The linear simulation model is used for optimizing the reduced model.

This commit is contained in:
iasonmanolas 2021-03-15 19:56:14 +02:00
parent bde1e029bb
commit 9884cd175f
5 changed files with 1118 additions and 888 deletions

View File

@ -0,0 +1,21 @@
#include "linearsimulationmodel.hpp"
#include <Eigen/Core>
#include <filesystem>
//#include <igl/list_to_matrix.h>
#include <iostream>
#include <vcg/complex/algorithms/create/platonic.h>
#include <vcg/complex/algorithms/update/normal.h>

View File

@ -0,0 +1,215 @@
#ifndef LINEARSIMULATIONMODEL_HPP
#define LINEARSIMULATIONMODEL_HPP
//#include "beam.hpp"
#include "simulationresult.hpp"
#include "threed_beam_fea.h"
#include <filesystem>
#include <vector>
// struct BeamSimulationProperties {
// float crossArea;
// float I2;
// float I3;
// float polarInertia;
// float G;
// // Properties used by fea
// float EA;
// float EIz;
// float EIy;
// float GJ;
// BeamSimulationProperties(const BeamDimensions &dimensions,
// const BeamMaterial &material);
//};
// struct NodalForce {
// int index;
// int dof;
// double magnitude;
//};
// struct SimulationJob {
// Eigen::MatrixX3d nodes;
// Eigen::MatrixX2i elements;
// Eigen::MatrixX3d elementalNormals;
// Eigen::VectorXi fixedNodes;
// std::vector<NodalForce> nodalForces;
// std::vector<BeamDimensions> beamDimensions;
// std::vector<BeamMaterial> beamMaterial;
//};
// struct SimulationResults {
// std::vector<Eigen::VectorXd> edgeForces; ///< Force values per force
// component
// ///< #force components x #edges
// Eigen::MatrixXd
// nodalDisplacements; ///< The displacement of each node #nodes x 3
// SimulationResults(const fea::Summary &feaSummary);
// SimulationResults() {}
//};
class LinearSimulationModel {
public:
LinearSimulationModel(){
}
static std::vector<fea::Elem>
getFeaElements(const std::shared_ptr<SimulationJob> &job) {
const int numberOfEdges = job->pMesh->EN();
std::vector<fea::Elem> elements(numberOfEdges);
for (int edgeIndex = 0; edgeIndex < numberOfEdges; edgeIndex++) {
const SimulationMesh::CoordType &evn0 =
job->pMesh->edge[edgeIndex].cV(0)->cN();
const SimulationMesh::CoordType &evn1 =
job->pMesh->edge[edgeIndex].cV(1)->cN();
const std::vector<double> nAverageVector{(evn0[0] + evn1[0]) / 2,
(evn0[1] + evn1[1]) / 2,
(evn0[2] + evn1[2]) / 2};
const Element &element = job->pMesh->elements[edgeIndex];
const double E = element.material.youngsModulus;
fea::Props feaProperties(E * element.A, E * element.I3, E * element.I2,
element.G * element.J, nAverageVector);
const int vi0 = job->pMesh->getIndex(job->pMesh->edge[edgeIndex].cV(0));
const int vi1 = job->pMesh->getIndex(job->pMesh->edge[edgeIndex].cV(1));
elements[edgeIndex] = fea::Elem(vi0, vi1, feaProperties);
}
return elements;
}
static std::vector<fea::Node>
getFeaNodes(const std::shared_ptr<SimulationJob> &job) {
const int numberOfNodes = job->pMesh->VN();
std::vector<fea::Node> feaNodes(numberOfNodes);
for (int vi = 0; vi < numberOfNodes; vi++) {
const CoordType &p = job->pMesh->vert[vi].cP();
feaNodes[vi] = fea::Node(p[0], p[1], p[2]);
}
return feaNodes;
}
static std::vector<fea::BC>
getFeaFixedNodes(const std::shared_ptr<SimulationJob> &job) {
std::vector<fea::BC> boundaryConditions;
boundaryConditions.reserve(job->constrainedVertices.size() * 6);
for (auto fixedVertex : job->constrainedVertices) {
const int vertexIndex = fixedVertex.first;
for (int dofIndex : fixedVertex.second) {
boundaryConditions.emplace_back(
fea::BC(vertexIndex, static_cast<fea::DOF>(dofIndex), 0));
}
}
return boundaryConditions;
}
static std::vector<fea::Force>
