MySources/chronosigasimulationmodel.cpp

301 lines
15 KiB
C++

#include "chronosigasimulationmodel.hpp"
#include "chrono/physics/ChLoadContainer.h"
#include <chrono/fea/ChBeamSectionEuler.h>
#include <chrono/fea/ChBuilderBeam.h>
#include <chrono/fea/ChLoadsBeam.h>
#include <chrono/fea/ChMesh.h>
#include <chrono/fea/ChNodeFEAxyzrot.h>
#include <chrono/physics/ChBody.h>
#include <chrono/physics/ChSystemSMC.h>
#include <chrono/solver/ChIterativeSolverLS.h>
#include <chrono/assets/ChVisualization.h>
#include <chrono/fea/ChElementBeamEuler.h>
#include <chrono/fea/ChVisualizationFEAmesh.h>
using namespace chrono;
using namespace chrono::fea;
std::shared_ptr<ChMesh> ChronosIGASimulationModel::convertToChronosMesh_IGA(
const std::shared_ptr<SimulationEdgeMesh> &pMesh,
std::vector<std::shared_ptr<ChNodeFEAxyzrot>> &edgeMeshVertsToChronosNodes)
{
auto mesh_chronos = chrono_types::make_shared<ChMesh>();
edgeMeshVertsToChronosNodes.clear();
edgeMeshVertsToChronosNodes.resize(pMesh->VN(), nullptr);
//add nodes
for (int vi = 0; vi < pMesh->VN(); vi++) {
const auto &vertex = pMesh->vert[vi];
ChVector<> vertexPos(vertex.cP()[0], vertex.cP()[1], vertex.cP()[2]);
edgeMeshVertsToChronosNodes[vi] = chrono_types::make_shared<ChNodeFEAxyzrot>(
ChFrame<>(vertexPos));
mesh_chronos->AddNode(edgeMeshVertsToChronosNodes[vi]);
}
//add elements
ChBuilderBeamIGA builder;
for (int ei = 0; ei < pMesh->EN(); ei++) {
const SimulationEdgeMesh::EdgeType &edge = pMesh->edge[ei];
//define end-points
const auto vi0 = pMesh->getIndex(edge.cV(0));
const auto vi1 = pMesh->getIndex(edge.cV(1));
//define cross section
const Element &element = pMesh->elements[ei];
const double beam_wz = element.dimensions.getDim1();
const double beam_wy = element.dimensions.getDim2();
const double E = element.material.youngsModulus;
// const double poisson = element.material.poissonsRatio;
const double density = 1e0;
// auto msection = chrono_types::make_shared<ChBeamSectionEulerAdvanced>();
auto msection = chrono_types::make_shared<ChBeamSectionCosseratEasyRectangular>(
beam_wy, beam_wz, E, element.material.G, density);
// msection->SetDensity(density);
// msection->SetYoungModulus(E);
// msection->SetGwithPoissonRatio(poisson);
// // msection->SetBeamRaleyghDamping(0.0);
// msection->SetAsRectangularSection(beam_wy, beam_wz);
builder
.BuildBeam(mesh_chronos, // the mesh where to put the created nodes and elements
msection, // the ChBeamSectionEuler to use for the ChElementBeamEuler elements
1, // the number of ChElementBeamEuler to create
edgeMeshVertsToChronosNodes[vi0], // the 'A' point in space (beginning of beam)
edgeMeshVertsToChronosNodes[vi1], // the 'B' point in space (end of beam)
ChVector<>(0, 0, 1),
3
// ChVector<>(0, cos(rot_rad), sin(rot_rad))
); // the 'Y' up direction of the section for the beam
const auto lastBeamNodesVector = builder.GetLastBeamNodes();
// assert(lastBeamNodesVector.size() == 4);
edgeMeshVertsToChronosNodes[vi0] = std::dynamic_pointer_cast<ChNodeFEAxyzrot>(
mesh_chronos->GetNode(mesh_chronos->GetNnodes() - lastBeamNodesVector.size()));
edgeMeshVertsToChronosNodes[vi1] = std::dynamic_pointer_cast<ChNodeFEAxyzrot>(
