Parallelization on the set of valid patterns.

This commit is contained in:
Iason 2021-02-01 16:10:24 +02:00
parent de83cb3d67
commit 858282c859
3 changed files with 232 additions and 205 deletions

View File

@ -11,10 +11,10 @@
#include <chrono>
#include <filesystem>
#include <iostream>
#include <iterator>
#include <stdexcept>
#include <string>
#include <vcg/complex/algorithms/update/position.h>
#include <iterator>
int main(int argc, char *argv[]) {
@ -43,11 +43,35 @@ int main(int argc, char *argv[]) {
std::vector<FlatPattern *> reducedModels{&singleBarReducedModel,
&CWReducedModel, &CCWReducedModel};
ReducedModelOptimizer optimizer(numberOfNodesPerSlot);
// Test set of full patterns
std::string fullPatternsTestSetDirectory = "../TestSet";
// "/home/iason/Documents/PhD/Research/Approximating shapes with flat "
// "patterns/Pattern_enumerator/Results/1v_0v_2e_1e_1c_6fan/3/Valid";
std::vector<std::pair<FlatPattern *, FlatPattern *>> patternPairs;
for (const auto &entry :
filesystem::directory_iterator(fullPatternsTestSetDirectory)) {
const auto filepath =
// std::filesystem::path(fullPatternsTestSetDirectory).append("305.ply");
entry.path();
const std::string filepathString = filepath.string();
const std::string tiledSuffix = "_tiled.ply";
if (filepathString.compare(filepathString.size() - tiledSuffix.size(),
tiledSuffix.size(), tiledSuffix) == 0) {
continue;
}
FlatPattern *pFullPattern = new FlatPattern(filepathString);
pFullPattern->setLabel(filepath.stem().string());
pFullPattern->scale(0.03);
FlatPattern *pReducedPattern = new FlatPattern();
pReducedPattern->copy(*reducedModels[0]);
patternPairs.push_back(std::make_pair(pFullPattern, pReducedPattern));
}
// for (double rangeOffset = 0.15; rangeOffset <= 0.95; rangeOffset += 0.05)
// {
ReducedModelOptimizer::Settings settings;
for (settings.maxSimulations = 2200; settings.maxSimulations < 5000;
for (settings.maxSimulations = 2600; settings.maxSimulations < 5000;
settings.maxSimulations += 200) {
ReducedModelOptimizer::xRange beamWidth{"B", 0.5, 1.5};
ReducedModelOptimizer::xRange beamDimensionsRatio{"bOverh", 0.7, 1.3};
@ -68,40 +92,17 @@ int main(int argc, char *argv[]) {
double totalError = 0;
int totalNumberOfSimulationCrashes = 0;
std::vector<double> errors;
std::string fullPatternsTestSetDirectory = "../TestSet";
// "/home/iason/Documents/PhD/Research/Approximating shapes with flat "
// "patterns/Pattern_enumerator/Results/1v_0v_2e_1e_1c_6fan/3/Valid";
std::vector<std::pair<std::string, ReducedModelOptimizer::Results>>
resultsPerPattern;
resultsPerPattern(patternPairs.size());
auto start = std::chrono::high_resolution_clock::now();
int patternsOptimized = 0;
//extract paths
std::vector<std::filesystem::path> fullPatternSetFilenames;
for (const auto& entry :
filesystem::directory_iterator(fullPatternsTestSetDirectory)) {
const auto filepath =
// std::filesystem::path(fullPatternsTestSetDirectory).append("305.ply");
entry.path();
fullPatternSetFilenames.push_back(filepath);
}
//#pragma omp parallel for //schedule(static) num_threads(8)
for (int fullPatternIndex = 0; fullPatternIndex < fullPatternSetFilenames.size();fullPatternIndex++) {
const auto& filepath = fullPatternSetFilenames[fullPatternIndex];
const std::string& filepathString = fullPatternSetFilenames[fullPatternIndex].string();
//const auto filepathString = filepath.string();
#pragma omp parallel for // schedule(static) num_threads(8)
for (int patternPairIndex = 0; patternPairIndex < patternPairs.size();
patternPairIndex++) {
FlatPattern *pPattern = patternPairs[patternPairIndex].first;
// const auto filepathString = filepath.string();
// Use only the base triangle version
const std::string tiledSuffix = "_tiled.ply";
if (filepathString.compare(filepathString.size() - tiledSuffix.size(),
tiledSuffix.size(), tiledSuffix) == 0) {
continue;
}
// std::cout << "Full pattern:" << filepathString << std::endl;
FlatPattern pattern(filepathString);
pattern.setLabel(filepath.stem().string());
pattern.scale(0.03);
// for (int reducedPatternIndex = 0;
