddVertex(*this, p);
});
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(*this);
updateEigenEdgeAndVertices();
}
void PatternGeometry::add(const std::vector<vcg::Point2i> &edges) {
std::for_each(edges.begin(), edges.end(), [&](const vcg::Point2i &e) {
vcg::tri::Allocator<PatternGeometry>::AddEdge(*this, e[0], e[1]);
});
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(*this);
updateEigenEdgeAndVertices();
}
void PatternGeometry::add(const std::vector<vcg::Point3d> &vertices,
const std::vector<vcg::Point2i> &edges)
{
add(vertices);
add(edges);
updateEigenEdgeAndVertices();
}
void PatternGeometry::add(const std::vector<size_t> &numberOfNodesPerSlot,
const std::vector<vcg::Point2i> &edges) {
assert(numberOfNodesPerSlot.size() == 7);
auto vertices =
constructVertexVector(numberOfNodesPerSlot, fanSize, triangleEdgeSize);
add(vertices, edges);
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(*this);
updateEigenEdgeAndVertices();
}
std::vector<vcg::Point3d> PatternGeometry::constructVertexVector(
const std::vector<size_t> &numberOfNodesPerSlot, const size_t &fanSize,
const double &triangleEdgeSize) {
std::vector<vcg::Point3d> vertices;
const double centerAngle = 2 * M_PI / fanSize;
const double triangleHeight =
std::sin((M_PI - centerAngle) / 2) * triangleEdgeSize;
const double baseEdgeSize =
2 * triangleEdgeSize * std::cos((M_PI - centerAngle) / 2);
const vcg::Point3d triangleV0 = vcg::Point3d(0, 0, 0);
const vcg::Point3d triangleV1 =
vcg::Point3d(-baseEdgeSize / 2, -triangleHeight, 0);
const vcg::Point3d triangleV2 =
vcg::Point3d(baseEdgeSize / 2, -triangleHeight, 0);
// Nodes
if (numberOfNodesPerSlot[0] == 1) {
// vertices[0] = triangleV0;
vertices.push_back(triangleV0);
}
if (numberOfNodesPerSlot[1] == 1) {
// vertices[1] = triangleV1;
vertices.push_back(triangleV1);
}
if (numberOfNodesPerSlot[2] == 1) {
// vertices[2] = triangleV2;
vertices.push_back(triangleV2);
}
// Edges
if (numberOfNodesPerSlot[3] != 0) {
const double offset0 = 1.0 / (numberOfNodesPerSlot[3] + 1);
const vcg::Point3d edgeVector0(triangleV1 - triangleV0);
for (size_t vertexIndex = 0; vertexIndex < numberOfNodesPerSlot[3];
vertexIndex++) {
// vertices[std::accumulate(numberOfNodesPerSlot.begin(),
// numberOfNodesPerSlot.begin() + 2, 0) +
// vertexIndex] =
vertices.push_back(triangleV0 +
edgeVector0.operator*((vertexIndex + 1) * offset0));
}
}
if (numberOfNodesPerSlot[4] == 1) {
vertices.push_back(vcg::Point3d(0, -triangleHeight, 0));
} else if (numberOfNodesPerSlot[4] != 0) {
const double offset1 = 1.0 / (numberOfNodesPerSlot[4] + 1);
const vcg::Point3d edgeVector1(triangleV2 - triangleV1);
for (size_t vertexIndex = 0; vertexIndex < numberOfNodesPerSlot[4];
vertexIndex++) {
// vertices[std::accumulate(numberOfNodesPerSlot.begin(),
// numberOfNodesPerSlot.begin() + 3, 0) +
// vertexIndex] =
vertices.push_back(triangleV1 +
edgeVector1.operator*((vertexIndex + 1) * offset1));
}
}
if (numberOfNodesPerSlot[5] != 0) {
const double offset2 = 1.0 / (numberOfNodesPerSlot[5] + 1);
const vcg::Point3d edgeVector2(triangleV0 - triangleV2);
for (size_t vertexIndex = 0; vertexIndex < numberOfNodesPerSlot[5];
vertexIndex++) {
// vertices[std::accumulate(numberOfNodesPerSlot.begin(),
// numberOfNodesPerSlot.begin() + 4, 0) +
// vertexIndex] =
vertices.push_back(triangleV2 +
edgeVector2.operator*((vertexIndex + 1) * offset2));
}
}
// Face
if (numberOfNodesPerSlot[6] != 0) {
const vcg::Point3d triangleCenter((triangleV0 + triangleV1 + triangleV2) /
3);
const double radius = 0.1;
const double offsetRad = 2 * M_PI / numberOfNodesPerSlot[6];
for (size_t vertexIndex = 0; vertexIndex < numberOfNodesPerSlot[6];
vertexIndex++) {
const double pX =
triangleCenter[0] + radius * std::cos(vertexIndex * offsetRad);
const double pY =
triangleCenter[1] + radius * std::sin(vertexIndex * offsetRad);
/*vertices[std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 5, 0) +
vertexIndex] =*/
vertices.push_back(vcg::Point3d(pX, pY, 0));
}
}
return vertices;
}
void PatternGeometry::constructNodeToTiledValenceMap(
const std::vector<size_t> &numberOfNodesPerSlot) {
for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
const size_t tiledValence =
computeTiledValence(nodeIndex, numberOfNodesPerSlot);
nodeTiledValence[nodeIndex] = tiledValence;
}
}
std::vector<VectorType> PatternGeometry::getEdgeVectorsWithVertexAsOrigin(
std::vector<EdgePointer> &edgePointers, const int &vi)
