#include "reducedmodeloptimizer.hpp" #include "linearsimulationmodel.hpp" #include "simulationhistoryplotter.hpp" #include "trianglepatterngeometry.hpp" #include "trianglepattterntopology.hpp" #include #include #include #include using namespace ReducedPatternOptimization; struct GlobalOptimizationVariables { // std::vector> fullPatternDisplacements; std::vector fullPatternResults; std::vector translationalDisplacementNormalizationValues; std::vector rotationalDisplacementNormalizationValues; std::vector> fullPatternSimulationJobs; std::vector> reducedPatternSimulationJobs; std::unordered_map reducedToFullInterfaceViMap; std::vector> fullPatternInterfaceViPairs; matplot::line_handle gPlotHandle; std::vector objectiveValueHistory_iteration; std::vector objectiveValueHistory; std::vector plotColors; std::array parametersInitialValue; std::array optimizationInitialValue; std::vector simulationScenarioIndices; double minY{DBL_MAX}; std::vector minX; int numOfSimulationCrashes{false}; int numberOfFunctionCalls{0}; int numberOfOptimizationParameters{5}; ReducedPatternOptimization::Settings optimizationSettings; vcg::Triangle3 baseTriangle; //Variables for finding the full pattern simulation forces std::shared_ptr pFullPatternSimulationMesh; std::function> &, SimulationJob &)> constructScenarioFunction; FullPatternVertexIndex interfaceViForComputingScenarioError; double desiredMaxDisplacementValue; double desiredMaxRotationAngle; std::string currentScenarioName; std::array &pReducedPatternSimulationMesh)>, 7> functions_updateReducedPatternParameter; std::vector xMin; std::vector xMax; std::vector scenarioEqualizationWeight; std::vector scenarioUserWeights; } global; double ReducedModelOptimizer::computeDisplacementError( const std::vector &fullPatternDisplacements, const std::vector &reducedPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor) { const double rawError = computeRawTranslationalError(fullPatternDisplacements, reducedPatternDisplacements, reducedToFullInterfaceViMap); // std::cout << "raw trans error:" << rawError << std::endl; // std::cout << "raw trans error:" << normalizationFactor << std::endl; return rawError / normalizationFactor; } double ReducedModelOptimizer::computeRawTranslationalError( const std::vector &fullPatternDisplacements, const std::vector &reducedPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap) { double error = 0; for (const auto reducedFullViPair : reducedToFullInterfaceViMap) { const VertexIndex reducedModelVi = reducedFullViPair.first; const VertexIndex fullModelVi = reducedFullViPair.second; const Eigen::Vector3d fullPatternVertexDiplacement = fullPatternDisplacements[fullModelVi] .getTranslation(); const Eigen::Vector3d reducedPatternVertexDiplacement = reducedPatternDisplacements[reducedModelVi].getTranslation(); const double vertexError = (fullPatternVertexDiplacement - reducedPatternVertexDiplacement) .norm(); error += vertexError; } return error; } double ReducedModelOptimizer::computeRawRotationalError( const std::vector> &rotatedQuaternion_fullPattern, const std::vector> &rotatedQuaternion_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap) { double rawRotationalError = 0; for (const auto &reducedToFullInterfaceViPair : reducedToFullInterfaceViMap) { const double vertexRotationalError = rotatedQuaternion_fullPattern[reducedToFullInterfaceViPair.second].angularDistance( rotatedQuaternion_reducedPattern[reducedToFullInterfaceViPair.first]); rawRotationalError += vertexRotationalError; } return rawRotationalError; } double ReducedModelOptimizer::computeRotationalError( const std::vector> &rotatedQuaternion_fullPattern, const std::vector> &rotatedQuaternion_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor) { const double rawRotationalError = computeRawRotationalError(rotatedQuaternion_fullPattern, rotatedQuaternion_reducedPattern, reducedToFullInterfaceViMap); return rawRotationalError / normalizationFactor; } double ReducedModelOptimizer::computeError( const SimulationResults &simulationResults_fullPattern, const SimulationResults &simulationResults_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor_translationalDisplacement, const double &normalizationFactor_rotationalDisplacement) { const double translationalError = computeDisplacementError(simulationResults_fullPattern.displacements, simulationResults_reducedPattern.displacements, reducedToFullInterfaceViMap, normalizationFactor_translationalDisplacement); // std::cout << "normalization factor:" << normalizationFactor_rotationalDisplacement << std::endl; // std::cout << "trans error:" << translationalError << std::endl; const double rotationalError = computeRotationalError(simulationResults_fullPattern.rotationalDisplacementQuaternion, simulationResults_reducedPattern.rotationalDisplacementQuaternion, reducedToFullInterfaceViMap, normalizationFactor_rotationalDisplacement); return global.optimizationSettings.objectiveWeights.translational * translationalError + global.optimizationSettings.objectiveWeights.rotational * rotationalError; } //double ReducedModelOptimizer::objective(double E,double A,double J,double I2,double I3, // double innerHexagonSize, // double innerHexagonRotationAngle) { // std::vector x{E,A,J,I2,I3, innerHexagonSize, innerHexagonRotationAngle}; // return ReducedModelOptimizer::objective(x.size(), x.data()); //} #ifdef USE_ENSMALLEN struct EnsmallenOptimizationObjective { static double Evaluate(const arma::mat &x_arma) { std::vector x(x_arma.begin(), x_arma.end()); for (int xi = 0; xi < x.size(); xi++) { if (x[xi] > global.xMax[xi]) { return std::numeric_limits::max(); x[xi] = global.xMax[xi]; // std::cout << "Out of range" << std::endl; } else if (x[xi] < global.xMin[xi]) { return std::numeric_limits::max(); x[xi] = global.xMin[xi]; // std::cout << "Out of range" << std::endl; } } return ReducedModelOptimizer::objective(x); } }; #endif #ifdef DLIB_DEFINED double ReducedModelOptimizer::objective(const dlib::matrix &x) { return objective(std::vector(x.begin(), x.end())); } #endif double ReducedModelOptimizer::objective(const double &xValue) { return objective({xValue}); } double ReducedModelOptimizer::objective(const std::vector &x) { // std::cout.precision(17); // for (int i = 0; i < x.size(); i++) { // std::cout << x[i] << " "; // } // std::cout << std::endl; // std::cout << x(x.size() - 2) << " " << x(x.size() - 1) << std::endl; // const Element &e = // global.reducedPatternSimulationJobs[0]->pMesh->elements[0]; std::cout << // e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; // const int n = x.size(); std::shared_ptr &pReducedPatternSimulationMesh = global.reducedPatternSimulationJobs[global.simulationScenarioIndices[0]]->pMesh; function_updateReducedPattern(x, pReducedPatternSimulationMesh); // global.reducedPatternSimulationJobs[0]->pMesh->registerForDrawing(); // global.fullPatternSimulationJobs[0]->pMesh->registerForDrawing(); // polyscope::show(); // global.reducedPatternSimulationJobs[0]->pMesh->unregister(); // std::cout << e.axialConstFact|A,I2,I3,J,r,thetaor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; // run simulations double totalError = 0; LinearSimulationModel simulator; simulator.setStructure(pReducedPatternSimulationMesh); // simulator.initialize(); // FormFinder simulator; std::for_each( std::execution::par_unseq, global.simulationScenarioIndices.begin(), global.simulationScenarioIndices.end(), [&](const int &simulationScenarioIndex) { // for (const int simulationScenarioIndex : global.simulationScenarioIndices) { const std::shared_ptr &reducedJob = global.reducedPatternSimulationJobs[simulationScenarioIndex]; //#ifdef POLYSCOPE_DEFINED // std::cout << reducedJob->getLabel() << ":" << std::endl; //#endif SimulationResults reducedModelResults = simulator.executeSimulation(reducedJob); // std::string filename; if (!reducedModelResults.converged) { totalError += std::numeric_limits::max(); global.numOfSimulationCrashes++; #ifdef POLYSCOPE_DEFINED std::cout << "Failed simulation" << std::endl; #endif } else { // double simulationScenarioError; // constexpr bool usePotentialEnergy = false; // if (usePotentialEnergy) { // simulationScenarioError = std::abs( // reducedModelResults.internalPotentialEnergy // - global.fullPatternResults[simulationScenarioIndex].internalPotentialEnergy); // } else { const double simulationScenarioError = computeError( global.fullPatternResults[simulationScenarioIndex], reducedModelResults, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex], global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); // } //#ifdef POLYSCOPE_DEFINED // reducedJob->pMesh->registerForDrawing(Colors::reducedInitial); // reducedModelResults.registerForDrawing(Colors::reducedDeformed); // global.pFullPatternSimulationMesh->registerForDrawing(Colors::fullDeformed); // global.fullPatternResults[simulationScenarioIndex].registerForDrawing( // Colors::fullDeformed); // polyscope::show(); // reducedModelResults.unregister(); // global.pFullPatternSimulationMesh->unregister(); // global.fullPatternResults[simulationScenarioIndex].unregister(); //#endif // if (global.optimizationSettings.normalizationStrategy != // NormalizationStrategy::Epsilon && // simulationScenarioError > 1) { // std::cout << "Simulation scenario " // << // simulationScenarioStrings[simulationScenarioIndex] // << " results in an error bigger than one." << // std::endl; // for (size_t parameterIndex = 0; parameterIndex < n; // parameterIndex++) { // std::cout << "x[" + std::to_string(parameterIndex) + "]=" // << x[parameterIndex] << std::endl; // } // } // #ifdef POLYSCOPE_DEFINED // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // global.reducedPatternSimulationJobs[simulationScenarioIndex], // global.reducedToFullInterfaceViMap, false); // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // std::make_shared( // reducedPatternMaximumDisplacementSimulationJobs // [simulationScenarioIndex]), // global.reducedToFullInterfaceViMap, true); // polyscope::removeAllStructures(); // #endif // POLYSCOPE_DEFINED totalError += /*global.scenarioUserWeights[simulationScenarioIndex] **/ /*global.scenarioEqualizationWeight[simulationScenarioIndex] **/ simulationScenarioError * simulationScenarioError; } }); // std::cout << totalError << std::endl; // global.objectiveValueHistory.push_back(totalError); // global.plotColors.push_back(10); ++global.numberOfFunctionCalls; if (totalError < global.minY) { global.minY = totalError; // global.objectiveValueHistory.push_back(totalError); // global.objectiveValueHistory_iteration.push_back(global.numberOfFunctionCalls); // std::cout << "New best:" << totalError << std::endl; // // global.minX.assign(x.begin(), x.begin() + n); // std::cout.precision(17); // for (int i = 0; i < x.size(); i++) { // std::cout << x(i) << " "; // } // std::cout << std::endl; // global.objectiveValueHistoryY.push_back(std::log(totalError)); // global.objectiveValueHistoryX.push_back(global.numberOfFunctionCalls); // global.plotColors.push_back(0.1); // auto xPlot = matplot::linspace(0, // global.objectiveValueHistoryY.size(), // global.objectiveValueHistoryY.size()); // global.gPlotHandle = matplot::scatter(global.objectiveValueHistoryX, // global.objectiveValueHistoryY, // 4, // global.plotColors); // matplot::show(); // SimulationResultsReporter::createPlot("Number of Steps", // "Objective value", // global.objectiveValueHistoryY); } #ifdef POLYSCOPE_DEFINED if (global.optimizationSettings.numberOfFunctionCalls >= 100 && global.numberOfFunctionCalls % (global.optimizationSettings.numberOfFunctionCalls / 100) == 0) { std::cout << "Number of function calls:" << global.numberOfFunctionCalls << std::endl; } #endif // compute error and return it return totalError; } void ReducedModelOptimizer::createSimulationMeshes( PatternGeometry &fullModel, PatternGeometry &reducedModel, std::shared_ptr &pFullPatternSimulationMesh, std::shared_ptr &pReducedPatternSimulationMesh) { if (typeid(CrossSectionType) != typeid(RectangularBeamDimensions)) { std::cerr << "Error: A rectangular cross section is expected." << std::endl; terminate(); } // Full pattern pFullPatternSimulationMesh = std::make_shared(fullModel); pFullPatternSimulationMesh->setBeamCrossSection(CrossSectionType{0.002, 0.002}); pFullPatternSimulationMesh->setBeamMaterial(0.3, youngsModulus); // Reduced pattern pReducedPatternSimulationMesh = std::make_shared(reducedModel); pReducedPatternSimulationMesh->setBeamCrossSection(CrossSectionType{0.002, 0.002}); pReducedPatternSimulationMesh->setBeamMaterial(0.3, youngsModulus); } void ReducedModelOptimizer::createSimulationMeshes(PatternGeometry &fullModel, PatternGeometry &reducedModel) { ReducedModelOptimizer::createSimulationMeshes(fullModel, reducedModel, m_pFullPatternSimulationMesh, m_pReducedPatternSimulationMesh); } void ReducedModelOptimizer::computeMaps( const std::unordered_map> &slotToNode, PatternGeometry &fullPattern, PatternGeometry &reducedPattern, std::unordered_map &reducedToFullInterfaceViMap, std::unordered_map &fullToReducedInterfaceViMap, std::vector> &fullPatternOppositeInterfaceViPairs) { // Compute the offset between the interface nodes const size_t interfaceSlotIndex = 4; // bottom edge assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() && slotToNode.find(interfaceSlotIndex)->second.size() == 1); // Assuming that in the bottom edge there is only one vertex which is also the // interface const size_t baseTriangleInterfaceVi = *(slotToNode.find(interfaceSlotIndex)->second.begin()); vcg::tri::Allocator::PointerUpdater pu_fullModel; fullPattern.deleteDanglingVertices(pu_fullModel); const size_t fullModelBaseTriangleInterfaceVi = pu_fullModel.remap.empty() ? baseTriangleInterfaceVi : pu_fullModel.remap[baseTriangleInterfaceVi]; const size_t fullModelBaseTriangleVN = fullPattern.VN(); fullPattern.createFan(); const size_t duplicateVerticesPerFanPair = fullModelBaseTriangleVN - fullPattern.VN() / 6; const size_t fullPatternInterfaceVertexOffset = fullModelBaseTriangleVN - duplicateVerticesPerFanPair; // std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair << // std::endl; // Save excluded edges TODO:this changes the global object. Should this be a // function parameter? // global.reducedPatternExludedEdges.clear(); // const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN(); // for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { // for (const size_t ei : reducedModelExcludedEdges) { // global.reducedPatternExludedEdges.insert( // fanIndex * reducedBaseTriangleNumberOfEdges + ei); // } // } // Construct reduced->full and full->reduced interface vi map reducedToFullInterfaceViMap.clear(); vcg::tri::Allocator::PointerUpdater pu_reducedModel; reducedPattern.deleteDanglingVertices(pu_reducedModel); const size_t reducedModelBaseTriangleInterfaceVi = pu_reducedModel.remap[baseTriangleInterfaceVi]; const size_t reducedModelInterfaceVertexOffset = reducedPattern.VN() /*- 1*/ /*- reducedModelBaseTriangleInterfaceVi*/; Results::applyOptimizationResults_innerHexagon(initialHexagonSize, 0, global.baseTriangle, reducedPattern); reducedPattern.createFan({0}); //TODO: should be an input parameter from main for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex + reducedModelBaseTriangleInterfaceVi] = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; } fullToReducedInterfaceViMap.clear(); constructInverseMap(reducedToFullInterfaceViMap, fullToReducedInterfaceViMap); // Create opposite vertex map fullPatternOppositeInterfaceViPairs.clear(); fullPatternOppositeInterfaceViPairs.reserve(fanSize / 2); // for (int fanIndex = fanSize / 2 - 1; fanIndex >= 0; fanIndex--) { for (int fanIndex = 0; fanIndex < fanSize / 2; fanIndex++) { const size_t vi0 = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset; assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN()); fullPatternOppositeInterfaceViPairs.emplace_back(std::make_pair(vi0, vi1)); } global.fullPatternInterfaceViPairs = fullPatternOppositeInterfaceViPairs; #if POLYSCOPE_DEFINED const bool debugMapping = false; if (debugMapping) { reducedPattern.registerForDrawing(); // std::vector colors_reducedPatternExcludedEdges( // reducedPattern.EN(), glm::vec3(0, 0, 0)); // for (const size_t ei : global.reducedPatternExludedEdges) { // colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0); // } // const std::string label = reducedPattern.getLabel(); // polyscope::getCurveNetwork(label) // ->addEdgeColorQuantity("Excluded edges", // colors_reducedPatternExcludedEdges) // ->setEnabled(true); // polyscope::show(); std::vector nodeColorsOpposite(fullPattern.VN(), glm::vec3(0, 0, 0)); for (const