// reducedPatternIndex < reducedModels.size();
// reducedPatternIndex++) {
@ -117,7 +118,10 @@ int main(int argc, char *argv[]) {
// }
// FlatPattern cp;
// cp.copy(*reducedModels[0]);
optimizer.initializePatterns(pattern, *reducedModels[0],
const std::vector<size_t> numberOfNodesPerSlot{1, 0, 0, 2, 1, 2, 1};
ReducedModelOptimizer optimizer(numberOfNodesPerSlot);
optimizer.initializePatterns(*pPattern,
*patternPairs[patternPairIndex].second,
optimizationExcludedEi);
// optimizer.optimize({ReducedModelOptimizer::Axial});
ReducedModelOptimizer::Results optimizationResults =
@ -139,11 +143,16 @@ int main(int argc, char *argv[]) {
// thisOptimizationStatistics << endrow;
totalError += optimizationResults.objectiveValue;
resultsPerPattern.push_back(
std::make_pair(filepath.stem().string(), optimizationResults));
resultsPerPattern[patternPairIndex] =
std::make_pair(pPattern->getLabel(), optimizationResults);
totalNumberOfSimulationCrashes +=
optimizationResults.numberOfSimulationCrashes;
std::cout << "Have optimized " <<++patternsOptimized<<"/"<< static_cast<int>(std::distance(std::filesystem::directory_iterator(fullPatternsTestSetDirectory),std::filesystem::directory_iterator()))<<" patterns." << std::endl;
// std::cout << "Have optimized " << ++patternsOptimized << "/"
// << static_cast<int>(
// std::distance(std::filesystem::directory_iterator(
// fullPatternsTestSetDirectory),
// std::filesystem::directory_iterator()))
// << " patterns." << std::endl;
// }
}
auto end = std::chrono::high_resolution_clock::now();
@ -177,5 +186,9 @@ int main(int argc, char *argv[]) {
statistics << endrow;
}
for(auto patternPair:patternPairs){
delete patternPair.first;
delete patternPair.second;
}
return 0;
}

View File

@ -7,35 +7,35 @@
#include <dlib/global_optimization.h>
#include <dlib/optimization.h>
const bool gShouldDraw = true;
FormFinder simulator;
std::vector<Eigen::MatrixX3d> g_optimalReducedModelDisplacements;
std::vector<SimulationJob> g_fullPatternSimulationJob;
std::vector<std::shared_ptr<SimulationJob>> g_reducedPatternSimulationJob;
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
reducedToFullInterfaceViMap;
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
g_reducedToFullViMap;
matplot::line_handle gPlotHandle;
std::vector<double> gObjectiveValueHistory;
Eigen::Vector2d g_initialX;
std::unordered_set<size_t> g_reducedPatternExludedEdges;
// double g_initialParameters;
Eigen::VectorXd g_initialParameters;
std::vector<ReducedModelOptimizer::SimulationScenario>
g_simulationScenarioIndices;
std::vector<VectorType> g_innerHexagonVectors{6, VectorType(0, 0, 0)};
double g_innerHexagonInitialPos = 0;
bool g_optimizeInnerHexagonSize{false};
std::vector<SimulationResults> firstOptimizationRoundResults;
int g_firstRoundIterationIndex{0};
double minY{std::numeric_limits<double>::max()};
std::vector<double> minX;
std::vector<std::vector<double>> failedSimulationsXRatio;
int numOfSimulationCrashes{false};
int numberOfFunctionCalls{ 0 };
struct GlobalOptimizationVariables {
const bool gShouldDraw = true;
std::vector<Eigen::MatrixX3d> g_optimalReducedModelDisplacements;
std::vector<SimulationJob> g_fullPatternSimulationJob;
std::vector<std::shared_ptr<SimulationJob>> g_reducedPatternSimulationJob;
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
reducedToFullInterfaceViMap;
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
g_reducedToFullViMap;
matplot::line_handle gPlotHandle;
std::vector<double> gObjectiveValueHistory;
Eigen::Vector2d g_initialX;
std::unordered_set<size_t> g_reducedPatternExludedEdges;
// double g_initialParameters;
Eigen::VectorXd g_initialParameters;
std::vector<ReducedModelOptimizer::SimulationScenario>
g_simulationScenarioIndices;
std::vector<VectorType> g_innerHexagonVectors{6, VectorType(0, 0, 0)};
double g_innerHexagonInitialPos = 0;
bool g_optimizeInnerHexagonSize{false};
std::vector<SimulationResults> firstOptimizationRoundResults;
int g_firstRoundIterationIndex{0};
double minY{std::numeric_limits<double>::max()};
std::vector<double> minX;