{
std::vector<VectorType> incidentElementsVectors(edgePointers.size());
for (int incidentElementsIndex = 0; incidentElementsIndex < edgePointers.size();
incidentElementsIndex++) {
assert(vi == getIndex(edgePointers[incidentElementsIndex]->cV(0))
|| vi == getIndex(edgePointers[incidentElementsIndex]->cV(1)));
incidentElementsVectors[incidentElementsIndex]
= vi == getIndex(edgePointers[incidentElementsIndex]->cV(0))
? edgePointers[incidentElementsIndex]->cP(1)
- edgePointers[incidentElementsIndex]->cP(0)
: edgePointers[incidentElementsIndex]->cP(0)
- edgePointers[incidentElementsIndex]->cP(1);
}
return incidentElementsVectors;
}
bool PatternGeometry::hasAngleSmallerThanThreshold(const std::vector<size_t> &numberOfNodesPerSlot,
const double &angleThreshold_degrees)
{
assert(numberOfNodesPerSlot.size() == 7);
//Initialize helping structs
if (nodeToSlotMap.empty()) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlotMap);
}
if (correspondingNode.empty()) {
constructCorrespondingNodeMap(numberOfNodesPerSlot);
}
// const double theta0 = vcg::math::ToDeg(vcg::Point2d(1, 0).Angle());
// const double theta1 = vcg::math::ToDeg(vcg::Point2d(1, 1).Angle());
// const double theta2 = vcg::math::ToDeg(vcg::Point2d(0, 1).Angle());
// const double theta3 = vcg::math::ToDeg(vcg::Point2d(-1, 1).Angle());
// const double theta4 = vcg::math::ToDeg(vcg::Point2d(-1, 0).Angle());
// const double theta5 = vcg::math::ToDeg(vcg::Point2d(-1, -1).Angle() + 2 * M_PI);
// const double theta6 = vcg::math::ToDeg(vcg::Point2d(0, -1).Angle() + 2 * M_PI);
// const double theta7 = vcg::math::ToDeg(vcg::Point2d(1, -1).Angle() + 2 * M_PI);
// std::set<double> test{theta0, theta1, theta2, theta3, theta4, theta5, theta6, theta7};
bool hasAngleSmallerThan = false;
//find tiled incident edges for each node
using EdgeIndex = int;
using ThetaWithXAxis = double;
for (size_t vi = 0; vi < VN(); vi++) {
std::vector<EdgePointer> incidentElementPointers;
vcg::edge::VEStarVE(&vert[vi], incidentElementPointers);
const size_t numberOfIncidentEdges = incidentElementPointers.size();
if (numberOfIncidentEdges == 0) {
continue;
}
std::vector<VectorType> incidentEdgeVectors
= getEdgeVectorsWithVertexAsOrigin(incidentElementPointers, vi);
std::vector<VectorType> tiledIncidentVectors = incidentEdgeVectors;
const size_t slotIndex = nodeToSlotMap[vi];
if (slotIndex == 2) {
//NOTE:I assume that base triangle slots 1,2(bottom triangle nodes) are not used
std::cerr
<< "Slot of bottom base triangle nodes detected.This case is not handled.Exiting.."
<< std::endl;
std::terminate();
} else if (slotIndex == 3 || slotIndex == 5) {
//NOTE: I don't need to check both triangle edges
std::vector<PatternGeometry::EdgePointer> correspondingVertexIncidentElementPointers;
vcg::edge::VEStarVE(&vert[correspondingNode[vi]],
correspondingVertexIncidentElementPointers);
std::vector<VectorType> correspondingVertexIncidentVectors
= getEdgeVectorsWithVertexAsOrigin(correspondingVertexIncidentElementPointers,
correspondingNode[vi]);
// const CoordType &correspondingVertexPosition = vert[correspondingNode[vi]].cP();
vcg::Matrix33d R;
if (slotIndex == 3) {
R = vcg::RotationMatrix(vcg::Point3d(0, 0, 1), vcg::math::ToRad(-360.0 / fanSize));
} else {
R = vcg::RotationMatrix(vcg::Point3d(0, 0, 1), vcg::math::ToRad(360.0 / fanSize));
}
// const CoordType &correspondingVertexPosition_rotated = vert[vi].cP();
std::transform(
correspondingVertexIncidentVectors.begin(),
correspondingVertexIncidentVectors.end(),
correspondingVertexIncidentVectors.begin(),
[&](const VectorType &v) {
// CoordType rotatedTarget = v * R;
// v = rotatedTarget - correspondingVertexPosition_rotated;
return R * v;
});
tiledIncidentVectors.insert(tiledIncidentVectors.end(),
correspondingVertexIncidentVectors.begin(),
correspondingVertexIncidentVectors.end());
} else if (slotIndex == 4) {
std::vector<VectorType> reversedIncidentElementVectors(incidentEdgeVectors.size());
std::transform(incidentEdgeVectors.begin(),
incidentEdgeVectors.end(),
reversedIncidentElementVectors.begin(),
[&](const VectorType &v) { return -v; });
//NOTE: for checking the angles not all opposite incident element vectors are needed but rather the two "extreme" ones of slot 4
//here I simply add them all
tiledIncidentVectors.insert(tiledIncidentVectors.end(),
reversedIncidentElementVectors.begin(),
reversedIncidentElementVectors.end());
}
