MySources/simulationresult.hpp

438 lines
15 KiB
C++
Executable File

#ifndef SIMULATIONHISTORY_HPP
#define SIMULATIONHISTORY_HPP
#include "elementalmesh.hpp"
#include "nlohmann/json.hpp"
struct SimulationHistory {
SimulationHistory() {}
size_t numberOfSteps{0};
std::string label;
std::vector<double> residualForces;
std::vector<double> kineticEnergy;
std::vector<double> potentialEnergies;
std::vector<size_t> redMarks;
std::vector<double> greenMarks;
void markRed(const size_t &stepNumber) { redMarks.push_back(stepNumber); }
void markGreen(const size_t &stepNumber) { greenMarks.push_back(stepNumber); }
void stepPulse(const SimulationMesh &mesh) {
kineticEnergy.push_back(log(mesh.currentTotalKineticEnergy));
// potentialEnergy.push_back(mesh.totalPotentialEnergykN);
residualForces.push_back(mesh.totalResidualForcesNorm);
}
void clear() {
residualForces.clear();
kineticEnergy.clear();
potentialEnergies.clear();
}
};
namespace nlohmann {
template <> struct adl_serializer<std::unordered_map<VertexIndex, Vector6d>> {
static void to_json(json &j,
const std::unordered_map<VertexIndex, Vector6d> &value) {
// calls the "to_json" method in T's namespace
}
static void from_json(const nlohmann::json &j,
std::unordered_map<VertexIndex, Vector6d> &m) {
std::cout << "Entered." << std::endl;
for (const auto &p : j) {
m.emplace(p.at(0).template get<VertexIndex>(),
p.at(1).template get<std::array<double, 6>>());
}
}
};
} // namespace nlohmann
class SimulationJob {
// const std::unordered_map<VertexIndex, VectorType> nodalForcedNormals;
// json labels
struct JSONLabels {
inline static std::string meshFilename{"mesh filename"};
inline static std::string constrainedVertices{"fixed vertices"};
inline static std::string nodalForces{"forces"};
inline static std::string label{"label"};
inline static std::string meshLabel{
"meshLabel"}; // TODO: should be in the savePly function of the
// simulation mesh class
} jsonLabels;
public:
std::shared_ptr<SimulationMesh> pMesh;
std::string label{"empty_job"};
std::unordered_map<VertexIndex, std::unordered_set<int>> constrainedVertices;
std::unordered_map<VertexIndex, Vector6d> nodalExternalForces;
std::unordered_map<VertexIndex, Eigen::Vector3d> nodalForcedDisplacements;
SimulationJob(
const std::shared_ptr<SimulationMesh> &m, const std::string &label,
const std::unordered_map<VertexIndex, std::unordered_set<int>> &cv,
const std::unordered_map<VertexIndex, Vector6d> &ef = {},
const std::unordered_map<VertexIndex, Eigen::Vector3d> &fd = {})
: pMesh(m), label(label), constrainedVertices(cv),
nodalExternalForces(ef), nodalForcedDisplacements(fd) {}
SimulationJob() {}
SimulationJob(const std::string &jsonFilename) { load(jsonFilename); }
SimulationJob getCopy() const {
SimulationJob jobCopy;
jobCopy.pMesh = std::make_shared<SimulationMesh>();
jobCopy.pMesh->copy(*pMesh);
jobCopy.label = label;
jobCopy.constrainedVertices = constrainedVertices;
jobCopy.nodalExternalForces = nodalExternalForces;
jobCopy.nodalForcedDisplacements = nodalForcedDisplacements;
return jobCopy;
}
std::string getLabel() const { return label; }
std::string toString() const {
nlohmann::json json;
if (!constrainedVertices.empty()) {
json[jsonLabels.constrainedVertices] = constrainedVertices;
}
if (!nodalExternalForces.empty()) {