std::vector<std::vector<double>> failedSimulationsXRatio;
int numOfSimulationCrashes{false};
int numberOfFunctionCalls{0};
} global;
#pragma omp threadprivate(global)
// struct OptimizationCallback {
// double operator()(const size_t &iterations, const Eigen::VectorXd &x,
// const double &fval, Eigen::VectorXd &gradient) const {
@ -117,7 +117,7 @@ double ReducedModelOptimizer::computeError(
const SimulationResults &reducedPatternResults,
const Eigen::MatrixX3d &optimalReducedPatternDisplacements) {
double error = 0;
for (const auto reducedFullViPair : g_reducedToFullViMap) {
for (const auto reducedFullViPair : global.g_reducedToFullViMap) {
VertexIndex reducedModelVi = reducedFullViPair.first;
// const auto pos =
// g_reducedPatternSimulationJob.mesh->vert[reducedModelVi].cP();
@ -144,7 +144,9 @@ double ReducedModelOptimizer::computeError(
void updateMesh(long n, const double *x) {
std::shared_ptr<SimulationMesh> &pReducedPatternSimulationMesh =
g_reducedPatternSimulationJob[g_simulationScenarioIndices[0]]->pMesh;
global
.g_reducedPatternSimulationJob[global.g_simulationScenarioIndices[0]]
->pMesh;
// const Element &elem = g_reducedPatternSimulationJob[0]->mesh->elements[0];
// std::cout << elem.axialConstFactor << " " << elem.torsionConstFactor << "
// "
@ -158,11 +160,12 @@ void updateMesh(long n, const double *x) {
// e.properties.E = g_initialParameters * x[ei];
// e.properties.E = g_initialParameters(0) * x[0];
// e.properties.G = g_initialParameters(1) * x[1];
e.setDimensions(RectangularBeamDimensions(
g_initialParameters(0) * x[0],
g_initialParameters(0) * x[0] / (g_initialParameters(1) * x[1])));
e.setDimensions(
RectangularBeamDimensions(global.g_initialParameters(0) * x[0],
global.g_initialParameters(0) * x[0] /
(global.g_initialParameters(1) * x[1])));
e.setMaterial(ElementMaterial(e.material.poissonsRatio,
g_initialParameters(2) * x[2]));
global.g_initialParameters(2) * x[2]));
// e.properties.A = g_initialParameters(0) * x[0];
// e.properties.J = g_initialParameters(1) * x[1];
// e.properties.I2 = g_initialParameters(2) * x[2];
@ -186,12 +189,12 @@ void updateMesh(long n, const double *x) {
// e.secondBendingConstFactor
// << std::endl;
if (g_optimizeInnerHexagonSize) {
if (global.g_optimizeInnerHexagonSize) {
assert(pReducedPatternSimulationMesh->EN() == 12);
for (VertexIndex vi = 0; vi < pReducedPatternSimulationMesh->VN();
vi += 2) {
pReducedPatternSimulationMesh->vert[vi].P() =
g_innerHexagonVectors[vi / 2] * x[n - 1];
global.g_innerHexagonVectors[vi / 2] * x[n - 1];
}
pReducedPatternSimulationMesh->reset();
@ -219,7 +222,8 @@ double ReducedModelOptimizer::objective(long n, const double *x) {
// std::cout << "x[" + std::to_string(parameterIndex) + "]="
// << x[parameterIndex] << std::endl;
// }
const Element &e = g_reducedPatternSimulationJob[0]->pMesh->elements[0];
const Element &e =
global.g_reducedPatternSimulationJob[0]->pMesh->elements[0];
// std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " "
// << e.firstBendingConstFactor << " " <<
// e.secondBendingConstFactor
@ -232,11 +236,12 @@ double ReducedModelOptimizer::objective(long n, const double *x) {
// run simulations
double error = 0;
FormFinder simulator;
FormFinder::Settings simulationSettings;
// simulationSettings.shouldDraw = true;
for (const int simulationScenarioIndex : g_simulationScenarioIndices) {
for (const int simulationScenarioIndex : global.g_simulationScenarioIndices) {
SimulationResults reducedModelResults = simulator.executeSimulation(
g_reducedPatternSimulationJob[simulationScenarioIndex],
global.g_reducedPatternSimulationJob[simulationScenarioIndex],
simulationSettings);
std::string filename;
if (!reducedModelResults.converged /*&&
@ -267,18 +272,21 @@ double ReducedModelOptimizer::objective(long n, const double *x) {
// simulator.executeSimulation(
// g_reducedPatternSimulationJob[simulationScenarioIndex],
// simulationSettings);
numOfSimulationCrashes++;
global.numOfSimulationCrashes++;
} else {
error += computeError(
reducedModelResults,