// std::vector<std::array<double, 3>> edgePoints;
// for (int tiledVectorIndex = 0; tiledVectorIndex < tiledIncidentVectors.size();
// tiledVectorIndex++) {
// edgePoints.push_back(
// std::array<double, 3>{vert[vi].cP()[0], vert[vi].cP()[1], vert[vi].cP()[2]});
// edgePoints.push_back(
// std::array<double, 3>{(vert[vi].cP() + tiledIncidentVectors[tiledVectorIndex])[0],
// (vert[vi].cP() + tiledIncidentVectors[tiledVectorIndex])[1],
// (vert[vi].cP() + tiledIncidentVectors[tiledVectorIndex])[2]});
// }
// polyscope::registerCurveNetworkLine("temp", edgePoints);
// polyscope::show();
if (tiledIncidentVectors.size() == 1) {
continue;
}
std::vector<double> thetaAnglesOfIncidentVectors(tiledIncidentVectors.size());
std::transform(tiledIncidentVectors.begin(),
tiledIncidentVectors.end(),
thetaAnglesOfIncidentVectors.begin(),
[](const VectorType &v) { return vcg::Point2d(v[0], v[1]).Angle(); });
//sort them using theta angles
std::sort(thetaAnglesOfIncidentVectors.begin(), thetaAnglesOfIncidentVectors.end());
//find nodes that contain incident edges with relative angles less than the threshold
const double angleThreshold_rad = vcg::math::ToRad(angleThreshold_degrees);
for (int thetaAngleIndex = 1; thetaAngleIndex < thetaAnglesOfIncidentVectors.size();
thetaAngleIndex++) {
const double absAngleDifference = std::abs(
thetaAnglesOfIncidentVectors[thetaAngleIndex]
- thetaAnglesOfIncidentVectors[thetaAngleIndex - 1]);
if (absAngleDifference < angleThreshold_rad
/*&& absAngleDifference > vcg::math::ToRad(0.01)*/) {
// std::cout << "Found angDiff:" << absAngleDifference << std::endl;
// vert[vi].C() = vcg::Color4b::Magenta;
// hasAngleSmallerThan = true;
return true;
}
}
const double firstLastPairAngleDiff = std::abs(
thetaAnglesOfIncidentVectors[0]
- thetaAnglesOfIncidentVectors[thetaAnglesOfIncidentVectors.size() - 1]);
if (firstLastPairAngleDiff < angleThreshold_rad && firstLastPairAngleDiff > 0.01) {
return true;
}
}
return false;
}
bool PatternGeometry::hasValenceGreaterThan(const std::vector<size_t> &numberOfNodesPerSlot,
const size_t &valenceThreshold)
{
//Initialize helping structs
if (nodeToSlotMap.empty()) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlotMap);
}
if (correspondingNode.empty()) {
constructCorrespondingNodeMap(numberOfNodesPerSlot);
}
if (nodeTiledValence.empty()) {
constructNodeToTiledValenceMap(numberOfNodesPerSlot);
}
//Check tiled valence of the pattern's nodes
bool hasNodeWithValenceGreaterThanDesired = false;
for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
const size_t tiledValence = nodeTiledValence[nodeIndex];
if (tiledValence > valenceThreshold) {
vert[nodeIndex].C() = vcg::Color4b::LightRed;
hasNodeWithValenceGreaterThanDesired = true;
}
}
return hasNodeWithValenceGreaterThanDesired;
}
bool PatternGeometry::hasDanglingEdges(
const std::vector<size_t> &numberOfNodesPerSlot) {
//Initialize helping structs
if (nodeToSlotMap.empty()) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlotMap);
}
if (correspondingNode.empty()) {
constructCorrespondingNodeMap(numberOfNodesPerSlot);
}
if (nodeTiledValence.empty()) {
constructNodeToTiledValenceMap(numberOfNodesPerSlot);
}
//Check tiled valence of the pattern's nodes
bool hasDanglingEdges = false;
for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
const size_t tiledValence = nodeTiledValence[nodeIndex];
if (tiledValence == 1) {
vert[nodeIndex].C() = vcg::Color4b::Red;
hasDanglingEdges = true;
}
}
return hasDanglingEdges;
}
bool PatternGeometry::hasUntiledDanglingEdges() {
// vcg::tri::Clean<TrianglePatternGeometry>::MergeCloseVertex(*this,
// 0.0000005);
// vcg::tri::Allocator<TrianglePatternGeometry>::CompactEveryVector(*this);
// vcg::tri::UpdateTopology<TrianglePatternGeometry>::VertexEdge(*this);
// vcg::tri::UpdateTopology<TrianglePatternGeometry>::EdgeEdge(*this);
bool hasDanglingEdges = false;
for (size_t vi = 0; vi < vn; vi++) {
std::vector<PatternGeometry::EdgeType *> connectedEdges;
vcg::edge::VEStarVE(&vert[vi], connectedEdges);
const size_t nodeValence = connectedEdges.size();
if (nodeValence == 1) {
if (vert[vi].C().operator==(vcg::Color4b(vcg::Color4b::Red))) {
} else {
vert[vi].C() = vcg::Color4b::Blue;
}
hasDanglingEdges = true;
}
}
return hasDanglingEdges;
}
// TODO: The function expects that the numberOfNodesPerSlot follows a specific
// format and that the vertex container was populated in a particular order.
