MySources/drmsimulationmodel.hpp

249 lines
8.9 KiB
C++
Executable File

#ifndef BEAMFORMFINDER_HPP
#define BEAMFORMFINDER_HPP
#include "simulationmesh.hpp"
#include "matplot/matplot.h"
#include "simulation_structs.hpp"
#include <Eigen/Dense>
#include <filesystem>
#include <unordered_set>
struct SimulationJob;
enum DoF { Ux = 0, Uy, Uz, Nx, Ny, Nr, NumDoF };
using DoFType = int;
using EdgeType = VCGEdgeMesh::EdgeType;
using VertexType = VCGEdgeMesh::VertexType;
struct DifferentiateWithRespectTo {
const VertexType &v;
const DoFType &dofi;
};
class DRMSimulationModel
{
public:
struct Settings
{
bool isDebugMode{false};
int debugModeStep{100000};
bool shouldDraw{false};
bool beVerbose{false};
bool shouldCreatePlots{false};
int drawingStep{1};
double totalTranslationalKineticEnergyThreshold{1e-8};
double residualForcesMovingAverageDerivativeNormThreshold{1e-8};
double residualForcesMovingAverageNormThreshold{1e-8};
double Dtini{0.1};
double xi{0.9969};
int maxDRMIterations{0};
bool shouldUseTranslationalKineticEnergyThreshold{false};
int gradualForcedDisplacementSteps{50};
int desiredGradualExternalLoadsSteps{1};
double gamma{0.8};
std::optional<double> displacementCap;
double totalResidualForcesNormThreshold{1e-3};
double totalExternalForcesNormPercentageTermination{1e-3};
bool useAverage{false};
double averageResidualForcesCriterionThreshold{1e-5};
Settings() {}
};
private:
Settings mSettings;
double Dt{mSettings.Dtini};
bool checkedForMaximumMoment{false};
bool shouldTemporarilyDampForces{false};
bool shouldTemporarilyAmplifyForces{true};
double externalMomentsNorm{0};
size_t mCurrentSimulationStep{0};
matplot::line_handle plotHandle;
std::vector<double> plotYValues;
size_t numOfDampings{0};
int externalLoadStep{1};
std::vector<bool> isVertexConstrained;
std::vector<bool> isRigidSupport;
double minTotalResidualForcesNorm{std::numeric_limits<double>::max()};
const std::string meshPolyscopeLabel{"Simulation mesh"};
std::unique_ptr<SimulationMesh> pMesh;
std::unordered_map<VertexIndex, std::unordered_set<DoFType>> constrainedVertices;
SimulationHistory history;
// Eigen::Tensor<double, 4> theta3Derivatives;
// std::unordered_map<MyKeyType, double, key_hash> theta3Derivatives;
bool shouldApplyInitialDistortion = false;
void reset();
void updateNodalInternalForces(
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>> &fixedVertices);
void updateNodalExternalForces(
const std::unordered_map<VertexIndex, Vector6d> &nodalForces,
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>> &fixedVertices);
void updateResidualForces();
void updateRotationalDisplacements();
void updateElementalLengths();
void updateNodalMasses();
void updateNodalAccelerations();
void updateNodalVelocities();
void updateNodalDisplacements();
void applyForcedDisplacements(
const std::unordered_map<VertexIndex, Eigen::Vector3d> &nodalForcedDisplacements);
Vector6d computeElementTorsionalForce(const Element &element,
const Vector6d &displacementDifference,
const std::unordered_set<DoFType> &constrainedDof);
// BeamFormFinder::Vector6d computeElementFirstBendingForce(
// const Element &element, const Vector6d &displacementDifference,
// const std::unordered_set<gsl::index> &constrainedDof);
// BeamFormFinder::Vector6d computeElementSecondBendingForce(
// const Element &element, const Vector6d &displacementDifference,
// const std::unordered_set<gsl::index> &constrainedDof);
void updateKineticEnergy();
void resetVelocities();
SimulationResults computeResults(const std::shared_ptr<SimulationJob> &pJob);
void updateNodePosition(
VertexType &v,
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>> &fixedVertices);
void applyDisplacements(
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>> &fixedVertices);
#ifdef POLYSCOPE_DEFINED
void draw(const string &screenshotsFolder= {});
#endif
void
updateNodalInternalForce(Vector6d &nodalInternalForce,