g_optimalReducedModelDisplacements[simulationScenarioIndex]);
global.g_optimalReducedModelDisplacements[simulationScenarioIndex]);
filename = "/home/iason/Coding/Projects/Approximating shapes with flat "
"patterns/RodModelOptimizationForPatterns/build/"
"ProblematicSimulationJobs/conv_dimensions.txt";
}
std::ofstream out(filename, std::ios_base::app);
auto pMesh =
g_reducedPatternSimulationJob[g_simulationScenarioIndices[0]]->pMesh;
global
.g_reducedPatternSimulationJob[global
.g_simulationScenarioIndices[0]]
->pMesh;
for (size_t parameterIndex = 0; parameterIndex < n; parameterIndex++) {
out << "x[" + std::to_string(parameterIndex) + "]=" << x[parameterIndex]
@ -296,16 +304,17 @@ double ReducedModelOptimizer::objective(long n, const double *x) {
"\n\n";
out.close();
}
if (error < minY) {
minY = error;
minX.assign(x, x + n);
if (error < global.minY) {
global.minY = error;
global.minX.assign(x, x + n);
}
if(++numberOfFunctionCalls%50==0){
std::cout << "Number of function calls:"<<numberOfFunctionCalls << std::endl;
if (++global.numberOfFunctionCalls % 50 == 0) {
std::cout << "Number of function calls:" << global.numberOfFunctionCalls
<< std::endl;
}
// compute error and return it
gObjectiveValueHistory.push_back(error);
global.gObjectiveValueHistory.push_back(error);
// auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
// gObjectiveValueHistory.size());
// std::vector<double> colors(gObjectiveValueHistory.size(), 2);
@ -349,18 +358,18 @@ void ReducedModelOptimizer::computeMaps(
// std::endl;
// Save excluded edges
g_reducedPatternExludedEdges.clear();
global.g_reducedPatternExludedEdges.clear();
const size_t fanSize = 6;
const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN();
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
for (const size_t ei : reducedModelExcludedEges) {
g_reducedPatternExludedEdges.insert(
global.g_reducedPatternExludedEdges.insert(
fanIndex * reducedBaseTriangleNumberOfEdges + ei);
}
}
// Construct reduced->full and full->reduced interface vi map
reducedToFullInterfaceViMap.clear();
global.reducedToFullInterfaceViMap.clear();
vcg::tri::Allocator<FlatPattern>::PointerUpdater<FlatPattern::VertexPointer>
pu_reducedModel;
reducedPattern.deleteDanglingVertices(pu_reducedModel);
@ -370,13 +379,14 @@ void ReducedModelOptimizer::computeMaps(
reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/;
reducedPattern.createFan();
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex +
reducedModelBaseTriangleInterfaceVi] =
global.reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset *
fanIndex +
reducedModelBaseTriangleInterfaceVi] =
fullModelBaseTriangleInterfaceVi +
fanIndex * fullPatternInterfaceVertexOffset;
}
m_fullToReducedInterfaceViMap.clear();
constructInverseMap(reducedToFullInterfaceViMap,
constructInverseMap(global.reducedToFullInterfaceViMap,
m_fullToReducedInterfaceViMap);
// fullPattern.setLabel("FullPattern");
@ -391,14 +401,14 @@ void ReducedModelOptimizer::computeMaps(
m_fullPatternOppositeInterfaceViMap[vi0] = vi1;
}
g_reducedToFullViMap = reducedToFullInterfaceViMap;
global.g_reducedToFullViMap = global.reducedToFullInterfaceViMap;
const bool debugMapping = false;
if (debugMapping) {
reducedPattern.registerForDrawing();
std::vector<glm::vec3> colors_reducedPatternExcludedEdges(
reducedPattern.EN(), glm::vec3(0, 0, 0));
for (const size_t ei : g_reducedPatternExludedEdges) {
for (const size_t ei : global.g_reducedPatternExludedEdges) {
colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0);
}
const std::string label = reducedPattern.getLabel();
@ -427,11 +437,12 @@ void ReducedModelOptimizer::computeMaps(
std::vector<glm::vec3> nodeColorsReducedToFull_full(fullPattern.VN(),
glm::vec3(0, 0, 0));
for (size_t vi = 0; vi < reducedPattern.VN(); vi++) {
if (reducedToFullInterfaceViMap.contains(vi)) {
if (global.reducedToFullInterfaceViMap.contains(vi)) {
auto color = polyscope::getNextUniqueColor();
nodeColorsReducedToFull_reduced[vi] = color;
nodeColorsReducedToFull_full[reducedToFullInterfaceViMap[vi]] = color;