void PatternGeometry::constructCorrespondingNodeMap(const std::vector<size_t> &numberOfNodesPerSlot)
{
assert(vn != 0 && !nodeToSlotMap.empty() && correspondingNode.empty()
&& numberOfNodesPerSlot.size() == 7);
for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
const size_t slotIndex = nodeToSlotMap[nodeIndex];
if (slotIndex == 1) {
correspondingNode[nodeIndex] = nodeIndex + 1;
} else if (slotIndex == 2) {
correspondingNode[nodeIndex] = nodeIndex - 1;
} else if (slotIndex == 3) {
const size_t numberOfNodesBefore = nodeIndex
- std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 3,
0);
correspondingNode[nodeIndex] = std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 6,
0)
- 1 - numberOfNodesBefore;
} else if (slotIndex == 5) {
const size_t numberOfNodesAfter = std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 6,
0)
- 1 - nodeIndex;
correspondingNode[nodeIndex] = numberOfNodesAfter
+ std::accumulate(numberOfNodesPerSlot.begin(),
numberOfNodesPerSlot.begin() + 3,
0);
}
}
}
bool PatternGeometry::isFullyConnectedWhenFanned()
{
assert(vn != 0 /* && !correspondingNode.empty()*/);
// TrianglePatternGeometry copyOfPattern(*this);
// // If bottom interface nodes have a valence of zero there definetely more than
// // a single cc
// bool bottomInterfaceIsConnected = false;
// for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
// if (nodeToSlotMap[nodeIndex] == 1 || nodeToSlotMap[nodeIndex] == 4
// || nodeToSlotMap[nodeIndex] == 2) {
// std::vector<PatternGeometry::EdgeType *> connectedEdges;
// vcg::edge::VEStarVE(&vert[nodeIndex], connectedEdges);
// const size_t nodeValence = connectedEdges.size();
// if (nodeValence != 0) {
// bottomInterfaceIsConnected = true;
// break;
// }
// }
// }
// if (!bottomInterfaceIsConnected) {
// return false;
// }
PatternGeometry fanedPattern = createFan(*this);
vcg::tri::Clean<PatternGeometry>::MergeCloseVertex(fanedPattern, 0.000000005);
vcg::tri::Allocator<PatternGeometry>::CompactEveryVector(fanedPattern);
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(fanedPattern);
vcg::tri::UpdateTopology<PatternGeometry>::EdgeEdge(fanedPattern);
std::vector<std::pair<int, PatternGeometry::EdgePointer>> eCC;
vcg::tri::Clean<PatternGeometry>::edgeMeshConnectedComponents(fanedPattern, eCC);
const bool sideInterfaceIsConnected = 1 == eCC.size();
if (!sideInterfaceIsConnected) {
return false;
}
// for (size_t nodeIndex = 0; nodeIndex < vn; nodeIndex++) {
// if (nodeTiledValence[nodeIndex] == 0)
// continue;
// const size_t slotIndex = nodeSlot[nodeIndex];
// // connect nodes belonging to first or third slot(nodes on the first
// // triangle edge)
// // if (nodeTiledValence[nodeIndex] == 0 && slotIndex == 3) {
// // continue;
// // }
// if (slotIndex == 1 || slotIndex == 3) {
// assert(correspondingNode.count(nodeIndex) != 0);
// const size_t correspondingNodeIndex =
// correspondingNode[nodeIndex];
// std::vector<TrianglePatternGeometry::EdgeType *> starEdges;
// vcg::edge::VEStarVE(&vert[nodeIndex], starEdges);
// bool containsEdge = false;
// for (TrianglePatternGeometry::EdgeType *e : starEdges) {
// assert(vcg::tri::Index(*this, e->V(0)) == nodeIndex ||
// vcg::tri::Index(*this, e->V(1)) == nodeIndex);
// if (vcg::tri::Index(*this, e->V(0)) == nodeIndex) {
// if (vcg::tri::Index(*this, e->V(1)) == correspondingNodeIndex) {
// containsEdge = true;
// break;
// }
// } else if (vcg::tri::Index(*this, e->V(1)) == nodeIndex) {
// if (vcg::tri::Index(*this, e->V(0)) == correspondingNodeIndex) {
// containsEdge = true;
// break;
// }
// }
// }
// if (!containsEdge) {
// vcg::tri::Allocator<TrianglePatternGeometry>::AddEdge(
// copyOfPattern, nodeIndex, correspondingNodeIndex);
// }
// } else if (slotIndex == 2 || slotIndex == 5) {
// assert(correspondingNode.count(nodeIndex) != 0);
// } else {
// assert(correspondingNode.count(nodeIndex) == 0);
// }
// }
// std::vector<std::pair<int, TrianglePatternGeometry::EdgePointer>> eCC;
// vcg::tri::Clean<TrianglePatternGeometry>::edgeMeshConnectedComponents(
// copyOfPattern, eCC);
// size_t numberOfCC_edgeBased = eCC.size();
// size_t numberOfCC_vertexBased = numberOfCC_edgeBased;
// if (numberOfCC_edgeBased == 1) {
// vcg::tri::UpdateTopology<TrianglePatternGeometry>::VertexEdge(
// copyOfPattern);
