Moved linear simulation model to MySOurces. Refactored CMakeLists

This commit is contained in:
iasonmanolas 2021-03-18 19:04:22 +02:00
parent 73dda7e33f
commit 015dd6ec45
3 changed files with 9 additions and 220 deletions

View File

@ -17,7 +17,11 @@ set(EXTERNAL_DEPS_DIR "/home/iason/Coding/build/external dependencies")
file(MAKE_DIRECTORY ${EXTERNAL_DEPS_DIR})
##Polyscope
set(USE_POLYSCOPE TRUE)
if(${CMAKE_BUILD_TYPE} STREQUAL "Release")
set(USE_POLYSCOPE FALSE)
else()
set(USE_POLYSCOPE TRUE)
endif()
if(${USE_POLYSCOPE})
download_project(PROJ POLYSCOPE
GIT_REPOSITORY https://github.com/nmwsharp/polyscope.git

View File

@ -1,215 +0,0 @@
#ifndef LINEARSIMULATIONMODEL_HPP
#define LINEARSIMULATIONMODEL_HPP
//#include "beam.hpp"
#include "simulationresult.hpp"
#include "threed_beam_fea.h"
#include <filesystem>
#include <vector>
// struct BeamSimulationProperties {
// float crossArea;
// float I2;
// float I3;
// float polarInertia;
// float G;
// // Properties used by fea
// float EA;
// float EIz;
// float EIy;
// float GJ;
// BeamSimulationProperties(const BeamDimensions &dimensions,
// const BeamMaterial &material);
//};
// struct NodalForce {
// int index;
// int dof;
// double magnitude;
//};
// struct SimulationJob {
// Eigen::MatrixX3d nodes;
// Eigen::MatrixX2i elements;
// Eigen::MatrixX3d elementalNormals;
// Eigen::VectorXi fixedNodes;
// std::vector<NodalForce> nodalForces;
// std::vector<BeamDimensions> beamDimensions;
// std::vector<BeamMaterial> beamMaterial;
//};
// struct SimulationResults {
// std::vector<Eigen::VectorXd> edgeForces; ///< Force values per force
// component
// ///< #force components x #edges
// Eigen::MatrixXd
// nodalDisplacements; ///< The displacement of each node #nodes x 3
// SimulationResults(const fea::Summary &feaSummary);
// SimulationResults() {}
//};
class LinearSimulationModel {
public:
LinearSimulationModel(){
}
static std::vector<fea::Elem>
getFeaElements(const std::shared_ptr<SimulationJob> &job) {
const int numberOfEdges = job->pMesh->EN();
std::vector<fea::Elem> elements(numberOfEdges);
for (int edgeIndex = 0; edgeIndex < numberOfEdges; edgeIndex++) {
const SimulationMesh::CoordType &evn0 =
job->pMesh->edge[edgeIndex].cV(0)->cN();
const SimulationMesh::CoordType &evn1 =
job->pMesh->edge[edgeIndex].cV(1)->cN();
const std::vector<double> nAverageVector{(evn0[0] + evn1[0]) / 2,
(evn0[1] + evn1[1]) / 2,
(evn0[2] + evn1[2]) / 2};
const Element &element = job->pMesh->elements[edgeIndex];
const double E = element.material.youngsModulus;
fea::Props feaProperties(E * element.A, E * element.I3, E * element.I2,
element.G * element.J, nAverageVector);
const int vi0 = job->pMesh->getIndex(job->pMesh->edge[edgeIndex].cV(0));
const int vi1 = job->pMesh->getIndex(job->pMesh->edge[edgeIndex].cV(1));
elements[edgeIndex] = fea::Elem(vi0, vi1, feaProperties);
}
return elements;
}
static std::vector<fea::Node>
getFeaNodes(const std::shared_ptr<SimulationJob> &job) {
const int numberOfNodes = job->pMesh->VN();
std::vector<fea::Node> feaNodes(numberOfNodes);
for (int vi = 0; vi < numberOfNodes; vi++) {
const CoordType &p = job->pMesh->vert[vi].cP();
feaNodes[vi] = fea::Node(p[0], p[1], p[2]);
}
return feaNodes;
}
static std::vector<fea::BC>
getFeaFixedNodes(const std::shared_ptr<SimulationJob> &job) {
std::vector<fea::BC> boundaryConditions;
boundaryConditions.reserve(job->constrainedVertices.size() * 6);
for (auto fixedVertex : job->constrainedVertices) {
const int vertexIndex = fixedVertex.first;
for (int dofIndex : fixedVertex.second) {
boundaryConditions.emplace_back(
fea::BC(vertexIndex, static_cast<fea::DOF>(dofIndex), 0));
}
}
return boundaryConditions;
}
static std::vector<fea::Force>
getFeaNodalForces(const std::shared_ptr<SimulationJob> &job) {
std::vector<fea::Force> nodalForces;
nodalForces.reserve(job->nodalExternalForces.size() * 6);
for (auto nodalForce : job->nodalExternalForces) {
for (int dofIndex = 0; dofIndex < 6; dofIndex++) {
if (nodalForce.second[dofIndex] == 0) {
continue;
}
nodalForces.emplace_back(
fea::Force(nodalForce.first, dofIndex, nodalForce.second[dofIndex]));