std::pair oppositeVerts : fullPatternOppositeInterfaceViPairs) { auto color = polyscope::getNextUniqueColor(); nodeColorsOpposite[oppositeVerts.first] = color; nodeColorsOpposite[oppositeVerts.second] = color; } fullPattern.registerForDrawing(); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("oppositeMap", nodeColorsOpposite) ->setEnabled(true); polyscope::show(); std::vector nodeColorsReducedToFull_reduced(reducedPattern.VN(), glm::vec3(0, 0, 0)); std::vector nodeColorsReducedToFull_full(fullPattern.VN(), glm::vec3(0, 0, 0)); for (size_t vi = 0; vi < reducedPattern.VN(); vi++) { if (global.reducedToFullInterfaceViMap.contains(vi)) { auto color = polyscope::getNextUniqueColor(); nodeColorsReducedToFull_reduced[vi] = color; nodeColorsReducedToFull_full[global.reducedToFullInterfaceViMap[vi]] = color; } } polyscope::getCurveNetwork(reducedPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_reduced", nodeColorsReducedToFull_reduced) ->setEnabled(true); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_full", nodeColorsReducedToFull_full) ->setEnabled(true); polyscope::show(); } #endif } void ReducedModelOptimizer::computeMaps(PatternGeometry &fullPattern, PatternGeometry &reducedPattern) { ReducedModelOptimizer::computeMaps(slotToNode, fullPattern, reducedPattern, global.reducedToFullInterfaceViMap, m_fullToReducedInterfaceViMap, m_fullPatternOppositeInterfaceViPairs); } ReducedModelOptimizer::ReducedModelOptimizer(const std::vector &numberOfNodesPerSlot) { FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot); FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode); constructBaseScenarioFunctions.resize(BaseSimulationScenario::NumberOfBaseSimulationScenarios); scenarioIsSymmetrical.resize(BaseSimulationScenario::NumberOfBaseSimulationScenarios); constructBaseScenarioFunctions[BaseSimulationScenario::Axial] = &constructAxialSimulationScenario; scenarioIsSymmetrical[BaseSimulationScenario::Axial] = false; constructBaseScenarioFunctions[BaseSimulationScenario::Shear] = &constructShearSimulationScenario; scenarioIsSymmetrical[BaseSimulationScenario::Shear] = false; constructBaseScenarioFunctions[BaseSimulationScenario::Bending] = &constructBendingSimulationScenario; scenarioIsSymmetrical[BaseSimulationScenario::Bending] = true; constructBaseScenarioFunctions[BaseSimulationScenario::Dome] = &constructDomeSimulationScenario; scenarioIsSymmetrical[BaseSimulationScenario::Dome] = true; constructBaseScenarioFunctions[BaseSimulationScenario::Saddle] = &constructSaddleSimulationScenario; scenarioIsSymmetrical[BaseSimulationScenario::Saddle] = true; } void ReducedModelOptimizer::initializePatterns(PatternGeometry &fullPattern, PatternGeometry &reducedPattern, const std::vector &optimizationParameters) { assert(fullPattern.VN() == reducedPattern.VN() && fullPattern.EN() >= reducedPattern.EN()); fullPatternNumberOfEdges = fullPattern.EN(); #if POLYSCOPE_DEFINED polyscope::removeAllStructures(); #endif // Create copies of the input models PatternGeometry copyFullPattern; PatternGeometry copyReducedPattern; copyFullPattern.copy(fullPattern); copyReducedPattern.copy(reducedPattern); global.baseTriangle = copyReducedPattern.getBaseTriangle(); computeMaps(copyFullPattern, copyReducedPattern); createSimulationMeshes(copyFullPattern, copyReducedPattern); initializeUpdateReducedPatternFunctions(); initializeOptimizationParameters(m_pFullPatternSimulationMesh, optimizationParameters); } void ReducedModelOptimizer::initializeUpdateReducedPatternFunctions() { global.functions_updateReducedPatternParameter[R] = [](const double &newR, std::shared_ptr &pReducedPatternSimulationMesh) { const CoordType barycentricCoordinates_hexagonBaseTriangleVertex(1 - newR, newR / 2, newR / 2); const CoordType hexagonBaseTriangleVertexPosition = global.baseTriangle.cP(0) * barycentricCoordinates_hexagonBaseTriangleVertex[0] + global.baseTriangle.cP(1) * barycentricCoordinates_hexagonBaseTriangleVertex[1] + global.baseTriangle.cP(2) * barycentricCoordinates_hexagonBaseTriangleVertex[2]; for (int rotationCounter = 0; rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) { pReducedPatternSimulationMesh->vert[2 * rotationCounter].P() = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(60.0 * rotationCounter)) * hexagonBaseTriangleVertexPosition; } }; global.functions_updateReducedPatternParameter[Theta] = [](const double &newTheta, std::shared_ptr &pReducedPatternSimulationMesh) { const CoordType baseTriangleHexagonVertexPosition = pReducedPatternSimulationMesh->vert[0].cP(); const CoordType thetaRotatedHexagonBaseTriangleVertexPosition = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(newTheta)) * baseTriangleHexagonVertexPosition; for (int rotationCounter = 0; rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) { pReducedPatternSimulationMesh->vert[2 * rotationCounter].P() = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(60.0 * rotationCounter)) * thetaRotatedHexagonBaseTriangleVertexPosition; } }; global.functions_updateReducedPatternParameter[E] = [](const double &newE, std::shared_ptr &pReducedPatternSimulationMesh) { for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.setMaterial(ElementMaterial(e.material.poissonsRatio, newE)); } }; global.functions_updateReducedPatternParameter[A] = [](const double &newA, std::shared_ptr &pReducedPatternSimulationMesh) { const double beamWidth = std::sqrt(newA); const double beamHeight = beamWidth; for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.setDimensions(RectangularBeamDimensions(beamWidth, beamHeight)); } }; global.functions_updateReducedPatternParameter[I2] = [](const double &newI2, std::shared_ptr &pReducedPatternSimulationMesh) { for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.inertia.I2 = newI2; e.updateRigidity(); } }; global.functions_updateReducedPatternParameter[I3] = [](const double &newI3, std::shared_ptr &pReducedPatternSimulationMesh) { for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.inertia.I3 = newI3; e.updateRigidity(); } }; global.functions_updateReducedPatternParameter[J] = [](const double &newJ, std::shared_ptr &pReducedPatternSimulationMesh) { for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.inertia.J = newJ; e.updateRigidity(); } }; } void ReducedModelOptimizer::initializeOptimizationParameters( const std::shared_ptr &mesh, const std::vector &optimizationParameters) { global.numberOfOptimizationParameters = NumberOfOptimizationParameters; for (int optimizationParameterIndex = 0; optimizationParameterIndex < optimizationParameters.size(); optimizationParameterIndex++) { for (int optimizationParameterIndex = E; optimizationParameterIndex != NumberOfOptimizationParameters; optimizationParameterIndex++) { // const xRange &xOptimizationParameter = optimizationParameters[optimizationParameterIndex]; switch (optimizationParameterIndex) { case E: global.parametersInitialValue[optimizationParameterIndex] = mesh->elements[0].material.youngsModulus; global.optimizationInitialValue[optimizationParameterIndex] = 1; break; case A: global.parametersInitialValue[optimizationParameterIndex] = mesh->elements[0].A; global.optimizationInitialValue[optimizationParameterIndex] = 1; break; case I2: global.parametersInitialValue[optimizationParameterIndex] = mesh->elements[0] .inertia.I2; global.optimizationInitialValue[optimizationParameterIndex] = 1; break; case I3: global.parametersInitialValue[optimizationParameterIndex] = mesh->elements[0] .inertia.I3; global.optimizationInitialValue[optimizationParameterIndex] = 1; break; case J: global.parametersInitialValue[optimizationParameterIndex] = mesh->elements[0] .inertia.J; global.optimizationInitialValue[optimizationParameterIndex] = 1; break; case R: global.parametersInitialValue[optimizationParameterIndex] = 0; global.optimizationInitialValue[optimizationParameterIndex] = 0.5; break; case Theta: global.parametersInitialValue[optimizationParameterIndex] = 0; global.optimizationInitialValue[optimizationParameterIndex] = 0; break; } } } } void ReducedModelOptimizer::computeReducedModelSimulationJob( const SimulationJob &simulationJobOfFullModel, const std::unordered_map &fullToReducedMap, SimulationJob &simulationJobOfReducedModel) { assert(simulationJobOfReducedModel.pMesh->VN() != 0); std::unordered_map> reducedModelFixedVertices; for (auto fullModelFixedVertex : simulationJobOfFullModel.constrainedVertices) { reducedModelFixedVertices[fullToReducedMap.at(fullModelFixedVertex.first)] = fullModelFixedVertex.second; } std::unordered_map reducedModelNodalForces; for (auto fullModelNodalForce : simulationJobOfFullModel.nodalExternalForces) { reducedModelNodalForces[fullToReducedMap.at(fullModelNodalForce.first)] = fullModelNodalForce.second; } std::unordered_map reducedNodalForcedDisplacements; for (auto fullForcedDisplacement : simulationJobOfFullModel.nodalForcedDisplacements) { reducedNodalForcedDisplacements[fullToReducedMap.at(fullForcedDisplacement.first)] = fullForcedDisplacement.second; } simulationJobOfReducedModel.constrainedVertices = reducedModelFixedVertices; simulationJobOfReducedModel.nodalExternalForces = reducedModelNodalForces; simulationJobOfReducedModel.label = simulationJobOfFullModel.getLabel(); simulationJobOfReducedModel.nodalForcedDisplacements = reducedNodalForcedDisplacements; } void ReducedModelOptimizer::computeDesiredReducedModelDisplacements( const SimulationResults &fullModelResults, const std::unordered_map &displacementsReducedToFullMap, Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) { assert(optimalDisplacementsOfReducedModel.rows() != 0 && optimalDisplacementsOfReducedModel.cols() == 3); optimalDisplacementsOfReducedModel.setZero(optimalDisplacementsOfReducedModel.rows(), optimalDisplacementsOfReducedModel.cols()); for (auto reducedFullViPair : displacementsReducedToFullMap) { const VertexIndex fullModelVi = reducedFullViPair.second; const Vector6d fullModelViDisplacements = fullModelResults.displacements[fullModelVi]; optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) = Eigen::Vector3d(fullModelViDisplacements[0], fullModelViDisplacements[1], fullModelViDisplacements[2]); } } void ReducedModelOptimizer::getResults(const FunctionEvaluation &optimalObjective, const Settings &settings, ReducedPatternOptimization::Results &results) { //Number of crashes // results.numberOfSimulationCrashes = global.numOfSimulationCrashes; //Value of optimal objective Y results.objectiveValue.total = optimalObjective.y; // results.objectiveValue.total = 0; if (optimalObjective.y != global.minY) { std::cout << "Different optimal y:" << optimalObjective.y << " " << global.minY << std::endl; } //Optimal X values results.optimalXNameValuePairs.resize(settings.parameterRanges.size()); std::vector optimalX(settings.parameterRanges.size()); for (int optimizationParameterIndex = E; optimizationParameterIndex != NumberOfOptimizationParameters; optimizationParameterIndex++) { if (settings.parameterRanges[optimizationParameterIndex].max - settings.parameterRanges[optimizationParameterIndex].min < 1e-10) { continue; } if (optimizationParameterIndex < settings.parameterRanges.size() - 2) { results.optimalXNameValuePairs[optimizationParameterIndex] = std::make_pair(settings.parameterRanges[optimizationParameterIndex].label, optimalObjective.x[optimizationParameterIndex] * global.parametersInitialValue[optimizationParameterIndex]); } else { //Hex size and angle are pure values (not multipliers of the initial values) results.optimalXNameValuePairs[optimizationParameterIndex] = std::make_pair(settings.parameterRanges[optimizationParameterIndex].label, optimalObjective.x[optimizationParameterIndex]); } optimalX[optimizationParameterIndex] = optimalObjective.x[optimizationParameterIndex]; #ifdef POLYSCOPE_DEFINED std::cout << results.optimalXNameValuePairs[optimizationParameterIndex].first << ":" << optimalX[optimizationParameterIndex] << " "; #endif } #ifdef POLYSCOPE_DEFINED std::cout << std::endl; #endif results.fullPatternYoungsModulus = youngsModulus; // Compute obj value per simulation scenario and the raw objective value // updateMeshFunction(optimalX); std::shared_ptr &pReducedPatternSimulationMesh = global.reducedPatternSimulationJobs[global.simulationScenarioIndices[0]]->pMesh; function_updateReducedPattern(std::vector(optimalObjective.x.begin(), optimalObjective.x.end()), pReducedPatternSimulationMesh); // results.objectiveValue.totalPerSimulationScenario.resize(totalNumberOfSimulationScenarios); //TODO:use push_back it will make the code more readable LinearSimulationModel simulator; results.objectiveValue.totalRaw = 0; results.objectiveValue.perSimulationScenario_translational.resize( global.simulationScenarioIndices.size()); results.objectiveValue.perSimulationScenario_rawTranslational.resize( global.simulationScenarioIndices.size()); results.objectiveValue.perSimulationScenario_rotational.resize( global.simulationScenarioIndices.size()); results.objectiveValue.perSimulationScenario_rawRotational.resize( global.simulationScenarioIndices.size()); results.objectiveValue.perSimulationScenario_total.resize( global.simulationScenarioIndices.size()); //#ifdef POLYSCOPE_DEFINED // global.pFullPatternSimulationMesh->registerForDrawing(Colors::fullDeformed); //#endif results.perScenario_fullPatternPotentialEnergy.resize(global.simulationScenarioIndices.size()); for (int i = 0; i < global.simulationScenarioIndices.size(); i++) { const int simulationScenarioIndex = global.simulationScenarioIndices[i]; SimulationResults reducedModelResults = simulator.executeSimulation( global.reducedPatternSimulationJobs[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_total[i] = computeError( global.fullPatternResults[simulationScenarioIndex], reducedModelResults, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex], global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); // results.objectiveValue.total += results.objectiveValue.perSimulationScenario_total[i]; //Raw translational const double rawTranslationalError = computeRawTranslationalError( global.fullPatternResults[simulationScenarioIndex].displacements, reducedModelResults.displacements, global.reducedToFullInterfaceViMap); results.objectiveValue.perSimulationScenario_rawTranslational[i] = rawTranslationalError; //Raw rotational const double rawRotationalError = computeRawRotationalError( global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, reducedModelResults.rotationalDisplacementQuaternion, global.reducedToFullInterfaceViMap); results.objectiveValue.perSimulationScenario_rawRotational[i] = rawRotationalError; //Normalized translational const double normalizedTranslationalError = computeDisplacementError( global.fullPatternResults[simulationScenarioIndex].displacements, reducedModelResults.displacements, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_translational[i] = normalizedTranslationalError; // const double test_normalizedTranslationError = computeDisplacementError( // global.fullPatternResults[simulationScenarioIndex].displacements, // reducedModelResults.displacements, // global.reducedToFullInterfaceViMap, // global.translationalDisplacementNormalizationValues[simulationScenarioIndex]); //Normalized rotational const double normalizedRotationalError = computeRotationalError( global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, reducedModelResults.rotationalDisplacementQuaternion, global.reducedToFullInterfaceViMap, global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_rotational[i] = normalizedRotationalError; // const double test_normalizedRotationalError = computeRotationalError( // global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, // reducedModelResults.rotationalDisplacementQuaternion, // global.reducedToFullInterfaceViMap, // global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); // assert(test_normalizedTranslationError == normalizedTranslationalError); // assert(test_normalizedRotationalError == normalizedRotationalError); results.objectiveValue.totalRaw += rawTranslationalError + rawRotationalError; results.perScenario_fullPatternPotentialEnergy[i] = global.fullPatternResults[simulationScenarioIndex].internalPotentialEnergy; #ifdef POLYSCOPE_DEFINED std::cout << "Simulation scenario:" << global.reducedPatternSimulationJobs[simulationScenarioIndex]->getLabel() << std::endl; std::cout << "raw translational error:" << rawTranslationalError << std::endl; std::cout << "translation normalization value:" << global.translationalDisplacementNormalizationValues[simulationScenarioIndex] << std::endl; std::cout << "raw Rotational error:" << rawRotationalError << std::endl; std::cout << "rotational normalization value:" << global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] << std::endl; std::cout << "Translational error:" << normalizedTranslationalError << std::endl; std::cout << "Rotational error:" << normalizedRotationalError << std::endl; // results.objectiveValuePerSimulationScenario[simulationScenarioIndex] // = normalizedTranslationalError + normalizedRotationalError; std::cout << "Total Error value:" << results.objectiveValue.perSimulationScenario_total[i] << std::endl; std::cout << std::endl; // reducedModelResults.registerForDrawing(Colors::reducedDeformed); // global.fullPatternResults[simulationScenarioIndex].registerForDrawing(Colors::fullDeformed); // polyscope::show(); // reducedModelResults.unregister(); // global.fullPatternResults[simulationScenarioIndex].unregister(); #endif } for (int simulationScenarioIndex : global.simulationScenarioIndices) { results.fullPatternSimulationJobs.push_back( global.fullPatternSimulationJobs[simulationScenarioIndex]); results.reducedPatternSimulationJobs.push_back( global.reducedPatternSimulationJobs[simulationScenarioIndex]); // const std::string temp = global.reducedPatternSimulationJobs[simulationScenarioIndex] // ->pMesh->getLabel(); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->setLabel("temp"); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->registerForDrawing(); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->setLabel(temp); } results.objectiveValueHistory = global.objectiveValueHistory; results.objectiveValueHistory_iteration = global.objectiveValueHistory_iteration; // results.draw(); } std::vector> ReducedModelOptimizer::computeFullPatternMaxSimulationForces( const std::vector &desiredBaseSimulationScenario) { std::vector> fullPatternMaxSimulationForces; fullPatternMaxSimulationForces.reserve(desiredBaseSimulationScenario.size()); for (const BaseSimulationScenario &scenario : desiredBaseSimulationScenario) { const double maxForce = computeFullPatternMaxSimulationForce(scenario); fullPatternMaxSimulationForces.emplace_back(std::make_pair(scenario, maxForce)); } return fullPatternMaxSimulationForces; } std::vector> ReducedModelOptimizer::getFullPatternMaxSimulationForces( const std::vector &desiredBaseSimulationScenarioIndices) { std::vector> fullPatternSimulationScenarioMaxMagnitudes; #ifdef POLYSCOPE_DEFINED const std::filesystem::path forceMagnitudesDirectoryPath(std::filesystem::current_path() .parent_path() .append("IntermediateResults") .append("ForceMagnitudes")); std::filesystem::path patternMaxForceMagnitudesFilePath( std::filesystem::path(forceMagnitudesDirectoryPath) .append(m_pFullPatternSimulationMesh->getLabel() + ".json")); const bool fullPatternScenarioMagnitudesExist = std::filesystem::exists( patternMaxForceMagnitudesFilePath); if (fullPatternScenarioMagnitudesExist) { nlohmann::json json; std::ifstream ifs(patternMaxForceMagnitudesFilePath.string()); ifs >> json; fullPatternSimulationScenarioMaxMagnitudes = static_cast>>( json.at("maxMagn")); const bool shouldRecompute = fullPatternSimulationScenarioMaxMagnitudes.size() != desiredBaseSimulationScenarioIndices.size(); if (!shouldRecompute) { return fullPatternSimulationScenarioMaxMagnitudes; } } #endif fullPatternSimulationScenarioMaxMagnitudes = computeFullPatternMaxSimulationForces( desiredBaseSimulationScenarioIndices); #ifdef POLYSCOPE_DEFINED nlohmann::json json; json["maxMagn"] = fullPatternSimulationScenarioMaxMagnitudes; std::filesystem::create_directories(forceMagnitudesDirectoryPath); std::ofstream jsonFile(patternMaxForceMagnitudesFilePath.string()); jsonFile << json; #endif assert(fullPatternSimulationScenarioMaxMagnitudes.size() == desiredBaseSimulationScenarioIndices.size()); return fullPatternSimulationScenarioMaxMagnitudes; } void ReducedModelOptimizer::runOptimization(const Settings &settings, ReducedPatternOptimization::Results &results) { global.objectiveValueHistory.clear(); global.objectiveValueHistory_iteration.clear(); global.objectiveValueHistory.reserve(settings.numberOfFunctionCalls / 100); global.objectiveValueHistory_iteration.reserve(settings.numberOfFunctionCalls / 100); #if POLYSCOPE_DEFINED // global.plotColors.reserve(settings.numberOfFunctionCalls); #endif #ifdef USE_ENSMALLEN #else double (*objF)(const dlib::matrix &) = &objective; #endif enum OptimizationParameterComparisonScenarioIndex { AllVar, YMAndGeo, noYM, SplittedMatGeo, SplittedYM_before, SplittedYM_after, SplittedGeoYMMat, NumberOfScenarios }; const std::vector>> scenarioParameters = [&]() { std::vector>> scenarioParameters( NumberOfScenarios); scenarioParameters[AllVar] = {{E, A, I2, I3, J, R, Theta}}; scenarioParameters[YMAndGeo] = {{R, Theta, E}}; scenarioParameters[noYM] = {{A, I2, I3, J, R, Theta}}; scenarioParameters[SplittedMatGeo] = {{E, A, I2, I3, J}, {R, Theta}}; scenarioParameters[SplittedYM_before] = {{E}, {A, I2, I3, J, R, Theta}}; scenarioParameters[SplittedYM_after] = {{A, I2, I3, J, R, Theta}, {E}}; scenarioParameters[SplittedGeoYMMat] = {{R, Theta}, {E}, {A, I2, I3, J}}; return scenarioParameters; }(); constexpr OptimizationParameterComparisonScenarioIndex scenario = noYM; const std::vector> scenarioParameterGroups = scenarioParameters[scenario]; //TODO:Ensure that the reduced pattern mesh has the initial parameter values before starting the optimization FunctionEvaluation optimalResult; for (const std::vector ¶meterGroup : scenarioParameterGroups) { //Set update function. TODO: Make this function immutable by defining it once and using the global variable to set parameterGroup function_updateReducedPattern = [&](const std::vector &x, std::shared_ptr &pMesh) { for (int xIndex = 0; xIndex < x.size(); xIndex++) { const OptimizationParameterIndex parameterIndex = parameterGroup[xIndex]; // const double parameterInitialValue=optimizationSettings.parameterRanges[parameterIndex].initialValue; const double parameterInitialValue = global.parametersInitialValue[parameterIndex]; const double parameterNewValue = [&]() { if (parameterIndex == R || parameterIndex == Theta) { //NOTE:Here I explore the geometry parameters linearly return x[xIndex] /*+ parameterInitialValue*/; } //and the material parameters exponentially(?).TODO: Check what happens if I make all linear return x[xIndex] * parameterInitialValue; }(); global.functions_updateReducedPatternParameter[parameterIndex](parameterNewValue, pMesh); } pMesh->reset(); //NOTE: I could put this code into each updateParameter function for avoiding unessecary calculations }; std::vector xMin; std::vector xMax; xMin.resize(parameterGroup.size()); xMax.resize(parameterGroup.size()); for (int xIndex = 0; xIndex < parameterGroup.size(); xIndex++) { const OptimizationParameterIndex parameterIndex = parameterGroup[xIndex]; xMin[xIndex] = settings.parameterRanges[parameterIndex].min; xMax[xIndex] = settings.parameterRanges[parameterIndex].max; } #ifdef USE_ENSMALLEN arma::mat x(parameterGroup.size(), 1); for (int xIndex = 0; xIndex < parameterGroup.size(); xIndex++) { const OptimizationParameterIndex parameterIndex = parameterGroup[xIndex]; x(xIndex, 0) = global.optimizationInitialValue[parameterIndex]; } global.xMin = xMin; global.xMax = xMax; // Create simulated annealing optimizer with default options. // The ens::SA<> type can be replaced with any suitable ensmallen optimizer // that is able to handle arbitrary functions. EnsmallenOptimizationObjective optimizationFunction; //Set min max values // ens::SA optimizer; // ens::CNE optimizer; // ens::DE optimizer; // ens::SPSA optimizer; // arma::mat xMin_arma(global.xMin); // arma::mat xMax_arma(global.xMax); // ens::LBestPSO optimizer(64, xMin_arma, xMax_arma, 1000); ens::LBestPSO optimizer; const double minima = optimizer.Optimize(optimizationFunction, x); for (int xIndex = 0; xIndex < parameterGroup.size(); xIndex++) { if (x[xIndex] > global.xMax[xIndex]) { x[xIndex] = global.xMax[xIndex]; } else if (x[xIndex] < global.xMin[xIndex]) { x[xIndex] = global.xMin[xIndex]; } } #ifdef POLYSCOPE_DEFINED std::cout << "optimal x:" << "\n" << x << std::endl; std::cout << "Minima:" << minima << std::endl; #endif optimalResult.x.clear(); optimalResult.x.resize(parameterGroup.size()); std::copy(x.begin(), x.end(), optimalResult.x.begin()); optimalResult.y = minima; #else //Set min max values