// vcg::tri::UpdateTopology<TrianglePatternGeometry>::EdgeEdge(copyOfPattern);
// vcg::tri::UpdateFlags<TrianglePatternGeometry>::VertexSetV(copyOfPattern);
// vcg::tri::UpdateFlags<TrianglePatternGeometry>::VertexClear(copyOfPattern);
// for (size_t ei = 0; ei < copyOfPattern.EN(); ei++) {
// copyOfPattern.edge[ei].V(0)->SetV();
// copyOfPattern.edge[ei].V(1)->SetV();
// }
// for (size_t vi = 0; vi < copyOfPattern.VN(); vi++) {
// if (!copyOfPattern.vert[vi].IsV()) {
// numberOfCC_vertexBased++;
// }
// }
// return numberOfCC_vertexBased;
// }
// return numberOfCC_edgeBased == 1; // TODO: not good
return true;
}
bool PatternGeometry::hasIntersectingEdges(
const std::string &patternBinaryRepresentation,
const std::unordered_map<size_t, std::unordered_set<size_t>>
&intersectingEdges) {
bool containsIntersectingEdges = false;
for (size_t validEdgeIndex = 0;
validEdgeIndex < patternBinaryRepresentation.size(); validEdgeIndex++) {
if (patternBinaryRepresentation[validEdgeIndex] == '1'
&& intersectingEdges.contains(validEdgeIndex)) {
for (auto edgeIndexIt = intersectingEdges.find(validEdgeIndex)->second.begin();
edgeIndexIt != intersectingEdges.find(validEdgeIndex)->second.end();
edgeIndexIt++) {
if (patternBinaryRepresentation[*edgeIndexIt] == '1') {
containsIntersectingEdges = true;
// statistics.numberOfIntersectingEdgesOverAllPatterns++;
break; // should be uncommented in order to improve
// performance
}
}
if (containsIntersectingEdges) {
break; // should be uncommented in order to improve performance
}
}
}
return containsIntersectingEdges;
}
std::unordered_map<size_t, std::unordered_set<size_t>>
PatternGeometry::getIntersectingEdges(
size_t &numberOfIntersectingEdgePairs) const {
std::unordered_map<size_t, std::unordered_set<size_t>> intersectingEdges;
numberOfIntersectingEdgePairs = 0;
size_t numberOfEdgePairs;
if (en == 0 || en == 1) {
numberOfEdgePairs = 0;
} else {
numberOfEdgePairs = binomialCoefficient(en, 2);
}
for (size_t edgePairIndex = 0; edgePairIndex < numberOfEdgePairs;
edgePairIndex++) {
size_t ei0 =
en - 2 -
floor(sqrt(-8 * edgePairIndex + 4 * en * (en - 1) - 7) / 2.0 - 0.5);
size_t ei1 = edgePairIndex + ei0 + 1 - en * (en - 1) / 2 +
(en - ei0) * ((en - ei0) - 1) / 2;
const vcg::Point2d p0(edge[ei0].cP(0)[0], edge[ei0].cP(0)[1]);
const float epsilon = 0.000005;
vcg::Box2d bb0(p0 - vcg::Point2d(epsilon, epsilon),
p0 + vcg::Point2d(epsilon, epsilon));
const vcg::Point2d p1(edge[ei0].cP(1)[0], edge[ei0].cP(1)[1]);
vcg::Box2d bb1(p1 - vcg::Point2d(epsilon, epsilon),
p1 + vcg::Point2d(epsilon, epsilon));
const vcg::Point2d p2(edge[ei1].cP(0)[0], edge[ei1].cP(0)[1]);
vcg::Box2d bb2(p2 - vcg::Point2d(epsilon, epsilon),
p2 + vcg::Point2d(epsilon, epsilon));
if (bb2.Collide(bb1) || bb2.Collide(bb0))
continue;
const vcg::Point2d p3(edge[ei1].cP(1)[0], edge[ei1].cP(1)[1]);
vcg::Box2d bb3(p3 - vcg::Point2d(epsilon, epsilon),
p3 + vcg::Point2d(epsilon, epsilon));
if (bb3.Collide(bb1) || bb3.Collide(bb0))
continue;
const vcg::Segment2d s0(p0, p1);
const vcg::Segment2d s1(p2, p3);
vcg::Point2d intersectionPoint;
const bool edgesIntersect =
vcg::SegmentSegmentIntersection(s0, s1, intersectionPoint);
if (edgesIntersect) {
numberOfIntersectingEdgePairs++;
intersectingEdges[ei0].insert(ei1);
intersectingEdges[ei1].insert(ei0);
}
}
return intersectingEdges;
}
PatternGeometry::PatternGeometry(const std::string &filename,
bool addNormalsIfAbsent) {
if (!std::filesystem::exists(std::filesystem::path(filename))) {
assert(false);
std::cerr << "No flat pattern with name " << filename << std::endl;
return;
}
if (!load(filename)) {
assert(false);
std::cerr << "File could not be loaded " << filename << std::endl;
return;
}
if (addNormalsIfAbsent) {
addNormals();
}
vcg::tri::UpdateTopology<PatternGeometry>::VertexEdge(*this);
baseTriangleHeight = computeBaseTriangleHeight();
baseTriangle = computeBaseTriangle();
updateEigenEdgeAndVertices();
}
double PatternGeometry::computeBaseTriangleHeight() const
{
return vcg::Distance(vert[0].cP(), vert[interfaceNodeIndex].cP());
}
void PatternGeometry::deleteDanglingVertices()
{
vcg::tri::Allocator<VCGEdgeMesh>::PointerUpdater<VertexPointer> pu;
VCGEdgeMesh::deleteDanglingVertices(pu);
if (!pu.remap.empty()) {
interfaceNodeIndex
= pu.remap[interfaceNodeIndex]; //TODO:Could this be automatically be determined?