std::unordered_map<VertexIndex, std::array<double, 6>> arrForces;
for (const auto &f : nodalExternalForces) {
arrForces[f.first] = f.second;
}
json[jsonLabels.nodalForces] = arrForces;
}
return json.dump();
}
bool load(const std::string &jsonFilename) {
const bool beVerbose = false;
if (std::filesystem::path(jsonFilename).extension() != ".json") {
std::cerr << "A json file is expected as input. The given file has the "
"following extension:"
<< std::filesystem::path(jsonFilename).extension() << std::endl;
assert(false);
return false;
}
if (!std::filesystem::exists(std::filesystem::path(jsonFilename))) {
std::cerr << "The json file does not exist. Json file provided:"
<< jsonFilename << std::endl;
assert(false);
return false;
}
if (beVerbose) {
std::cout << "Loading json file:" << jsonFilename << std::endl;
}
nlohmann::json json;
std::ifstream ifs(jsonFilename);
ifs >> json;
pMesh = std::make_shared<SimulationMesh>();
if (json.contains(jsonLabels.meshFilename)) {
const std::string relativeFilepath = json[jsonLabels.meshFilename];
const auto meshFilepath =
std::filesystem::path(
std::filesystem::path(jsonFilename).parent_path())
.append(relativeFilepath);
pMesh->load(meshFilepath.string());
pMesh->setLabel(
json[jsonLabels.meshLabel]); // FIXME: This should be exported using
// nanoply but nanoply might not be able
// to write a string(??)
}
if (json.contains(jsonLabels.constrainedVertices)) {
constrainedVertices =
// auto conV =
json[jsonLabels.constrainedVertices]
.get<std::unordered_map<VertexIndex, std::unordered_set<int>>>();
if (beVerbose) {
std::cout << "Loaded constrained vertices. Number of constrained "
"vertices found:"
<< constrainedVertices.size() << std::endl;
}
}
if (json.contains(jsonLabels.nodalForces)) {
auto f = std::unordered_map<VertexIndex, std::array<double, 6>>(
json[jsonLabels.nodalForces]);
for (const auto &forces : f) {
nodalExternalForces[forces.first] = Vector6d(forces.second);
}
if (beVerbose) {
std::cout << "Loaded forces. Number of forces found:"
<< nodalExternalForces.size() << std::endl;
}
}
if (json.contains(jsonLabels.label)) {
label = json[jsonLabels.label];
}
if (json.contains(jsonLabels.meshLabel)) {
pMesh->setLabel(json[jsonLabels.meshLabel]);
}
return true;
}
bool save(const std::string &folderDirectory) const {
const std::filesystem::path pathFolderDirectory(folderDirectory);
if (!std::filesystem::is_directory(pathFolderDirectory)) {
std::cerr << "A folder directory is expected for saving the simulation "
"job. Exiting.."
<< std::endl;
return false;
}
bool returnValue = true;
std::string jsonFilename(
std::filesystem::path(pathFolderDirectory)
.append(label + "_" + pMesh->getLabel() + "_simulationJob.json")
.string());
const std::string meshFilename =
std::filesystem::absolute(
std::filesystem::canonical(
std::filesystem::path(pathFolderDirectory)))
.append(pMesh->getLabel() + ".ply")
.string();
returnValue = pMesh->savePly(meshFilename);
nlohmann::json json;
json[jsonLabels.meshFilename] = std::filesystem::relative(
std::filesystem::path(meshFilename),
std::filesystem::path(
std::filesystem::path(jsonFilename).parent_path()));
json[jsonLabels.meshLabel] =
pMesh->getLabel(); // FIXME: This should be exported using nanoply but
// nanoply might not be able to write a string(??)