mesh_chronos->GetNode(mesh_chronos->GetNnodes() - 1));
// std::cout << edgeMeshVertsToChronosNodes[vi1]->GetCoord().pos[0] << " "
// << edgeMeshVertsToChronosNodes[vi1]->GetCoord().pos[1] << " "
// << edgeMeshVertsToChronosNodes[vi1]->GetCoord().pos[2] << std::endl;
// std::cout << lastBeamNodesVector.back()->GetCoord().pos[0] << " "
// << lastBeamNodesVector.back()->GetCoord().pos[1] << " "
// << lastBeamNodesVector.back()->GetCoord().pos[2] << std::endl;
// int i = 0;
// i++;
}
return mesh_chronos;
}
//SimulationResults ChronosEulerSimulationModel::executeSimulation(
// const std::shared_ptr<SimulationJob> &pJob)
//{}
//chrono::ChSystemSMC convertToChronosSystem(const std::shared_ptr<SimulationJob> &pJob)
//{
// chrono::ChSystemSMC my_system;
//}
void ChronosIGASimulationModel::parseForces(
const std::shared_ptr<chrono::fea::ChMesh> &mesh_chronos,
const std::vector<std::shared_ptr<chrono::fea::ChNodeFEAxyzrot>> &edgeMeshVertsToChronoNodes,
const std::unordered_map<VertexIndex, Vector6d> &nodalExternalForces)
{
mesh_chronos->SetAutomaticGravity(false);
for (const std::pair<VertexIndex, Vector6d> &externalForce : nodalExternalForces) {
const int &forceVi = externalForce.first;
const Vector6d &force = externalForce.second;
edgeMeshVertsToChronoNodes[forceVi]->SetForce(ChVector<>(force[0], force[1], force[2]));
edgeMeshVertsToChronoNodes[forceVi]->SetTorque(ChVector<>(force[3], force[4], force[5]));
std::cout << "Force on vertex:" << std::endl;
std::cout << edgeMeshVertsToChronoNodes[forceVi]->GetCoord().pos[0] << " "
<< edgeMeshVertsToChronoNodes[forceVi]->GetCoord().pos[1] << " "
<< edgeMeshVertsToChronoNodes[forceVi]->GetCoord().pos[2] << std::endl;
}
}
void ChronosIGASimulationModel::parseConstrainedVertices(
const std::shared_ptr<const SimulationJob> &pJob,
const std::vector<std::shared_ptr<chrono::fea::ChNodeFEAxyzrot>> &edgeMeshVertsToChronoNodes,
chrono::ChSystemSMC &my_system)
{
assert(!edgeMeshVertsToChronoNodes.empty());
for (const std::pair<VertexIndex, std::unordered_set<int>> &constrainedVertex :
pJob->constrainedVertices) {
const int &constrainedVi = constrainedVertex.first;
const std::unordered_set<int> &constrainedDoF = constrainedVertex.second;
// Create a truss
auto truss = chrono_types::make_shared<ChBody>();
truss->SetBodyFixed(true);
my_system.Add(truss);
const auto &constrainedChronoNode = edgeMeshVertsToChronoNodes[constrainedVi];
std::cout << "Constrained vertex:" << std::endl;
std::cout << edgeMeshVertsToChronoNodes[constrainedVi]->GetCoord().pos[0] << " "
<< edgeMeshVertsToChronoNodes[constrainedVi]->GetCoord().pos[1] << " "
<< edgeMeshVertsToChronoNodes[constrainedVi]->GetCoord().pos[2] << std::endl;
// Create a constraint at the end of the beam
auto constr_a = chrono_types::make_shared<ChLinkMateGeneric>();
constr_a->SetConstrainedCoords(constrainedDoF.contains(0),
constrainedDoF.contains(1),
constrainedDoF.contains(2),
constrainedDoF.contains(3),
constrainedDoF.contains(4),
constrainedDoF.contains(5));
constr_a->Initialize(constrainedChronoNode,
truss,
false,
constrainedChronoNode->Frame(),
constrainedChronoNode->Frame());
// const auto frameNode = constrainedChronoNode->Frame();