}
}
void PatternGeometry::deleteDanglingVertices(
vcg::tri::Allocator<VCGEdgeMesh>::PointerUpdater<VertexPointer> &pu)
{
VCGEdgeMesh::deleteDanglingVertices(pu);
}
vcg::Triangle3<double> PatternGeometry::getBaseTriangle() const
{
return baseTriangle;
}
void PatternGeometry::addNormals()
{
bool normalsAreAbsent = vert[0].cN().Norm() < 0.000001;
if (normalsAreAbsent) {
for (auto &v : vert) {
v.N() = CoordType(0, 0, 1);
}
}
}
vcg::Triangle3<double> PatternGeometry::computeBaseTriangle() const
{
const double baseTriangleHeight = computeBaseTriangleHeight();
double bottomEdgeHalfSize = baseTriangleHeight / std::tan(M_PI / 3);
CoordType patternCoord0 = vert[0].cP();
CoordType patternBottomRight = vert[interfaceNodeIndex].cP()
+ CoordType(bottomEdgeHalfSize, 0, 0);
CoordType patternBottomLeft = vert[interfaceNodeIndex].cP()
- CoordType(bottomEdgeHalfSize, 0, 0);
return vcg::Triangle3<double>(patternCoord0, patternBottomLeft, patternBottomRight);
}
PatternGeometry::PatternGeometry(
const std::vector<size_t> &numberOfNodesPerSlot,
const std::vector<vcg::Point2i> &edges) {
add(numberOfNodesPerSlot, edges);
addNormals();
baseTriangleHeight = computeBaseTriangleHeight();
baseTriangle = computeBaseTriangle();
updateEigenEdgeAndVertices();
}
//TODO: refactor such that it takes as an input a single pattern and tiles into the desired faces without requiring the each face will contain a single pattern
std::shared_ptr<PatternGeometry> PatternGeometry::tilePattern(
std::vector<ConstPatternGeometry> &patterns,
const std::vector<int> &connectToNeighborsVi,
const VCGPolyMesh &tileInto,
const std::vector<int> &perSurfaceFacePatternIndices,
std::vector<size_t> &tileIntoEdgesToTiledVi,
std::vector<std::vector<size_t>> &perPatternIndexToTiledPatternEdgeIndex)
{
perPatternIndexToTiledPatternEdgeIndex.resize(patterns.size());
std::shared_ptr<PatternGeometry> pTiledPattern(new PatternGeometry);
std::vector<std::vector<int>> tileIntoEdgeToInterfaceVi(
tileInto.EN()); //ith element contains all the interface nodes that lay on the ith edge of tileInto
//Compute the barycentric coords of the verts in the base triangle pattern
std::vector<std::vector<CoordType>> barycentricCoordinates(patterns.size());
for (size_t patternIndex = 0; patternIndex < patterns.size(); patternIndex++) {
const PatternGeometry &pattern = patterns[patternIndex];
const vcg::Triangle3<double> &baseTriangle = pattern.getBaseTriangle();
barycentricCoordinates[patternIndex].resize(pattern.VN());
for (int vi = 0; vi < pattern.VN(); vi++) {
CoordType barycentricCoords_vi;
vcg::InterpolationParameters<vcg::Triangle3<double>, double>(baseTriangle,
pattern.vert[vi].cP(),
barycentricCoords_vi);
barycentricCoordinates[patternIndex][vi] = barycentricCoords_vi;
}
}
VCGTriMesh tileIntoEdgeMesh;
assert(vcg::tri::HasFEAdjacency(tileInto));
assert(vcg::tri::HasFVAdjacency(tileInto));
for (const VCGPolyMesh::FaceType &f : tileInto.face) {
const int facePatternIndex = perSurfaceFacePatternIndices[tileInto.getIndex(f)];
if (facePatternIndex == -1) {
continue;
}
CoordType centerOfFace(0, 0, 0);
for (size_t vi = 0; vi < f.VN(); vi++) {
centerOfFace = centerOfFace + f.cP(vi);
}
centerOfFace /= f.VN();
vcg::tri::Allocator<VCGTriMesh>::AddVertex(tileIntoEdgeMesh,
centerOfFace,
vcg::Color4b::Yellow);
std::vector<int> firstInFanConnectToNeighbor_vi(connectToNeighborsVi);
for (int &vi : firstInFanConnectToNeighbor_vi) {
vi += pTiledPattern->VN();
}
ConstPatternGeometry &pattern = patterns[facePatternIndex];
for (size_t vi = 0; vi < f.VN(); vi++) {
auto ep = f.FEp(vi);
assert(vcg::tri::IsValidPointer(tileInto, ep));
std::vector<vcg::Point3d> meshTrianglePoints{centerOfFace,
f.cP(vi),
vi + 1 == f.VN() ? f.cP(0) : f.cP(vi + 1)};
// std::vector<vcg::Point3d> meshTrianglePoints{centerOfFace, ep->cP(0), ep->cP(1)};
auto fit = vcg::tri::Allocator<VCGTriMesh>::AddFace(tileIntoEdgeMesh,
meshTrianglePoints[0],
meshTrianglePoints[1],
meshTrianglePoints[2]);
// CoordType faceNormal = ((meshTrianglePoints[1] - meshTrianglePoints[0])
// ^ (meshTrianglePoints[2] - meshTrianglePoints[0]))
// .Normalize();
//TODO: in planar surfaces I should compute the face of triangle
CoordType faceNormal = f.cN();
fit->N() = faceNormal;
PatternGeometry transformedPattern;
transformedPattern.copy(pattern);
//Transform the base triangle nodes to the mesh triangle using barycentric coords