dlib::matrix xMin_dlib(parameterGroup.size()); dlib::matrix xMax_dlib(parameterGroup.size()); for (int xIndex = 0; xIndex < parameterGroup.size(); xIndex++) { const OptimizationParameterIndex parameterIndex = parameterGroup[xIndex]; xMin_dlib(xIndex) = settings.parameterRanges[parameterIndex].min; xMax_dlib(xIndex) = settings.parameterRanges[parameterIndex].max; } const dlib::function_evaluation optimalResult_dlib = dlib::find_min_global(objF, xMin_dlib, xMax_dlib, dlib::max_function_calls(settings.numberOfFunctionCalls), std::chrono::hours(24 * 365 * 290), settings.solverAccuracy); // constexpr bool useBOBYQA = false; // if (useBOBYQA) { // const size_t npt = 2 * global.numberOfOptimizationParameters; // // ((n + 2) + ((n + 1) * (n + 2) / 2)) / 2; // const double rhobeg = 0.1; // // const double rhobeg = 10; // const double rhoend = rhobeg * 1e-6; // // const size_t maxFun = 10 * (x.size() ^ 2); // const size_t bobyqa_maxFunctionCalls = 10000; // dlib::matrix x; // dlib::function_evaluation optimalResult_dlib; // optimalResult_dlib.x.set_size(parameterGroup.size()); // for (int xIndex = 0; xIndex < parameterGroup.size(); xIndex++) { // const OptimizationParameterIndex parameterIndex = parameterGroup[xIndex]; // optimalResult_dlib.x(xIndex) = global.optimizationInitialValue[parameterIndex]; // std::cout << "xIndex:" << xIndex << std::endl; // std::cout << "xInit:" << optimalResult_dlib.x(xIndex) << std::endl; // } // optimalResult_dlib.y = dlib::find_min_bobyqa(objF, // optimalResult_dlib.x, // npt, // xMin, // xMax, // rhobeg, // rhoend, // bobyqa_maxFunctionCalls); // } optimalResult.x.clear(); optimalResult.x.resize(parameterGroup.size()); std::copy(optimalResult_dlib.x.begin(), optimalResult_dlib.x.end(), optimalResult.x.begin()); optimalResult.y = optimalResult_dlib.y; #endif function_updateReducedPattern( std::vector(optimalResult.x.begin(), optimalResult.x.end()), global.reducedPatternSimulationJobs[0] ->pMesh); //TODO: Check if its ok to update only the changed parameters // std::cout << "GLOBAL MIN:" << global.minY << std::endl; // std::cout << "opt res y:" << optimalResult.y << std::endl; } getResults(optimalResult, settings, results); } void ReducedModelOptimizer::constructAxialSimulationScenario( const double &forceMagnitude, const std::vector> &oppositeInterfaceViPairs, SimulationJob &job) { for (auto viPairIt = oppositeInterfaceViPairs.begin(); viPairIt != oppositeInterfaceViPairs.end(); viPairIt++) { if (viPairIt != oppositeInterfaceViPairs.begin()) { CoordType forceDirection(1, 0, 0); job.nodalExternalForces[viPairIt->first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude; job.constrainedVertices[viPairIt->second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } } void ReducedModelOptimizer::constructShearSimulationScenario( const double &forceMagnitude, const std::vector> &oppositeInterfaceViPairs, SimulationJob &job) { for (auto viPairIt = oppositeInterfaceViPairs.begin(); viPairIt != oppositeInterfaceViPairs.end(); viPairIt++) { if (viPairIt != oppositeInterfaceViPairs.begin()) { CoordType forceDirection(0, 1, 0); const auto viPair = *viPairIt; job.nodalExternalForces[viPair.first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude; job.constrainedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } } void ReducedModelOptimizer::constructBendingSimulationScenario( const double &forceMagnitude, const std::vector> &oppositeInterfaceViPairs, SimulationJob &job) { for (const auto &viPair : oppositeInterfaceViPairs) { job.nodalExternalForces[viPair.first] = Vector6d({0, 0, 1, 0, 0, 0}) * forceMagnitude; job.constrainedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } /*NOTE: From the results it seems as if the forced displacements are different in the linear and in the drm * */ void ReducedModelOptimizer::constructDomeSimulationScenario( const double &forceMagnitude, const std::vector> &oppositeInterfaceViPairs, SimulationJob &job) { for (auto viPairIt = oppositeInterfaceViPairs.begin(); viPairIt != oppositeInterfaceViPairs.end(); viPairIt++) { const auto viPair = *viPairIt; CoordType interfaceVector = (job.pMesh->vert[viPair.first].cP() - job.pMesh->vert[viPair.second].cP()); VectorType momentAxis = vcg::RotationMatrix(VectorType(0, 0, 1), vcg::math::ToRad(90.0)) * interfaceVector.Normalize(); if (viPairIt == oppositeInterfaceViPairs.begin()) { job.nodalForcedDisplacements[viPair.first] = Eigen::Vector3d(-interfaceVector[0], -interfaceVector[1], 0) * 0.005 * std::abs( forceMagnitude); //NOTE:Should the forced displacement change relatively to the magnitude? // * std::abs(forceMagnitude / maxForceMagnitude_dome); job.nodalForcedDisplacements[viPair.second] = Eigen::Vector3d(interfaceVector[0], interfaceVector[1], 0) * 0.005 * std::abs(forceMagnitude); // * std::abs(forceMagnitude / maxForceMagnitude_dome); // CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // ^ CoordType(0, 0, -1).Normalize(); // nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude // * 0.0001; // nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude // * 0.0001; } else { job.nodalExternalForces[viPair.first] = Vector6d({0, 0, 0, momentAxis[0], momentAxis[1], momentAxis[2]}) * forceMagnitude / 3; job.nodalExternalForces[viPair.second] = Vector6d({0, 0, 0, -momentAxis[0], -momentAxis[1], -momentAxis[2]}) * forceMagnitude / 3; job.constrainedVertices[viPair.first] = std::unordered_set{2}; job.constrainedVertices[viPair.second] = std::unordered_set{2}; } } } void ReducedModelOptimizer::constructSaddleSimulationScenario( const double &forceMagnitude, const std::vector> &oppositeInterfaceViPairs, SimulationJob &job) { for (auto viPairIt = oppositeInterfaceViPairs.begin(); viPairIt != oppositeInterfaceViPairs.end(); viPairIt++) { const auto &viPair = *viPairIt; CoordType v = (job.pMesh->vert[viPair.first].cP() - job.pMesh->vert[viPair.second].cP()) ^ CoordType(0, 0, -1).Normalize(); if (viPairIt == oppositeInterfaceViPairs.begin()) { job.nodalExternalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude; job.nodalExternalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude; } else { job.constrainedVertices[viPair.first] = std::unordered_set{2}; job.constrainedVertices[viPair.second] = std::unordered_set{0, 1, 2}; job.nodalExternalForces[viPair.first] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude / 2; job.nodalExternalForces[viPair.second] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude / 2; } } } double fullPatternMaxSimulationForceRotationalObjective(const double &forceMagnitude) { SimulationJob job; job.pMesh = global.pFullPatternSimulationMesh; global.constructScenarioFunction(forceMagnitude, global.fullPatternInterfaceViPairs, job); // ReducedModelOptimizer::axialSimulationScenario(forceMagnitude, // global.fullPatternInterfaceViPairs, // job); DRMSimulationModel simulator; DRMSimulationModel::Settings settings; settings.totalExternalForcesNormPercentageTermination = 1e-2; settings.totalTranslationalKineticEnergyThreshold = 1e-8; settings.viscousDampingFactor = 1e-2; settings.useKineticDamping = true; settings.shouldDraw = false; settings.debugModeStep = 200; // settings.averageResidualForcesCriterionThreshold = 1e-5; settings.maxDRMIterations = 200000; SimulationResults results = simulator.executeSimulation(std::make_shared(job), settings); const double &desiredRotationAngle = global.desiredMaxRotationAngle; double error; #ifdef POLYSCOPE_DEFINED job.pMesh->setLabel("initial"); // job.pMesh->registerForDrawing(); // results.registerForDrawing(); // polyscope::show(); std::string saveJobToPath; if (!results.converged) { // std::cout << "Force used:" << forceMagnitude << std::endl; error = std::numeric_limits::max(); // DRMSimulationModel::Settings debugSimulationSettings; // debugSimulationSettings.isDebugMode = true; // debugSimulationSettings.debugModeStep = 1000; // // debugSimulationSettings.maxDRMIterations = 100000; // debugSimulationSettings.shouldDraw = true; // debugSimulationSettings.drawingStep = debugSimulationSettings.debugModeStep; // debugSimulationSettings.shouldCreatePlots = true; // // debugSimulationSettings.Dtini = 0.06; // debugSimulationSettings.beVerbose = true; // debugSimulationSettings.useAverage = true; // // debugSimulationSettings.totalExternalForcesNormPercentageTermination = 