const Vector6d &elementInternalForce,
const std::unordered_set<DoFType> &nodalFixedDof);
Vector6d computeElementInternalForce(
const Element &elem, const Node &n0, const Node &n1,
const std::unordered_set<DoFType> &n0ConstrainedDof,
const std::unordered_set<DoFType> &n1ConstrainedDof);
Vector6d computeElementAxialForce(const ::EdgeType &e) const;
VectorType computeDisplacementDifferenceDerivative(
const EdgeType &e, const DifferentiateWithRespectTo &dui) const;
double
computeDerivativeElementLength(const EdgeType &e,
const DifferentiateWithRespectTo &dui) const;
VectorType computeDerivativeT1(const EdgeType &e,
const DifferentiateWithRespectTo &dui) const;
VectorType
computeDerivativeOfNormal(const VertexType &v,
const DifferentiateWithRespectTo &dui) const;
VectorType computeDerivativeT3(const EdgeType &e,
const DifferentiateWithRespectTo &dui) const;
VectorType computeDerivativeT2(const EdgeType &e,
const DifferentiateWithRespectTo &dui) const;
double computeDerivativeTheta2(const EdgeType &e, const VertexIndex &evi,
const VertexIndex &dwrt_evi,
const DoFType &dwrt_dofi) const;
void updateElementalFrames();
VectorType computeDerivativeOfR(const EdgeType &e, const DifferentiateWithRespectTo &dui) const;
// bool isRigidSupport(const VertexType &v) const;
static double computeDerivativeOfNorm(const VectorType &x,
const VectorType &derivativeOfX);
static VectorType computeDerivativeOfCrossProduct(
const VectorType &a, const VectorType &derivativeOfA, const VectorType &b,
const VectorType &derivativeOfB);
double computeTheta3(const EdgeType &e, const VertexType &v);
double computeDerivativeTheta3(const EdgeType &e, const VertexType &v,
const DifferentiateWithRespectTo &dui) const;
double computeTotalPotentialEnergy();
void computeRigidSupports();
void updateNormalDerivatives();
void updateT1Derivatives();
void updateT2Derivatives();
void updateT3Derivatives();
void updateRDerivatives();
double computeDerivativeTheta1(const EdgeType &e, const VertexIndex &evi,
const VertexIndex &dwrt_evi,
const DoFType &dwrt_dofi) const;
// void updatePositionsOnTheFly(
// const std::unordered_map<VertexIndex,
// std::unordered_set<gsl::index>>
// &fixedVertices);
void updateResidualForcesOnTheFly(
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
&fixedVertices);
void updatePositionsOnTheFly(
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
&fixedVertices);
void updateNodeNormal(
VertexType &v,
const std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
&fixedVertices);
void applyForcedNormals(
const std::unordered_map<VertexIndex, VectorType> nodalForcedRotations);
void printCurrentState() const;
void printDebugInfo() const;
double computeTotalInternalPotentialEnergy();
void applySolutionGuess(const SimulationResults &solutionGuess,
const std::shared_ptr<SimulationJob> &pJob);
void updateNodeNr(VertexType &v);
public:
DRMSimulationModel();
SimulationResults executeSimulation(const std::shared_ptr<SimulationJob> &pJob,
const Settings &settings = Settings(),
const SimulationResults &solutionGuess = SimulationResults());
static void runUnitTests();
};
template <typename PointType> PointType Cross(PointType p1, PointType p2) {
return p1 ^ p2;
}
inline size_t currentStep{0};
inline bool TriggerBreakpoint(const VertexIndex &vi, const EdgeIndex &ei,
const DoFType &dofi) {
const size_t numberOfVertices = 10;
const VertexIndex middleNodeIndex = numberOfVertices / 2;
// return vi == middleNodeIndex && dofi == 1;
return dofi == 1 && ((vi == 1 && ei == 0) || (vi == 9 && ei == 9));
}
inline bool TriggerBreakpoint(const VertexIndex &vi, const EdgeIndex &ei) {
const size_t numberOfVertices = 10;
const VertexIndex middleNodeIndex = numberOfVertices / 2;
return (vi == middleNodeIndex);
// return (vi == 0 || vi == numberOfVertices - 1) && currentStep == 1;
return (vi == 1 && ei == 0) || (vi == 9 && ei == 9);
}
#endif // BEAMFORMFINDER_HPP