nodeColorsReducedToFull_full[global.reducedToFullInterfaceViMap[vi]] =
color;
}
}
polyscope::getCurveNetwork(reducedPattern.getLabel())
@ -482,8 +493,8 @@ void ReducedModelOptimizer::initializePatterns(
FlatPattern copyReducedPattern;
copyFullPattern.copy(fullPattern);
copyReducedPattern.copy(reducedPattern);
g_optimizeInnerHexagonSize = copyReducedPattern.EN() == 2;
if (g_optimizeInnerHexagonSize) {
global.g_optimizeInnerHexagonSize = copyReducedPattern.EN() == 2;
if (global.g_optimizeInnerHexagonSize) {
const double h = copyReducedPattern.getBaseTriangleHeight();
double baseTriangle_bottomEdgeSize = 2 * h / tan(vcg::math::ToRad(60.0));
VectorType baseTriangle_leftBottomNode(-baseTriangle_bottomEdgeSize / 2, -h,
@ -497,13 +508,13 @@ void ReducedModelOptimizer::initializePatterns(
vcg::RotationMatrix(rotationAxis,
vcg::math::ToRad(rotationCounter * 60.0)) *
baseTriangle_leftBottomNode;
g_innerHexagonVectors[rotationCounter] = rotatedVector;
global.g_innerHexagonVectors[rotationCounter] = rotatedVector;
}
const double innerHexagonInitialPos_x =
copyReducedPattern.vert[0].cP()[0] / g_innerHexagonVectors[0][0];
copyReducedPattern.vert[0].cP()[0] / global.g_innerHexagonVectors[0][0];
const double innerHexagonInitialPos_y =
copyReducedPattern.vert[0].cP()[1] / g_innerHexagonVectors[0][1];
g_innerHexagonInitialPos = innerHexagonInitialPos_x;
copyReducedPattern.vert[0].cP()[1] / global.g_innerHexagonVectors[0][1];
global.g_innerHexagonInitialPos = innerHexagonInitialPos_x;
}
computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges);
createSimulationMeshes(copyFullPattern, copyReducedPattern);
@ -513,9 +524,9 @@ void ReducedModelOptimizer::initializePatterns(
void ReducedModelOptimizer::initializeOptimizationParameters(
const std::shared_ptr<SimulationMesh> &mesh) {
const int numberOfOptimizationParameters = 3;
g_initialParameters.resize(g_optimizeInnerHexagonSize
? numberOfOptimizationParameters + 1
: numberOfOptimizationParameters);
global.g_initialParameters.resize(global.g_optimizeInnerHexagonSize
? numberOfOptimizationParameters + 1
: numberOfOptimizationParameters);
// Save save the beam stiffnesses
// for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) {
// Element &e = pReducedModelElementalMesh->elements[ei];
@ -529,9 +540,9 @@ void ReducedModelOptimizer::initializeOptimizationParameters(
const double initialB = std::sqrt(mesh->elements[0].A);
const double initialRatio = 1;
;
g_initialParameters(0) = initialB;
g_initialParameters(1) = initialRatio;
g_initialParameters(2) = mesh->elements[0].material.youngsModulus;
global.g_initialParameters(0) = initialB;
global.g_initialParameters(1) = initialRatio;
global.g_initialParameters(2) = mesh->elements[0].material.youngsModulus;
// g_initialParameters =
// m_pReducedPatternSimulationMesh->elements[0].properties.E;
// for (size_t ei = 0; ei < m_pReducedPatternSimulationMesh->EN(); ei++) {
@ -605,9 +616,9 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::runOptimization(
const Settings &settings,
double (*pObjectiveFunction)(long, const double *)) {
gObjectiveValueHistory.clear();
global.gObjectiveValueHistory.clear();
const size_t n = g_initialParameters.rows();
const size_t n = global.g_initialParameters.rows();
assert(n == 3);
// g_optimizeInnerHexagonSize ? 5: 4;
// const size_t npt = (n + 1) * (n + 2) / 2;
@ -619,8 +630,8 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::runOptimization(
const size_t initialGuess = 1;
std::vector<double> x(n, initialGuess);
if (g_optimizeInnerHexagonSize) {
x[n - 1] = g_innerHexagonInitialPos;
if (global.g_optimizeInnerHexagonSize) {
x[n - 1] = global.g_innerHexagonInitialPos;
}
/*if (!initialGuess.empty()) {
x = g_optimizationInitialGuess;
@ -655,7 +666,7 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::runOptimization(
xMax(i) = settings.xRanges[i].max;
}
numberOfFunctionCalls = 0;
global.numberOfFunctionCalls = 0;
double (*objF)(double, double, double) = &objective;
auto start = std::chrono::system_clock::now();