for (int vi = 0; vi < transformedPattern.VN(); vi++) {
transformedPattern.vert[vi].P() = CoordType(
meshTrianglePoints[0] * barycentricCoordinates[facePatternIndex][vi][0]
+ meshTrianglePoints[1] * barycentricCoordinates[facePatternIndex][vi][1]
+ meshTrianglePoints[2] * barycentricCoordinates[facePatternIndex][vi][2]);
}
for (VertexType &v : transformedPattern.vert) {
v.N() = faceNormal;
}
vcg::tri::Append<PatternGeometry, PatternGeometry>::Remap remap;
vcg::tri::Append<PatternGeometry, PatternGeometry>::Mesh(*pTiledPattern,
transformedPattern,
remap);
for (size_t ei = 0; ei < pattern.EN(); ei++) {
perPatternIndexToTiledPatternEdgeIndex[facePatternIndex].push_back(remap.edge[ei]);
}
const size_t ei = tileInto.getIndex(ep);
tileIntoEdgeToInterfaceVi[ei].push_back(remap.vert[pattern.interfaceNodeIndex]);
//Add edges for connecting the desired vertices
if (!connectToNeighborsVi.empty()) {
if (vi + 1 == f.VN()) {
for (int connectToNeighborIndex = 0;
connectToNeighborIndex < connectToNeighborsVi.size();
connectToNeighborIndex++) {
auto eIt = vcg::tri::Allocator<PatternGeometry>::AddEdge(
*pTiledPattern,
firstInFanConnectToNeighbor_vi[connectToNeighborIndex],
pTiledPattern->VN() - pattern.VN()
+ connectToNeighborsVi[connectToNeighborIndex]);
perPatternIndexToTiledPatternEdgeIndex[facePatternIndex].push_back(
pTiledPattern->getIndex(*eIt));
}
}
if (vi != 0) {
for (int connectToNeighborIndex = 0;
connectToNeighborIndex < connectToNeighborsVi.size();
connectToNeighborIndex++) {
auto eIt = vcg::tri::Allocator<PatternGeometry>::AddEdge(
*pTiledPattern,
pTiledPattern->VN() - 2 * pattern.VN()
+ connectToNeighborsVi[connectToNeighborIndex],
pTiledPattern->VN() - pattern.VN()
+ connectToNeighborsVi[connectToNeighborIndex]);
perPatternIndexToTiledPatternEdgeIndex[facePatternIndex].push_back(
pTiledPattern->getIndex(*eIt));
}
}
}
// tiledPattern.updateEigenEdgeAndVertices();
// tiledPattern.registerForDrawing();
// polyscope::show();
}
}
vcg::tri::Allocator<VCGEdgeMesh>::PointerUpdater<VertexPointer> pu_vertices;
vcg::tri::Allocator<VCGEdgeMesh>::PointerUpdater<EdgePointer> pu_edges;
pTiledPattern->removeDuplicateVertices(pu_vertices, pu_edges);
//Update perPattern
// for (std::vector<size_t> &tiledPatternEdges : perPatternIndexToTiledPatternEdgeIndex) {
// for (size_t &ei : tiledPatternEdges) {
// ei = pu_edges.remap[ei];
// }
// auto end = tiledPatternEdges.end();
// for (auto it = tiledPatternEdges.begin(); it != end; ++it) {
// end = std::remove(it + 1, end, *it);
// }
// tiledPatternEdges.erase(end, tiledPatternEdges.end());
// }
const size_t sumOfEdgeIndices = std::accumulate(perPatternIndexToTiledPatternEdgeIndex.begin(),
perPatternIndexToTiledPatternEdgeIndex.end(),
0,
[](const size_t &sum,
const std::vector<size_t> &v) {
return sum + v.size();
});
assert(pTiledPattern->EN() == sumOfEdgeIndices);
tileIntoEdgesToTiledVi.clear();
tileIntoEdgesToTiledVi.resize(tileInto.EN());
for (int ei = 0; ei < tileInto.EN(); ei++) {
const std::vector<int> interfaceVis = tileIntoEdgeToInterfaceVi[ei];
if (interfaceVis.empty()) {
continue;
}
assert(interfaceVis.size() == 1 || interfaceVis.size() == 2);
assert(
interfaceVis.size() == 1
|| (interfaceVis.size() == 2
&& (pu_vertices.remap[interfaceVis[0]] == std::numeric_limits<size_t>::max()
|| pu_vertices.remap[interfaceVis[1]] == std::numeric_limits<size_t>::max())));
tileIntoEdgesToTiledVi[ei] = pu_vertices.remap[interfaceVis[0]];
}
pTiledPattern->deleteDanglingVertices();
vcg::tri::Allocator<PatternGeometry>::CompactEveryVector(*pTiledPattern);
pTiledPattern->updateEigenEdgeAndVertices();
pTiledPattern->save();
return pTiledPattern;
}
bool PatternGeometry::createHoneycombAtom()
{
VCGEdgeMesh honeycombQuarter;
const VCGEdgeMesh::CoordType n(0, 0, 1);
const double H = 0.2;
const double height = 1.5 * H;
const double width = 0.2;
const double theta = 70;
const double dy = tan(vcg::math::ToRad(90 - theta)) * width / 2;
vcg::tri::Allocator<VCGEdgeMesh>::AddVertex(honeycombQuarter,
VCGEdgeMesh::CoordType(0, height / 2, 0),
n);
vcg::tri::Allocator<VCGEdgeMesh>::AddVertex(honeycombQuarter,
VCGEdgeMesh::CoordType(0, H / 2 - dy, 0),
n);
vcg::tri::Allocator<VCGEdgeMesh>::AddVertex(honeycombQuarter,
VCGEdgeMesh::CoordType(width / 2, H / 2, 0),
n);