if (!constrainedVertices.empty()) {
json[jsonLabels.constrainedVertices] = constrainedVertices;
}
if (!nodalExternalForces.empty()) {
std::unordered_map<VertexIndex, std::array<double, 6>> arrForces;
for (const auto &f : nodalExternalForces) {
arrForces[f.first] = f.second;
}
json[jsonLabels.nodalForces] = arrForces;
}
if (!label.empty()) {
json[jsonLabels.label] = label;
}
if (!pMesh->getLabel().empty()) {
json[jsonLabels.meshLabel] = pMesh->getLabel();
}
std::ofstream jsonFile(jsonFilename);
jsonFile << json;
// std::cout << "Saved simulation job as:" << jsonFilename << std::endl;
return returnValue;
}
#ifdef POLYSCOPE_DEFINED
void registerForDrawing(const std::string &meshLabel) const {
initPolyscope();
if (meshLabel.empty()) {
assert(false);
std::cerr << "Expects a mesh label on which to draw the simulation job."
<< std::endl;
return;
}
auto structs = polyscope::state::structures;
if (!polyscope::hasCurveNetwork(meshLabel)) {
assert(false);
std::cerr << "Expects mesh already being registered to draw the "
"simulation job. No struct named " +
meshLabel
<< std::endl;
return;
}
std::vector<std::array<double, 3>> nodeColors(pMesh->VN());
for (auto fixedVertex : constrainedVertices) {
nodeColors[fixedVertex.first] = {0, 0, 1};
}
if (!nodalForcedDisplacements.empty()) {
for (std::pair<VertexIndex, Eigen::Vector3d> viDisplPair :
nodalForcedDisplacements) {
const VertexIndex vi = viDisplPair.first;
nodeColors[vi][0] += 1;
nodeColors[vi][0] /= 2;
nodeColors[vi][1] += 0;
nodeColors[vi][1] /= 2;
nodeColors[vi][2] += 0;
nodeColors[vi][2] /= 2;
}
}
std::for_each(nodeColors.begin(), nodeColors.end(),
[](std::array<double, 3> &color) {
const double norm =
sqrt(std::pow(color[0], 2) + std::pow(color[1], 2) +
std::pow(color[2], 2));
if (norm > std::pow(10, -7)) {
color[0] /= norm;
color[1] /= norm;
color[2] /= norm;
}
});
if (!nodeColors.empty()) {
polyscope::getCurveNetwork(meshLabel)
->addNodeColorQuantity("Boundary conditions_" + label, nodeColors)
->setEnabled(false);
}
// per node external forces
std::vector<std::array<double, 3>> externalForces(pMesh->VN());
for (const auto &forcePair : nodalExternalForces) {
auto index = forcePair.first;
auto force = forcePair.second;
externalForces[index] = {force[0], force[1], force[2]};
}
if (!externalForces.empty()) {
polyscope::getCurveNetwork(meshLabel)
->addNodeVectorQuantity("External force_" + label, externalForces)
->setEnabled(false);
}
}
#endif // POLYSCOPE_DEFINED
};
namespace Eigen {
template <class Matrix>
void write_binary(const std::string &filename, const Matrix &matrix) {
std::ofstream out(filename,
std::ios::out | std::ios::binary | std::ios::trunc);
typename Matrix::Index rows = matrix.rows(), cols = matrix.cols();
out.write((char *)(&rows), sizeof(typename Matrix::Index));
out.write((char *)(&cols), sizeof(typename Matrix::Index));
out.write((char *)matrix.data(),
rows * cols * sizeof(typename Matrix::Scalar));
out.close();
}
template <class Matrix>
void read_binary(const std::string &filename, Matrix &matrix) {
std::ifstream in(filename, std::ios::in | std::ios::binary);
typename Matrix::Index rows = 0, cols = 0;
in.read((char *)(&rows), sizeof(typename Matrix::Index));
in.read((char *)(&cols), sizeof(typename Matrix::Index));
matrix.resize(rows, cols);
in.read((char *)matrix.data(), rows * cols * sizeof(typename Matrix::Scalar));
in.close();
}
} // namespace Eigen
struct SimulationResults {
bool converged{true};