dlib::function_evaluation result = dlib::find_min_global(
@ -663,11 +674,11 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::runOptimization(
std::chrono::hours(24 * 365 * 290), settings.solutionAccuracy);
auto end = std::chrono::system_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::seconds>(end - start);
Results results{numOfSimulationCrashes, minX, minY};
Results results{global.numOfSimulationCrashes, global.minX, global.minY};
std::cout << "Finished optimizing." << endl;
// std::cout << "Solution x:" << endl;
// std::cout << result.x << endl;
std::cout << "Objective value:" << minY << endl;
std::cout << "Objective value:" << global.minY << endl;
// std::cout << result.y << endl;
// std::cout << minY << endl;
// std::cout << "Time(sec):" << elapsed.count() << std::endl;
@ -874,87 +885,89 @@ ReducedModelOptimizer::createScenarios(
return scenarios;
}
void ReducedModelOptimizer::runBeamOptimization() {
// load beams
VCGEdgeMesh fullBeam;
fullBeam.loadPly("/home/iason/Models/simple_beam_model_10elem_1m.ply");
VCGEdgeMesh reducedBeam;
reducedBeam.loadPly("/home/iason/Models/simple_beam_model_4elem_1m.ply");
fullBeam.registerForDrawing();
reducedBeam.registerForDrawing();
// polyscope::show();
// maps
std::unordered_map<size_t, size_t> displacementReducedToFullMap;
displacementReducedToFullMap[reducedBeam.VN() / 2] = fullBeam.VN() / 2;
g_reducedToFullViMap = displacementReducedToFullMap;
std::unordered_map<size_t, size_t> jobFullToReducedMap;
jobFullToReducedMap[0] = 0;
jobFullToReducedMap[fullBeam.VN() - 1] = reducedBeam.VN() - 1;
// void ReducedModelOptimizer::runBeamOptimization() {
// // load beams
// VCGEdgeMesh fullBeam;
// fullBeam.loadPly("/home/iason/Models/simple_beam_model_10elem_1m.ply");
// VCGEdgeMesh reducedBeam;
// reducedBeam.loadPly("/home/iason/Models/simple_beam_model_4elem_1m.ply");
// fullBeam.registerForDrawing();
// reducedBeam.registerForDrawing();
// // polyscope::show();
// // maps
// std::unordered_map<size_t, size_t> displacementReducedToFullMap;
// displacementReducedToFullMap[reducedBeam.VN() / 2] = fullBeam.VN() / 2;
// g_reducedToFullViMap = displacementReducedToFullMap;
// std::unordered_map<size_t, size_t> jobFullToReducedMap;
// jobFullToReducedMap[0] = 0;
// jobFullToReducedMap[fullBeam.VN() - 1] = reducedBeam.VN() - 1;
// full model simuilation job
auto pFullPatternSimulationMesh = std::make_shared<SimulationMesh>(fullBeam);
pFullPatternSimulationMesh->setBeamCrossSection(CrossSectionType{0.02, 0.02});
pFullPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
std::unordered_map<VertexIndex, std::unordered_set<int>> fixedVertices;
fixedVertices[0] = ::unordered_set<int>({0, 1, 2, 3, 4, 5});
std::unordered_map<VertexIndex, Vector6d> forces;
forces[fullBeam.VN() - 1] = Vector6d({0, 0, 10, 0, 0, 0});
const std::string fullBeamSimulationJobLabel = "Pull_Z";
std::shared_ptr<SimulationJob> pFullModelSimulationJob =
make_shared<SimulationJob>(SimulationJob(pFullPatternSimulationMesh,
fullBeamSimulationJobLabel,
fixedVertices, forces));
FormFinder formFinder;
auto fullModelResults = formFinder.executeSimulation(pFullModelSimulationJob);
// // full model simuilation job
// auto pFullPatternSimulationMesh =
// std::make_shared<SimulationMesh>(fullBeam);
// pFullPatternSimulationMesh->setBeamCrossSection(CrossSectionType{0.02,
// 0.02}); pFullPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
// std::unordered_map<VertexIndex, std::unordered_set<int>> fixedVertices;
// fixedVertices[0] = ::unordered_set<int>({0, 1, 2, 3, 4, 5});
// std::unordered_map<VertexIndex, Vector6d> forces;
// forces[fullBeam.VN() - 1] = Vector6d({0, 0, 10, 0, 0, 0});
// const std::string fullBeamSimulationJobLabel = "Pull_Z";
// std::shared_ptr<SimulationJob> pFullModelSimulationJob =
// make_shared<SimulationJob>(SimulationJob(pFullPatternSimulationMesh,
// fullBeamSimulationJobLabel,
// fixedVertices, forces));
// auto fullModelResults =
// formFinder.executeSimulation(pFullModelSimulationJob);
// Optimal reduced model displacements
const size_t numberOfSimulationScenarios = 1;