getFeaNodalForces(const std::shared_ptr<SimulationJob> &job) {
std::vector<fea::Force> nodalForces;
nodalForces.reserve(job->nodalExternalForces.size() * 6);
for (auto nodalForce : job->nodalExternalForces) {
for (int dofIndex = 0; dofIndex < 6; dofIndex++) {
if (nodalForce.second[dofIndex] == 0) {
continue;
}
nodalForces.emplace_back(
fea::Force(nodalForce.first, dofIndex, nodalForce.second[dofIndex]));
}
}
return nodalForces;
}
static SimulationResults getResults(const fea::Summary &feaSummary) {
SimulationResults results;
results.executionTime = feaSummary.total_time_in_ms * 1000;
// displacements
results.displacements.resize(feaSummary.num_nodes);
for (int vi = 0; vi < feaSummary.num_nodes; vi++) {
results.displacements[vi] = Vector6d(feaSummary.nodal_displacements[vi]);
}
// // Convert forces
// // Convert to vector of eigen matrices of the form force component-> per
// // Edge
// const int numDof = 6;
// const size_t numberOfEdges = feaSummary.element_forces.size();
// edgeForces =
// std::vector<Eigen::VectorXd>(numDof, Eigen::VectorXd(2 *
// numberOfEdges));
// for (gsl::index edgeIndex = 0; edgeIndex < numberOfEdges; edgeIndex++) {
// for (gsl::index forceComponentIndex = 0; forceComponentIndex < numDof;
// forceComponentIndex++) {
// (edgeForces[forceComponentIndex])(2 * edgeIndex) =
// feaSummary.element_forces[edgeIndex][forceComponentIndex];
// (edgeForces[forceComponentIndex])(2 * edgeIndex + 1) =
// feaSummary.element_forces[edgeIndex][numDof +
// forceComponentIndex];
// }
// }
return results;
}
SimulationResults
executeSimulation(const std::shared_ptr<SimulationJob> &simulationJob) {
assert(simulationJob->pMesh->VN() != 0);
fea::Job job(getFeaNodes(simulationJob), getFeaElements(simulationJob));
// printInfo(job);
// create the default options
fea::Options opts;
opts.save_elemental_forces = false;
opts.save_nodal_displacements = false;
opts.save_nodal_forces = false;
opts.save_report = false;
opts.save_tie_forces = false;
// if (!elementalForcesOutputFilepath.empty()) {
// opts.save_elemental_forces = true;
// opts.elemental_forces_filename = elementalForcesOutputFilepath;
// }
// if (!nodalDisplacementsOutputFilepath.empty()) {
// opts.save_nodal_displacements = true;
// opts.nodal_displacements_filename = nodalDisplacementsOutputFilepath;
// }
// have the program output status updates
opts.verbose = false;
// form an empty vector of ties
std::vector<fea::Tie> ties;
// also create an empty list of equations
std::vector<fea::Equation> equations;
auto fixedVertices = getFeaFixedNodes(simulationJob);
auto nodalForces = getFeaNodalForces(simulationJob);
fea::Summary feaResults =
fea::solve(job, fixedVertices, nodalForces, ties, equations, opts);
SimulationResults results = getResults(feaResults);
results.job = simulationJob;
return results;
}
// SimulationResults getResults() const;
// void setResultsNodalDisplacementCSVFilepath(const std::string
// &outputPath); void setResultsElementalForcesCSVFilepath(const std::string
// &outputPath);
private:
// std::string nodalDisplacementsOutputFilepath{"nodal_displacement.csv"};
// std::string elementalForcesOutputFilepath{"elemental_forces.csv"};
// SimulationResults results;
static void printInfo(const fea::Job &job) {
std::cout << "Details regarding the fea::Job:" << std::endl;
std::cout << "Nodes:" << std::endl;
for (fea::Node n : job.nodes) {
std::cout << n << std::endl;
}
std::cout << "Elements:" << std::endl;
for (Eigen::Vector2i e : job.elems) {
std::cout << e << std::endl;
}
}
};
#endif // LINEARSIMULATIONMODEL_HPP