}
}
return nodalForces;
}
static SimulationResults getResults(const fea::Summary &feaSummary) {
SimulationResults results;
results.executionTime = feaSummary.total_time_in_ms * 1000;
// displacements
results.displacements.resize(feaSummary.num_nodes);
for (int vi = 0; vi < feaSummary.num_nodes; vi++) {
results.displacements[vi] = Vector6d(feaSummary.nodal_displacements[vi]);
}
// // Convert forces
// // Convert to vector of eigen matrices of the form force component-> per
// // Edge
// const int numDof = 6;
// const size_t numberOfEdges = feaSummary.element_forces.size();
// edgeForces =
// std::vector<Eigen::VectorXd>(numDof, Eigen::VectorXd(2 *
// numberOfEdges));
// for (gsl::index edgeIndex = 0; edgeIndex < numberOfEdges; edgeIndex++) {
// for (gsl::index forceComponentIndex = 0; forceComponentIndex < numDof;
// forceComponentIndex++) {
// (edgeForces[forceComponentIndex])(2 * edgeIndex) =
// feaSummary.element_forces[edgeIndex][forceComponentIndex];
// (edgeForces[forceComponentIndex])(2 * edgeIndex + 1) =
// feaSummary.element_forces[edgeIndex][numDof +
// forceComponentIndex];
// }
// }
return results;
}
SimulationResults
executeSimulation(const std::shared_ptr<SimulationJob> &simulationJob) {
assert(simulationJob->pMesh->VN() != 0);
fea::Job job(getFeaNodes(simulationJob), getFeaElements(simulationJob));
// printInfo(job);
// create the default options
fea::Options opts;
opts.save_elemental_forces = false;
opts.save_nodal_displacements = false;
opts.save_nodal_forces = false;
opts.save_report = false;
opts.save_tie_forces = false;
// if (!elementalForcesOutputFilepath.empty()) {
// opts.save_elemental_forces = true;
// opts.elemental_forces_filename = elementalForcesOutputFilepath;
// }
// if (!nodalDisplacementsOutputFilepath.empty()) {
// opts.save_nodal_displacements = true;
// opts.nodal_displacements_filename = nodalDisplacementsOutputFilepath;
// }
// have the program output status updates
opts.verbose = false;
// form an empty vector of ties
std::vector<fea::Tie> ties;
// also create an empty list of equations
std::vector<fea::Equation> equations;
auto fixedVertices = getFeaFixedNodes(simulationJob);
auto nodalForces = getFeaNodalForces(simulationJob);
fea::Summary feaResults =
fea::solve(job, fixedVertices, nodalForces, ties, equations, opts);
SimulationResults results = getResults(feaResults);
results.job = simulationJob;
return results;
}
// SimulationResults getResults() const;
// void setResultsNodalDisplacementCSVFilepath(const std::string
// &outputPath); void setResultsElementalForcesCSVFilepath(const std::string
// &outputPath);
private:
// std::string nodalDisplacementsOutputFilepath{"nodal_displacement.csv"};
// std::string elementalForcesOutputFilepath{"elemental_forces.csv"};
// SimulationResults results;
static void printInfo(const fea::Job &job) {
std::cout << "Details regarding the fea::Job:" << std::endl;
std::cout << "Nodes:" << std::endl;
for (fea::Node n : job.nodes) {
std::cout << n << std::endl;
}
std::cout << "Elements:" << std::endl;
for (Eigen::Vector2i e : job.elems) {
std::cout << e << std::endl;
}
}
};
#endif // LINEARSIMULATIONMODEL_HPP

View File

@ -174,8 +174,8 @@ double ReducedModelOptimizer::objective(long n, const double *x) {
// run simulations
double totalError = 0;
// LinearSimulationModel simulator;
FormFinder simulator;
LinearSimulationModel simulator;
// FormFinder simulator;
for (const int simulationScenarioIndex : global.simulationScenarioIndices) {
SimulationResults reducedModelResults = simulator.executeSimulation(
global.reducedPatternSimulationJobs[simulationScenarioIndex]);
@ -765,7 +765,7 @@ ReducedModelOptimizer::createScenarios(
nodalForces[viPair.first] =
Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0,
0, 0}) *
forceMagnitude * 8;
forceMagnitude * 20;
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}
@ -799,7 +799,7 @@ ReducedModelOptimizer::createScenarios(
nodalForces[viPair.first] =
Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0,
0, 0}) *
forceMagnitude * 8;
forceMagnitude * 5;
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}