g_optimalReducedModelDisplacements.resize(numberOfSimulationScenarios);
g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1].resize(
reducedBeam.VN(), 3);
computeDesiredReducedModelDisplacements(
fullModelResults, displacementReducedToFullMap,
g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1]);
// // Optimal reduced model displacements
// const size_t numberOfSimulationScenarios = 1;
// g_optimalReducedModelDisplacements.resize(numberOfSimulationScenarios);
// g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1].resize(
// reducedBeam.VN(), 3);
// computeDesiredReducedModelDisplacements(
// fullModelResults, displacementReducedToFullMap,
// g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1]);
// reduced model simuilation job
auto reducedSimulationMesh = std::make_shared<SimulationMesh>(reducedBeam);
reducedSimulationMesh->setBeamCrossSection(CrossSectionType{0.02, 0.02});
reducedSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
g_reducedPatternSimulationJob.resize(numberOfSimulationScenarios);
SimulationJob reducedSimJob;
computeReducedModelSimulationJob(*pFullModelSimulationJob,
jobFullToReducedMap, reducedSimJob);
reducedSimJob.nodalExternalForces[reducedBeam.VN() - 1] =
reducedSimJob.nodalExternalForces[reducedBeam.VN() - 1] * 0.1;
g_reducedPatternSimulationJob[numberOfSimulationScenarios - 1] =
make_shared<SimulationJob>(
reducedSimulationMesh, fullBeamSimulationJobLabel,
reducedSimJob.constrainedVertices, reducedSimJob.nodalExternalForces);
initializeOptimizationParameters(reducedSimulationMesh);
// // reduced model simuilation job
// auto reducedSimulationMesh = std::make_shared<SimulationMesh>(reducedBeam);
// reducedSimulationMesh->setBeamCrossSection(CrossSectionType{0.02, 0.02});
// reducedSimulationMesh->setBeamMaterial(0.3, 1 * 1e9);
// g_reducedPatternSimulationJob.resize(numberOfSimulationScenarios);
// SimulationJob reducedSimJob;
// computeReducedModelSimulationJob(*pFullModelSimulationJob,
// jobFullToReducedMap, reducedSimJob);
// reducedSimJob.nodalExternalForces[reducedBeam.VN() - 1] =
// reducedSimJob.nodalExternalForces[reducedBeam.VN() - 1] * 0.1;
// g_reducedPatternSimulationJob[numberOfSimulationScenarios - 1] =
// make_shared<SimulationJob>(
// reducedSimulationMesh, fullBeamSimulationJobLabel,
// reducedSimJob.constrainedVertices,
// reducedSimJob.nodalExternalForces);
// initializeOptimizationParameters(reducedSimulationMesh);
// const std::string simulationJobsPath = "SimulationJobs";
// std::filesystem::create_directory(simulationJobsPath);
// g_reducedPatternSimulationJob[0].save(simulationJobsPath);
// g_reducedPatternSimulationJob[0].load(
// std::filesystem::path(simulationJobsPath)
// .append(g_reducedPatternSimulationJob[0].mesh->getLabel() +
// "_simScenario.json"));
// // const std::string simulationJobsPath = "SimulationJobs";
// // std::filesystem::create_directory(simulationJobsPath);
// // g_reducedPatternSimulationJob[0].save(simulationJobsPath);
// // g_reducedPatternSimulationJob[0].load(
// // std::filesystem::path(simulationJobsPath)
// // .append(g_reducedPatternSimulationJob[0].mesh->getLabel() +
// // "_simScenario.json"));
runOptimization({}, &objective);
// runOptimization({}, &objective);
fullModelResults.registerForDrawing();
SimulationResults reducedModelResults = simulator.executeSimulation(
g_reducedPatternSimulationJob[numberOfSimulationScenarios - 1]);
double error = computeError(
reducedModelResults,
g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1]);
reducedModelResults.registerForDrawing();
std::cout << "Error between beams:" << error << endl;
// registerWorldAxes();
polyscope::show();
fullModelResults.unregister();
reducedModelResults.unregister();
}
// fullModelResults.registerForDrawing();
// SimulationResults reducedModelResults = simulator.executeSimulation(
// g_reducedPatternSimulationJob[numberOfSimulationScenarios - 1]);
// double error = computeError(
// reducedModelResults,
// g_optimalReducedModelDisplacements[numberOfSimulationScenarios - 1]);