my_system.Add(constr_a);
// edgeMeshVertsToChronoNodes[constrainedVi]->SetFixed(true);
// if (vertexIsFullyConstrained) {
// } else {
// std::cerr << "Currently only rigid vertices are handled." << std::endl;
// // SimulationResults simulationResults;
// // simulationResults.converged = false;
// // assert(false);
// // return simulationResults;
// }
}
}
SimulationResults ChronosIGASimulationModel::executeSimulation(
const std::shared_ptr<SimulationJob> &pJob)
{
// assert(pJob->pMesh->VN() != 0);
// const bool structureInitialized = mesh_chronos != nullptr;
// const bool wasInitializedWithDifferentStructure = structureInitialized
// && (pJob->pMesh->EN()
// != mesh_chronos->GetNelements()
// || pJob->pMesh->VN()
// != mesh_chronos->GetNnodes());
chrono::ChSystemSMC my_system;
// if (!structureInitialized || wasInitializedWithDifferentStructure) {
setStructure(pJob->pMesh);
my_system.Add(mesh_chronos);
// }
// chrono::irrlicht::ChIrrApp application(&my_system,
// L"Irrlicht FEM visualization",
// irr::core::dimension2d<irr::u32>(800, 600),
// chrono::irrlicht::VerticalDir::Z,
// false,
// true);
// const std::string chronoDataFolderPath = "/home/iason/Coding/build/external "
// "dependencies/CHRONO-src/data/";
// application.AddTypicalLogo(chronoDataFolderPath + "logo_chronoengine_alpha.png");
// application.AddTypicalSky(chronoDataFolderPath + "skybox/");
// application.AddTypicalLights();
// application.AddTypicalCamera(irr::core::vector3df(0, (irr::f32) 0.6, -1));
// my_system.SetTimestepperType(chrono::ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);
const auto node_0 = std::dynamic_pointer_cast<ChNodeFEAxyzrot>(mesh_chronos->GetNode(0));
//parse forces
// std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
// << node_0->GetCoord().pos[2] << std::endl;
parseForces(mesh_chronos, edgeMeshVertsToChronoNodes, pJob->nodalExternalForces);
// std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
// << node_0->GetCoord().pos[2] << std::endl;
//parse constrained vertices
// std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
// << node_0->GetCoord().pos[2] << std::endl;
// parseConstrainedVertices(pJob, edgeMeshVertsToChronoNodes, my_system);
// std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
// << node_0->GetCoord().pos[2] << std::endl;
// std::dynamic_pointer_cast<std::shared_ptr<ChNodeFEAxyzrot>>(mesh_chronos->GetNode(1))
// ->SetFixed(true);
// and load containers must be added to your system
// auto mvisualizemesh = chrono_types::make_shared<ChVisualizationFEAmesh>(*(mesh_chronos.get()));
// mvisualizemesh->SetFEMdataType(ChVisualizationFEAmesh::E_PLOT_NODE_DISP_NORM);
// mvisualizemesh->SetColorscaleMinMax(0.0, 5.50);
// mvisualizemesh->SetShrinkElements(false, 0.85);
// mvisualizemesh->SetSmoothFaces(false);
// mesh_chronos->AddAsset(mvisualizemesh);
// application.AssetBindAll();
// application.AssetUpdateAll();
auto solver = chrono_types::make_shared<ChSolverMINRES>();
my_system.SetSolver(solver);
solver->SetMaxIterations(1e5);
// solver->SetTolerance(1e-12);
solver->EnableWarmStart(true); // IMPORTANT for convergence when using EULER_IMPLICIT_LINEARIZED