View File

@ -1,7 +1,6 @@
#include "beamformfinder.hpp"
#include "csvfile.hpp"
#include "edgemesh.hpp"
#include "flatpattern.hpp"
#include "reducedmodeloptimizer.hpp"
#include "simulationhistoryplotter.hpp"
#include "trianglepattterntopology.hpp"
@ -29,13 +28,13 @@ int main(int argc, char *argv[]) {
// Populate the pattern pair to be optimized
////Full pattern
const std::string filepath_fullPattern = argv[1];
FlatPattern fullPattern(filepath_fullPattern);
PatternGeometry fullPattern(filepath_fullPattern);
fullPattern.setLabel(
std::filesystem::path(filepath_fullPattern).stem().string());
fullPattern.scale(0.03);
////Reduced pattern
const std::string filepath_reducedPattern = argv[2];
FlatPattern reducedPattern(filepath_reducedPattern);
PatternGeometry reducedPattern(filepath_reducedPattern);
reducedPattern.setLabel(
std::filesystem::path(filepath_reducedPattern).stem().string());
reducedPattern.scale(0.03);
@ -44,15 +43,16 @@ int main(int argc, char *argv[]) {
ReducedModelOptimizer::xRange beamWidth{"B", 0.5, 1.5};
ReducedModelOptimizer::xRange beamDimensionsRatio{"bOverh", 0.7, 1.3};
ReducedModelOptimizer::xRange beamE{"E", 0.1, 1.9};
ReducedModelOptimizer::xRange innerHexagonSize{"HS", 0.1, 0.9};
ReducedModelOptimizer::xRange innerHexagonSize{"HexSize", 0.1, 0.8};
ReducedModelOptimizer::xRange innerHexagonAngle{"HexAngle", -29.5, 29.5};
ReducedModelOptimizer::Settings settings_optimization;
settings_optimization.xRanges = {beamWidth, beamDimensionsRatio, beamE,
innerHexagonSize};
innerHexagonSize, innerHexagonAngle};
const bool input_numberOfFunctionCallsDefined = argc >= 4;
settings_optimization.numberOfFunctionCalls =
input_numberOfFunctionCallsDefined ? std::atoi(argv[3]) : 100;
settings_optimization.normalizationStrategy =
ReducedModelOptimizer::Settings::NormalizationStrategy::NonNormalized;
ReducedModelOptimizer::Settings::NormalizationStrategy::Epsilon;
settings_optimization.normalizationParameter = 0.0003;
settings_optimization.solutionAccuracy = 0.01;