// reducedModelResults.registerForDrawing();
// std::cout << "Error between beams:" << error << endl;
// // registerWorldAxes();
// polyscope::show();
// fullModelResults.unregister();
// reducedModelResults.unregister();
//}
void ReducedModelOptimizer::visualizeResults(
const std::vector<std::shared_ptr<SimulationJob>>
@ -971,12 +984,12 @@ void ReducedModelOptimizer::visualizeResults(
fullModelResults.registerForDrawing();
fullModelResults.saveDeformedModel();
const std::shared_ptr<SimulationJob> &pReducedPatternSimulationJob =
g_reducedPatternSimulationJob[simulationScenarioIndex];
global.g_reducedPatternSimulationJob[simulationScenarioIndex];
SimulationResults reducedModelResults =
simulator.executeSimulation(pReducedPatternSimulationJob);
double error = computeError(
reducedModelResults,
g_optimalReducedModelDisplacements[simulationScenarioIndex]);
global.g_optimalReducedModelDisplacements[simulationScenarioIndex]);
std::cout << "Error of simulation scenario "
<< simulationScenarioStrings[simulationScenarioIndex] << " is "
<< error << std::endl;
@ -1001,9 +1014,9 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::optimize(
const Settings &xRanges,
const std::vector<SimulationScenario> &simulationScenarios) {
g_simulationScenarioIndices = simulationScenarios;
if (g_simulationScenarioIndices.empty()) {
g_simulationScenarioIndices = {
global.g_simulationScenarioIndices = simulationScenarios;
if (global.g_simulationScenarioIndices.empty()) {
global.g_simulationScenarioIndices = {
SimulationScenario::Axial, SimulationScenario::Shear,
SimulationScenario::Bending, SimulationScenario::Dome,
SimulationScenario::Saddle};
@ -1011,32 +1024,32 @@ ReducedModelOptimizer::Results ReducedModelOptimizer::optimize(
std::vector<std::shared_ptr<SimulationJob>> simulationJobs =
createScenarios(m_pFullPatternSimulationMesh);
g_optimalReducedModelDisplacements.resize(6);
g_reducedPatternSimulationJob.resize(6);
g_firstRoundIterationIndex = 0;
minY = std::numeric_limits<double>::max();
numOfSimulationCrashes = 0;
global.g_optimalReducedModelDisplacements.resize(6);
global.g_reducedPatternSimulationJob.resize(6);
global.g_firstRoundIterationIndex = 0;
global.minY = std::numeric_limits<double>::max();
global.numOfSimulationCrashes = 0;
// polyscope::removeAllStructures();
FormFinder::Settings settings;
// settings.shouldDraw = true;
for (int simulationScenarioIndex : g_simulationScenarioIndices) {
for (int simulationScenarioIndex : global.g_simulationScenarioIndices) {
const std::shared_ptr<SimulationJob> &pFullPatternSimulationJob =
simulationJobs[simulationScenarioIndex];
SimulationResults fullModelResults =
simulator.executeSimulation(pFullPatternSimulationJob, settings);
g_optimalReducedModelDisplacements[simulationScenarioIndex].resize(
global.g_optimalReducedModelDisplacements[simulationScenarioIndex].resize(
m_pReducedPatternSimulationMesh->VN(), 3);
computeDesiredReducedModelDisplacements(
fullModelResults, g_reducedToFullViMap,
g_optimalReducedModelDisplacements[simulationScenarioIndex]);
fullModelResults, global.g_reducedToFullViMap,
global.g_optimalReducedModelDisplacements[simulationScenarioIndex]);
SimulationJob reducedPatternSimulationJob;
reducedPatternSimulationJob.pMesh = m_pReducedPatternSimulationMesh;
computeReducedModelSimulationJob(*pFullPatternSimulationJob,
m_fullToReducedInterfaceViMap,
reducedPatternSimulationJob);
g_reducedPatternSimulationJob[simulationScenarioIndex] =
std::make_shared<SimulationJob>(reducedPatternSimulationJob);
global.g_reducedPatternSimulationJob[simulationScenarioIndex] =
std::make_shared<SimulationJob>(reducedPatternSimulationJob);
}
Results optResults = runOptimization(xRanges, &objective);
updateMesh(optResults.x.size(), optResults.x.data());

View File

@ -106,6 +106,7 @@ private:
computeError(const SimulationResults &reducedPatternResults,
const Eigen::MatrixX3d &optimalReducedPatternDisplacements);
static double objective(long n, const double *x);
FormFinder simulator;
};
#endif // REDUCEDMODELOPTIMIZER_HPP