std::shared_ptr<SimulationJob> job;
SimulationHistory history;
std::vector<Vector6d> displacements;
double executionTime{0};
std::string labelPrefix{"deformed"};
inline static char deliminator{' '};
std::vector<VectorType> getTranslationalDisplacements() const {
std::vector<VectorType> translationalDisplacements(displacements.size());
std::transform(displacements.begin(), displacements.end(),
translationalDisplacements.begin(), [&](const Vector6d &d) {
return VectorType(d[0], d[1], d[2]);
});
return translationalDisplacements;
}
void setLabelPrefix(const std::string &lp) {
labelPrefix += deliminator + lp;
}
std::string getLabel() const {
return labelPrefix + deliminator + job->pMesh->getLabel() + deliminator +
job->getLabel();
}
void saveDeformedModel() {
VCGEdgeMesh m;
vcg::tri::Append<VCGEdgeMesh, SimulationMesh>::MeshCopy(m, *job->pMesh);
for (int vi = 0; vi < m.VN(); vi++) {
m.vert[vi].P() =
m.vert[vi].P() + CoordType(displacements[vi][0], displacements[vi][1],
displacements[vi][2]);
}
m.savePly(getLabel() + ".ply");
}
void save() {
const std::string filename(getLabel() + "_displacements.eigenBin");
Eigen::MatrixXd m = Utilities::toEigenMatrix(displacements);
Eigen::write_binary(filename, m);
}
// The comparison of the results happens comparing the 6-dof nodal
// displacements
bool isEqual(const Eigen::MatrixXd &nodalDisplacements) {
assert(nodalDisplacements.cols() == 6);
Eigen::MatrixXd eigenDisplacements =
Utilities::toEigenMatrix(this->displacements);
const double errorNorm = (eigenDisplacements - nodalDisplacements).norm();
return errorNorm < 1e-10;
// return eigenDisplacements.isApprox(nodalDisplacements);
}
#ifdef POLYSCOPE_DEFINED
void unregister() const {
if (!polyscope::hasCurveNetwork(getLabel())) {
std::cerr << "No curve network registered with a name: " << getLabel()
<< std::endl;
std::cerr << "Nothing to remove." << std::endl;
return;
}
polyscope::removeCurveNetwork(getLabel());
}
void registerForDrawing(
const std::optional<glm::vec3> &desiredColor = std::nullopt,
const bool &shouldEnable = true) const {
polyscope::options::groundPlaneEnabled = false;
polyscope::view::upDir = polyscope::view::UpDir::ZUp;
const std::string branchName = "Branch:Polyscope";
polyscope::options::programName = branchName;
if (!polyscope::state::initialized) {
polyscope::init();
} /* else {
polyscope::removeAllStructures();
}*/
// const std::string undeformedMeshName = "Undeformed_" + label;
// polyscope::registerCurveNetwork(
// undeformedMeshName, mesh->getEigenVertices(),
// mesh->getEigenEdges());
const std::shared_ptr<SimulationMesh> &mesh = job->pMesh;
auto polyscopeHandle_deformedEdmeMesh = polyscope::registerCurveNetwork(
getLabel(), mesh->getEigenVertices(), mesh->getEigenEdges());
polyscopeHandle_deformedEdmeMesh->setEnabled(shouldEnable);
polyscopeHandle_deformedEdmeMesh->setRadius(0.002, true);
if (desiredColor.has_value()) {
polyscopeHandle_deformedEdmeMesh->setColor(desiredColor.value());
}
Eigen::MatrixX3d nodalDisplacements(mesh->VN(), 3);
for (VertexIndex vi = 0; vi < mesh->VN(); vi++) {
const Vector6d &nodalDisplacement = displacements[vi];
nodalDisplacements.row(vi) = Eigen::Vector3d(
nodalDisplacement[0], nodalDisplacement[1], nodalDisplacement[2]);
}
polyscopeHandle_deformedEdmeMesh->updateNodePositions(
mesh->getEigenVertices() + nodalDisplacements);
job->registerForDrawing(getLabel());
}
#endif
};
#endif // SIMULATIONHISTORY_HPP