vcg::tri::Allocator<VCGEdgeMesh>::AddVertex(honeycombQuarter,
VCGEdgeMesh::CoordType(width / 2, 0, 0),
n);
vcg::tri::Allocator<VCGEdgeMesh>::AddEdge(honeycombQuarter, 0, 1);
vcg::tri::Allocator<VCGEdgeMesh>::AddEdge(honeycombQuarter, 1, 2);
vcg::tri::Allocator<VCGEdgeMesh>::AddEdge(honeycombQuarter, 2, 3);
VCGEdgeMesh honeycombAtom;
// Top right
vcg::tri::Append<VCGEdgeMesh, VCGEdgeMesh>::MeshCopy(honeycombAtom, honeycombQuarter);
// Bottom right
vcg::Matrix44d rotM;
rotM.SetRotateDeg(180, vcg::Point3d(1, 0, 0));
vcg::tri::UpdatePosition<VCGEdgeMesh>::Matrix(honeycombQuarter, rotM);
vcg::tri::Append<VCGEdgeMesh, VCGEdgeMesh>::Mesh(honeycombAtom, honeycombQuarter);
// Bottom left
rotM.SetRotateDeg(180, vcg::Point3d(0, 1, 0));
vcg::tri::UpdatePosition<VCGEdgeMesh>::Matrix(honeycombQuarter, rotM);
vcg::tri::Append<VCGEdgeMesh, VCGEdgeMesh>::Mesh(honeycombAtom, honeycombQuarter);
// Top left
rotM.SetRotateDeg(180, vcg::Point3d(1, 0, 0));
vcg::tri::UpdatePosition<VCGEdgeMesh>::Matrix(honeycombQuarter, rotM);
vcg::tri::Append<VCGEdgeMesh, VCGEdgeMesh>::Mesh(honeycombAtom, honeycombQuarter);
for (VertexType &v : honeycombAtom.vert) {
v.P()[2] = 0;
}
return true;
}
void PatternGeometry::copy(PatternGeometry &copyFrom)
{
VCGEdgeMesh::copy(copyFrom);
baseTriangleHeight = copyFrom.getBaseTriangleHeight();
baseTriangle = copyFrom.getBaseTriangle();
interfaceNodeIndex = copyFrom.interfaceNodeIndex;
}
void PatternGeometry::scale(const double &desiredBaseTriangleCentralEdgeSize,
const int &interfaceNodeIndex)
{
const double baseTriangleCentralEdgeSize = computeBaseTriangleHeight();
const double scaleRatio = desiredBaseTriangleCentralEdgeSize / baseTriangleCentralEdgeSize;
vcg::tri::UpdatePosition<VCGEdgeMesh>::Scale(*this, scaleRatio);
baseTriangle = computeBaseTriangle();
baseTriangleHeight = computeBaseTriangleHeight();
}
void PatternGeometry::createFan(const std::vector<int> &connectToNeighborsVi, const size_t &fanSize)
{
PatternGeometry rotatedPattern;
vcg::tri::Append<PatternGeometry, PatternGeometry>::MeshCopy(rotatedPattern, *this);
for (int rotationCounter = 1; rotationCounter < fanSize; rotationCounter++) {
vcg::Matrix44d R;
auto rotationAxis = vcg::Point3d(0, 0, 1);
R.SetRotateDeg(360.0 / fanSize, rotationAxis);
vcg::tri::UpdatePosition<PatternGeometry>::Matrix(rotatedPattern, R);
vcg::tri::Append<PatternGeometry, PatternGeometry>::Mesh(*this, rotatedPattern);
//Add edges for connecting the desired vertices
if (!connectToNeighborsVi.empty()) {
if (rotationCounter == fanSize - 1) {
for (int connectToNeighborIndex = 0;
connectToNeighborIndex < connectToNeighborsVi.size();
connectToNeighborIndex++) {
vcg::tri::Allocator<PatternGeometry>::AddEdge(
*this,
connectToNeighborsVi[connectToNeighborIndex],
this->VN() - rotatedPattern.VN()
+ connectToNeighborsVi[connectToNeighborIndex]);
}
}
for (int connectToNeighborIndex = 0;
connectToNeighborIndex < connectToNeighborsVi.size();
connectToNeighborIndex++) {
vcg::tri::Allocator<PatternGeometry>::AddEdge(
*this,
this->VN() - 2 * rotatedPattern.VN()
+ connectToNeighborsVi[connectToNeighborIndex],
this->VN() - rotatedPattern.VN() + connectToNeighborsVi[connectToNeighborIndex]);
}
}
removeDuplicateVertices();
updateEigenEdgeAndVertices();
}
}
double PatternGeometry::getBaseTriangleHeight() const
{
return baseTriangleHeight;
}
bool PatternGeometry::isInterfaceConnected(const std::unordered_set<VertexIndex> &interfaceNodes)
{
std::unordered_set<VertexIndex> interfaceNodesConnected;
for (int ei = 0; ei < EN(); ei++) {
const int evi0 = getIndex(edge[ei].cV(0));
const int evi1 = getIndex(edge[ei].cV(1));
if (interfaceNodes.contains(evi0) && !interfaceNodes.contains(evi1)) {
interfaceNodesConnected.insert(evi0);
} else if (!interfaceNodes.contains(evi0) && interfaceNodes.contains(evi1)) {
interfaceNodesConnected.insert(evi1);
}
}
if (interfaceNodesConnected.size() != interfaceNodes.size()) {
return false;
}
return true;
}
std::unordered_set<VertexIndex> PatternGeometry::getInterfaceNodes(
const std::vector<size_t> &numberOfNodesPerSlot)
{
if (nodeToSlotMap.empty()) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlotMap);
}
std::unordered_set<VertexIndex> interfaceNodes;
for (std::pair<VertexIndex, size_t> viSlotPair : nodeToSlotMap) {
if (viSlotPair.second == 4) {
interfaceNodes.insert(viSlotPair.first);
}
}
return interfaceNodes;
}