File diff suppressed because it is too large Load Diff

View File

@ -5,6 +5,7 @@
#include "csvfile.hpp"
#include "edgemesh.hpp"
#include "elementalmesh.hpp"
#include "linearsimulationmodel.hpp"
#include "matplot/matplot.h"
#include <Eigen/Dense>
@ -23,7 +24,6 @@ class ReducedModelOptimizer {
m_fullPatternOppositeInterfaceViMap;
std::unordered_map<size_t, size_t> nodeToSlot;
std::unordered_map<size_t, std::unordered_set<size_t>> slotToNode;
std::vector<double> initialGuess;
#ifdef POLYSCOPE_DEFINED
struct StaticColors {
glm::vec3 fullInitial;
@ -41,6 +41,8 @@ class ReducedModelOptimizer {
#endif // POLYSCOPE_DEFINED
public:
inline static int fanSize{6};
inline static VectorType patternPlaneNormal{0, 0, 1};
enum SimulationScenario {
Axial,
Shear,
@ -49,9 +51,8 @@ public:
Saddle,
NumberOfSimulationScenarios
};
struct xRange {
std::string label;
struct xRange{
std::string label;
double min;
double max;
std::string toString() const {
@ -62,9 +63,14 @@ public:
struct Results;
struct Settings {
enum NormalizationStrategy { NonNormalized, Epsilon };
enum NormalizationStrategy {
NonNormalized,
Epsilon,
MaxDisplacement,
EqualDisplacements
};
inline static vector<std::string> normalizationStrategyStrings{
"NonNormalized", "Epsilon"};
"NonNormalized", "Epsilon", "MaxDsiplacement", "EqualDisplacements"};
std::vector<xRange> xRanges;
int numberOfFunctionCalls{100};
double solutionAccuracy{1e-2};
@ -110,11 +116,8 @@ public:
}
os << numberOfFunctionCalls;
os << solutionAccuracy;
if (normalizationStrategy == Epsilon) {
os << "Epsilon_" + std::to_string(normalizationParameter);
} else {
os << "NonNormalized";
}
os << normalizationStrategyStrings[normalizationStrategy] + "_" +
std::to_string(normalizationParameter);
}
};
struct Results {
@ -183,7 +186,7 @@ public:
const auto filepath = fileEntry.path();
if (filepath.extension() == ".json") {
SimulationJob job;
job.load(filepath.string());
job.load(filepath.string());
reducedPatternSimulationJobs.push_back(
std::make_shared<SimulationJob>(job));
}
@ -194,12 +197,13 @@ public:
void draw() const {
initPolyscope();
FormFinder simulator;
LinearSimulationModel linearSimulator;
assert(fullPatternSimulationJobs.size() ==
reducedPatternSimulationJobs.size());
fullPatternSimulationJobs[0]->pMesh->registerForDrawing(
colors.fullInitial);
reducedPatternSimulationJobs[0]->pMesh->registerForDrawing(
colors.reducedInitial);
colors.reducedInitial, false);
const int numberOfSimulationJobs = fullPatternSimulationJobs.size();
for (int simulationJobIndex = 0;
@ -212,14 +216,24 @@ public:
SimulationResults fullModelResults =
simulator.executeSimulation(pFullPatternSimulationJob);
fullModelResults.registerForDrawing(colors.fullDeformed);
SimulationResults fullModelLinearResults =
linearSimulator.executeSimulation(pFullPatternSimulationJob);
fullModelLinearResults.setLabelPrefix("linear");
fullModelLinearResults.registerForDrawing(colors.fullDeformed, false);
// Drawing of reduced pattern results
const std::shared_ptr<SimulationJob> &pReducedPatternSimulationJob =
reducedPatternSimulationJobs[simulationJobIndex];
SimulationResults reducedModelResults =
simulator.executeSimulation(pReducedPatternSimulationJob);
reducedModelResults.registerForDrawing(colors.reducedDeformed);
SimulationResults reducedModelLinearResults =
linearSimulator.executeSimulation(pReducedPatternSimulationJob);
reducedModelLinearResults.setLabelPrefix("linear");
reducedModelLinearResults.registerForDrawing(colors.reducedDeformed,
false);
polyscope::options::programName =
fullPatternSimulationJobs[0]->pMesh->getLabel();
polyscope::view::resetCameraToHomeView();
polyscope::show();
// Save a screensh
const std::string screenshotFilename =
@ -230,12 +244,14 @@ public:
polyscope::screenshot(screenshotFilename, false);
fullModelResults.unregister();
reducedModelResults.unregister();
reducedModelLinearResults.unregister();
fullModelLinearResults.unregister();
// double error = computeError(
// reducedModelResults.displacements,fullModelResults.displacements,
// );
// std::cout << "Error of simulation scenario "
// <<
// simulationScenarioStrings[simulationScenarioIndex]
// simula simulationScenarioStrings[simulationScenarioIndex]
// << " is "
// << error << std::endl;
}
@ -333,31 +349,29 @@ public:
getReducedSimulationJob(const SimulationJob &fullModelSimulationJob);
void initializePatterns(
FlatPattern &fullPattern, FlatPattern &reducedPatterm,
PatternGeometry &fullPattern, PatternGeometry &reducedPatterm,
const std::unordered_set<size_t> &reducedModelExcludedEges);
void setInitialGuess(std::vector<double> v);
static void runBeamOptimization();
static void runSimulation(const std::string &filename,
std::vector<double> &x);
static double objective(double x0, double x1, double x2, double x3);
static double objective(double x0, double x1, double x2, double x3,
double innerHexagonRotationAngle);
static double objective(double b, double r, double E);
static std::vector<std::shared_ptr<SimulationJob>>
createScenarios(const std::shared_ptr<SimulationMesh> &pMesh,
const std::unordered_map<size_t, size_t>
&fullPatternOppositeInterfaceViMap);
createScenarios(const std::shared_ptr<SimulationMesh> &pMesh,
const std::unordered_map<size_t, size_t>
&fullPatternOppositeInterfaceViMap);
static void createSimulationMeshes(
FlatPattern &fullModel, FlatPattern &reducedModel,
PatternGeometry &fullModel, PatternGeometry &reducedModel,
std::shared_ptr<SimulationMesh> &pFullPatternSimulationMesh,
std::shared_ptr<SimulationMesh> &pReducedPatternSimulationMesh);
static void computeMaps(
const std::unordered_set<size_t> &reducedModelExcludedEdges,
const std::unordered_map<size_t, std::unordered_set<size_t>> &slotToNode,
FlatPattern &fullPattern, FlatPattern &reducedPattern,
PatternGeometry &fullPattern, PatternGeometry &reducedPattern,
std::unordered_map<ReducedPatternVertexIndex, FullPatternVertexIndex>
&reducedToFullInterfaceViMap,
std::unordered_map<FullPatternVertexIndex, ReducedPatternVertexIndex>
@ -396,17 +410,17 @@ public:
const double &normalizationFactor);
private:
static void computeDesiredReducedModelDisplacements(
const SimulationResults &fullModelResults,
const std::unordered_map<size_t, size_t> &displacementsReducedToFullMap,
Eigen::MatrixX3d &optimalDisplacementsOfReducedModel);
static void computeDesiredReducedModelDisplacements(
const SimulationResults &fullModelResults,
const std::unordered_map<size_t, size_t> &displacementsReducedToFullMap,
Eigen::MatrixX3d &optimalDisplacementsOfReducedModel);
static Results runOptimization(const Settings &settings);
std::vector<std::shared_ptr<SimulationJob>>
createScenarios(const std::shared_ptr<SimulationMesh> &pMesh);
void computeMaps(FlatPattern &fullModel, FlatPattern &reducedPattern,
void computeMaps(PatternGeometry &fullModel, PatternGeometry &reducedPattern,
const std::unordered_set<size_t> &reducedModelExcludedEges);
void createSimulationMeshes(FlatPattern &fullModel,
FlatPattern &reducedModel);
void createSimulationMeshes(PatternGeometry &fullModel,
PatternGeometry &reducedModel);
static void
initializeOptimizationParameters(const std::shared_ptr<SimulationMesh> &mesh);