solver->EnableDiagonalPreconditioner(true);
// my_system.SetSolverForceTolerance(1e-9);
solver->SetVerbose(true);
std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
<< node_0->GetCoord().pos[2] << std::endl;
SimulationResults simulationResults;
simulationResults.converged = my_system.DoStaticNonlinear();
// simulationResults.converged = my_system.DoStaticLinear();
std::cout << node_0->GetCoord().pos[0] << " " << node_0->GetCoord().pos[1] << " "
<< node_0->GetCoord().pos[2] << std::endl;
if (!simulationResults.converged) {
std::cerr << "Simulation failed" << std::endl;
assert(false);
return simulationResults;
}
// my_system.SetTimestepperType(ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);
// application.SetTimestep(0.001);
// while (application.GetDevice()->run()) {
// application.BeginScene();
// application.DrawAll();
// application.EndScene();
// }
simulationResults.pJob = pJob;
simulationResults.displacements.resize(pJob->pMesh->VN());
simulationResults.rotationalDisplacementQuaternion.resize(pJob->pMesh->VN());
for (size_t vi = 0; vi < pJob->pMesh->VN(); vi++) {
const auto node_chronos = edgeMeshVertsToChronoNodes[vi];
std::cout << node_chronos->GetCoord().pos[0] << " " << node_chronos->GetCoord().pos[1]
<< " " << node_chronos->GetCoord().pos[2] << std::endl;
int i = 0;
i++;
assert(node_chronos != nullptr);
const auto posDisplacement = node_chronos->Frame().GetPos()
- node_chronos->GetX0().GetPos();
// std::cout << "Node " << vi << " coordinate x= " << node_chronos->Frame().GetPos().x()
// << " y=" << node_chronos->Frame().GetPos().y()
// << " z=" << node_chronos->Frame().GetPos().z() << "\n";
//Translations
simulationResults.displacements[vi][0] = posDisplacement[0];
simulationResults.displacements[vi][1] = posDisplacement[1];
simulationResults.displacements[vi][2] = posDisplacement[2];
//Rotations
chrono::ChQuaternion<double> rotQuat = node_chronos->GetRot();
simulationResults.rotationalDisplacementQuaternion[vi]
= Eigen::Quaternion<double>(rotQuat.e0(), rotQuat.e1(), rotQuat.e2(), rotQuat.e3());
const ChVector<double> eulerAngles = rotQuat.Q_to_Euler123();
// std::cout << "Euler angles:" << eulerAngles << std::endl;
simulationResults.displacements[vi][3] = eulerAngles[0];
simulationResults.displacements[vi][4] = eulerAngles[1];
simulationResults.displacements[vi][5] = eulerAngles[2];
}
simulationResults.simulationModelUsed = label;
return simulationResults;
// VCGEdgeMesh deformedMesh;
// deformedMesh.copy(*(pJob->pMesh));
// for (size_t vi = 0; vi < pJob->pMesh->VN(); vi++) {
// const std::shared_ptr<ChNodeFEAxyzrot> node_chronos = edgeMeshVertsToChronosNodes[vi];
// deformedMesh.vert[vi].P() = CoordType(node_chronos->GetPos()[0],
// node_chronos->GetPos()[1],
// node_chronos->GetPos()[2]);
// }
// deformedMesh.updateEigenEdgeAndVertices();
// deformedMesh.setLabel("deformed");
// deformedMesh.registerForDrawing();
// polyscope::show();
// return simulationResults;
}
void ChronosIGASimulationModel::setStructure(const std::shared_ptr<SimulationEdgeMesh> &pMesh)
{
mesh_chronos = convertToChronosMesh_IGA(pMesh, edgeMeshVertsToChronoNodes);
}
ChronosIGASimulationModel::ChronosIGASimulationModel() {}