1e-3; // debugSimulationSettings.shouldUseTranslationalKineticEnergyThreshold = true; // auto debugResults = simulator.executeSimulation(std::make_shared(job), // debugSimulationSettings); // std::terminate(); saveJobToPath = "../nonConvergingJobs"; } else { error = std::abs( results.rotationalDisplacementQuaternion[global.interfaceViForComputingScenarioError] .angularDistance(Eigen::Quaterniond::Identity()) - desiredRotationAngle); saveJobToPath = "../convergingJobs"; } // std::filesystem::path outputPath(std::filesystem::path(saveJobToPath) // .append(job.pMesh->getLabel()) // .append("mag_" + global.currentScenarioName)); // std::filesystem::create_directories(outputPath); // job.save(outputPath); // settings.save(outputPath); std::cout << "Force:" << forceMagnitude << " Error is:" << vcg::math::ToDeg(error) << std::endl; #endif return error; } void search(const std::function objectiveFunction, const double &targetY, double &optimalX, double &error, const double &epsilon, const double &maxIterations) { error = std::numeric_limits::max(); int iterationIndex = 0; double low = optimalX / 1e-3, high = optimalX * 1e3; while (error > epsilon && iterationIndex < maxIterations) { const double y = objectiveFunction(optimalX); error = std::abs(targetY - y); if (y > targetY) { high = optimalX; } else { low = optimalX; } optimalX = low + (high - low) / 2; iterationIndex++; } if (iterationIndex == maxIterations) { std::cerr << "Max iterations reached." << std::endl; } } double fullPatternMaxSimulationForceTranslationalObjective(const double &forceMagnitude) { SimulationJob job; job.pMesh = global.pFullPatternSimulationMesh; global.constructScenarioFunction(forceMagnitude, global.fullPatternInterfaceViPairs, job); // ReducedModelOptimizer::axialSimulationScenario(forceMagnitude, // global.fullPatternInterfaceViPairs, // job); DRMSimulationModel simulator; DRMSimulationModel::Settings settings; // settings.totalResidualForcesNormThreshold = 1e-3; settings.totalExternalForcesNormPercentageTermination = 1e-2; settings.totalTranslationalKineticEnergyThreshold = 1e-8; settings.viscousDampingFactor = 5e-3; settings.useKineticDamping = true; // settings.averageResidualForcesCriterionThreshold = 1e-5; // settings.useAverage = true; // settings.totalTranslationalKineticEnergyThreshold = 1e-10; // settings.shouldUseTranslationalKineticEnergyThreshold = true; // settings.shouldDraw = true; // settings.isDebugMode = true; // settings.drawingStep = 200000; // settings.beVerbose = true; // settings.debugModeStep = 200; settings.maxDRMIterations = 200000; SimulationResults results = simulator.executeSimulation(std::make_shared(job), settings); const double &desiredDisplacementValue = global.desiredMaxDisplacementValue; double error; if (!results.converged) { error = std::numeric_limits::max(); std::filesystem::path outputPath(std::filesystem::path("../nonConvergingJobs") .append(job.pMesh->getLabel()) .append("mag_" + global.currentScenarioName)); std::filesystem::create_directories(outputPath); job.save(outputPath); settings.save(outputPath); // std::terminate(); } else { error = std::abs( results.displacements[global.interfaceViForComputingScenarioError].getTranslation().norm() - desiredDisplacementValue); } #ifdef POLYSCOPE_DEFINED std::cout << "Force:" << forceMagnitude << " Error is:" << error << std::endl; #endif return error; } #ifdef USE_ENSMALLEN struct ForceMagnitudeOptimization { std::function objectiveFunction; ForceMagnitudeOptimization(std::function &f) : objectiveFunction(f) {} double Evaluate(const arma::mat &x) { return objectiveFunction(x(0, 0)); } }; #endif double ReducedModelOptimizer::computeFullPatternMaxSimulationForce( const BaseSimulationScenario &scenario) { double forceMagnitude = 1; double minimumError; bool wasSuccessful = false; global.constructScenarioFunction = constructBaseScenarioFunctions[scenario]; const double baseTriangleHeight = vcg::Distance(global.baseTriangle.cP(0), (global.baseTriangle.cP(1) + global.baseTriangle.cP(2)) / 2); std::function objectiveFunction; double translationalOptimizationEpsilon{baseTriangleHeight * 0.001}; double objectiveEpsilon = translationalOptimizationEpsilon; objectiveFunction = &fullPatternMaxSimulationForceTranslationalObjective; global.interfaceViForComputingScenarioError = global.fullPatternInterfaceViPairs[1].first; global.desiredMaxDisplacementValue = 0.1 * baseTriangleHeight; global.currentScenarioName = baseSimulationScenarioNames[scenario]; double forceMagnitudeEpsilon = 1e-4; switch (scenario) { case Axial: global.desiredMaxDisplacementValue = 0.03 * baseTriangleHeight; break; case Shear: global.desiredMaxDisplacementValue = 0.03 * baseTriangleHeight; break; case Bending: break; case Dome: global.desiredMaxRotationAngle = vcg::math::ToRad(25.0); objectiveFunction = &fullPatternMaxSimulationForceRotationalObjective; forceMagnitudeEpsilon *= 1e-2; objectiveEpsilon = vcg::math::ToRad(3.0); forceMagnitude = 0.6; break; case Saddle: global.interfaceViForComputingScenarioError = global.fullPatternInterfaceViPairs[0].first; break; } constexpr int maxIterations = 1000; minimumError = dlib::find_min_single_variable(objectiveFunction, forceMagnitude, 1e-4, 1e4, forceMagnitudeEpsilon, maxIterations); #ifdef DLIB_DEFINED #else // ens::SA<> optimizer; // arma::vec lowerBound("0.00001"); // arma::vec upperBound("10000"); // ens::LBestPSO optimizer(64, lowerBound, upperBound, maxIterations, 350, forceMagnitudeEpsilon); // ForceMagnitudeOptimization f(objectiveFunction); // Create function to be optimized. // arma::mat forceMagnitude_mat({forceMagnitude}); // minimumError = optimizer.Optimize(f, forceMagnitude_mat); // std::cout << ReducedPatternOptimization::baseSimulationScenarioNames[scenario] << ": " // << optimalObjective << std::endl; // forceMagnitude = forceMagnitude_mat(0, 0); // search(objectiveFunction, // global.desiredMaxDisplacementValue, // forceMagnitude, // minimumError, // objectiveEpsilon, // maxIterations); #endif wasSuccessful = minimumError < objectiveEpsilon; #ifdef POLYSCOPE_DEFINED std::cout << "Max " << ReducedPatternOptimization::baseSimulationScenarioNames[scenario] << " magnitude:" << forceMagnitude << std::endl; if (!wasSuccessful) { SimulationJob job; job.pMesh = global.pFullPatternSimulationMesh; global.constructScenarioFunction(forceMagnitude, global.fullPatternInterfaceViPairs, job); std::cout << ReducedPatternOptimization::baseSimulationScenarioNames[scenario] + " max scenario magnitude was not succefully determined." << std::endl; std::filesystem::path outputPath( std::filesystem::path("../nonConvergingJobs") .append(m_pFullPatternSimulationMesh->getLabel()) .append("magFinal_" + ReducedPatternOptimization::baseSimulationScenarioNames[scenario])); std::filesystem::create_directories(outputPath); job.save(outputPath); std::terminate(); } #endif return forceMagnitude; } std::vector> ReducedModelOptimizer::createFullPatternSimulationJobs( const std::shared_ptr &pMesh, const std::vector> &scenarioMaxForceMagnitudePairs) { std::vector> scenarios; scenarios.resize(totalNumberOfSimulationScenarios); SimulationJob job; job.pMesh = pMesh; global.scenarioEqualizationWeight.resize( totalNumberOfSimulationScenarios); //This essentially holds the base scenario weights but I use totalNumberOfSimulationScenarios elements instead in order to have O(1) access time during the optimization global.scenarioUserWeights.resize(totalNumberOfSimulationScenarios); const double userWeightsSum = std::accumulate(baseScenarioWeights.begin(), baseScenarioWeights.end(), 0); for (std::pair scenarioMaxForceMagnitudePair : scenarioMaxForceMagnitudePairs) { const BaseSimulationScenario scenario = scenarioMaxForceMagnitudePair.first; const double maxForceMagnitude = scenarioMaxForceMagnitudePair.second; const int numberOfSimulationScenarios = simulationScenariosResolution[scenario]; const double minForceMagnitude = scenarioIsSymmetrical[scenario] ? maxForceMagnitude / numberOfSimulationScenarios : -maxForceMagnitude; const double forceMagnitudeStep = numberOfSimulationScenarios == 1 ? maxForceMagnitude : (maxForceMagnitude - minForceMagnitude) / (numberOfSimulationScenarios); const int baseSimulationScenarioIndexOffset = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + scenario, 0); const double baseScenarioEqualizationWeight = static_cast( numberOfSimulationScenarios) / totalNumberOfSimulationScenarios; const double baseScenarioUserWeight = static_cast(baseScenarioWeights[scenario]) / userWeightsSum; for (int simulationScenarioIndex = 0; simulationScenarioIndex < numberOfSimulationScenarios; simulationScenarioIndex++) { job.nodalExternalForces.clear(); job.constrainedVertices.clear(); job.nodalForcedDisplacements.clear(); job.label = baseSimulationScenarioNames[scenario] + "_" + std::to_string(simulationScenarioIndex); const double forceMagnitude = (forceMagnitudeStep * simulationScenarioIndex + minForceMagnitude); constructBaseScenarioFunctions[scenario](forceMagnitude, m_fullPatternOppositeInterfaceViPairs, job); scenarios[baseSimulationScenarioIndexOffset + simulationScenarioIndex] = std::make_shared(job); global.scenarioEqualizationWeight[simulationScenarioIndex] = baseScenarioEqualizationWeight; global.scenarioUserWeights[simulationScenarioIndex] = baseScenarioUserWeight; } } #ifdef POLYSCOPE_DEFINED std::cout << "Computed full pattern scenario magnitudes" << std::endl; #endif return scenarios; } void ReducedModelOptimizer::computeObjectiveValueNormalizationFactors() { // m_pFullPatternSimulationMesh->registerForDrawing(); // m_pFullPatternSimulationMesh->save(std::filesystem::current_path().append("initial.ply")); // Compute the sum of the displacement norms std::vector fullPatternTranslationalDisplacementNormSum( totalNumberOfSimulationScenarios); std::vector fullPatternAngularDistance(totalNumberOfSimulationScenarios); for (int simulationScenarioIndex : global.simulationScenarioIndices) { double translationalDisplacementNormSum = 0; for (auto interfaceViPair : global.reducedToFullInterfaceViMap) { const int fullPatternVi = interfaceViPair.second; //If the full pattern vertex is translationally constrained dont take it into account if (global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.contains(fullPatternVi)) { const std::unordered_set constrainedDof = global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.at(fullPatternVi); if (constrainedDof.contains(0) && constrainedDof.contains(1) && constrainedDof.contains(2)) { continue; } } const Vector6d &vertexDisplacement = global.fullPatternResults[simulationScenarioIndex] .displacements[fullPatternVi]; // std::cout << "vi:" << fullPatternVi << std::endl; // std::cout << "displacement:" << vertexDisplacement.getTranslation().norm() << std::endl; translationalDisplacementNormSum += vertexDisplacement.getTranslation().norm(); } // global.fullPatternResults[simulationScenarioIndex].saveDeformedModel( // std::filesystem::current_path()); // global.fullPatternResults[simulationScenarioIndex].registerForDrawing(); // polyscope::show(); // global.fullPatternResults[simulationScenarioIndex].unregister(); double angularDistanceSum = 0; for (auto interfaceViPair : global.reducedToFullInterfaceViMap) { const int fullPatternVi = interfaceViPair.second; //If the full pattern vertex is rotationally constrained dont take it into account if (global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.contains(fullPatternVi)) { const std::unordered_set constrainedDof = global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.at(fullPatternVi); if (constrainedDof.contains(3) && constrainedDof.contains(5) && constrainedDof.contains(4)) { continue; } } angularDistanceSum += global.fullPatternResults[simulationScenarioIndex] .rotationalDisplacementQuaternion[fullPatternVi] .angularDistance(Eigen::Quaterniond::Identity()); } fullPatternTranslationalDisplacementNormSum[simulationScenarioIndex] = translationalDisplacementNormSum; fullPatternAngularDistance[simulationScenarioIndex] = angularDistanceSum; } for (int simulationScenarioIndex : global.simulationScenarioIndices) { if (global.optimizationSettings.normalizationStrategy == Settings::NormalizationStrategy::Epsilon) { const double epsilon_translationalDisplacement = global.optimizationSettings .translationNormalizationParameter; global.translationalDisplacementNormalizationValues[simulationScenarioIndex] = std::max(fullPatternTranslationalDisplacementNormSum[simulationScenarioIndex], epsilon_translationalDisplacement); const double epsilon_rotationalDisplacement = global.optimizationSettings .rotationNormalizationParameter; global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] = std::max(fullPatternAngularDistance[simulationScenarioIndex], epsilon_rotationalDisplacement); } else { global.translationalDisplacementNormalizationValues[simulationScenarioIndex] = 1; global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] = 1; } } } void ReducedModelOptimizer::optimize( const Settings &optimizationSettings, ReducedPatternOptimization::Results &results, const std::vector &desiredBaseSimulationScenarioIndices) { for (int baseSimulationScenarioIndex : desiredBaseSimulationScenarioIndices) { //Increase the size of the vector holding the simulation scenario indices global.simulationScenarioIndices.resize( global.simulationScenarioIndices.size() + simulationScenariosResolution[baseSimulationScenarioIndex]); //Add the simulation scenarios indices that correspond to this base simulation scenario std::iota(global.simulationScenarioIndices.end() - simulationScenariosResolution[baseSimulationScenarioIndex], global.simulationScenarioIndices.end(), std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + baseSimulationScenarioIndex, 0)); } global.reducedPatternSimulationJobs.resize(totalNumberOfSimulationScenarios); global.fullPatternResults.resize(totalNumberOfSimulationScenarios); global.translationalDisplacementNormalizationValues.resize(totalNumberOfSimulationScenarios); global.rotationalDisplacementNormalizationValues.resize(totalNumberOfSimulationScenarios); global.minY = std::numeric_limits::max(); global.numOfSimulationCrashes = 0; global.numberOfFunctionCalls = 0; global.optimizationSettings = optimizationSettings; global.pFullPatternSimulationMesh = m_pFullPatternSimulationMesh; std::vector> fullPatternSimulationScenarioMaxMagnitudes = getFullPatternMaxSimulationForces(desiredBaseSimulationScenarioIndices); global.fullPatternSimulationJobs = createFullPatternSimulationJobs(m_pFullPatternSimulationMesh, fullPatternSimulationScenarioMaxMagnitudes); // polyscope::removeAllStructures(); results.baseTriangle = global.baseTriangle; DRMSimulationModel::Settings simulationSettings; simulationSettings.maxDRMIterations = 200000; simulationSettings.totalTranslationalKineticEnergyThreshold = 1e-8; simulationSettings.viscousDampingFactor = 5e-3; simulationSettings.useKineticDamping = true; // simulationSettings.averageResidualForcesCriterionThreshold = 1e-5; // simulationSettings.viscousDampingFactor = 1e-3; // simulationSettings.beVerbose = true; // simulationSettings.shouldDraw = true; // simulationSettings.isDebugMode = true; // simulationSettings.debugModeStep = 100000; #ifdef POLYSCOPE_DEFINED constexpr bool drawFullPatternSimulationResults = false; if (drawFullPatternSimulationResults) { global.fullPatternSimulationJobs[0]->pMesh->registerForDrawing( ReducedPatternOptimization::Colors::fullInitial); } #endif results.wasSuccessful = true; for (int simulationScenarioIndex : global.simulationScenarioIndices) { const std::shared_ptr &pFullPatternSimulationJob = global.fullPatternSimulationJobs[simulationScenarioIndex]; // std::filesystem::path patternMaxForceMagnitudesFilePath( // std::filesystem::path(forceMagnitudesDirectoryPath) // .append(pFullPatternSimulationJob->getLabel() + ".json")); // const bool fullPatternScenarioMagnitudesExist = std::filesystem::exists( // patternMaxForceMagnitudesFilePath); // if (fullPatternScenarioMagnitudesExist) { // nlohmann::json json; // std::ifstream ifs(patternMaxForceMagnitudesFilePath.string()); // ifs >> json; // fullPatternSimulationScenarioMaxMagnitudes // = static_cast>>( // json.at("maxMagn")); // const bool shouldRecompute = fullPatternSimulationScenarioMaxMagnitudes.size() // != desiredBaseSimulationScenarioIndices.size(); // if (!shouldRecompute) { // return fullPatternSimulationScenarioMaxMagnitudes; // } // } #ifdef POLYSCOPE_DEFINED LinearSimulationModel linearSimulator; SimulationResults fullPatternResults = linearSimulator.executeSimulation( pFullPatternSimulationJob); #else SimulationResults fullPatternResults = simulator.executeSimulation(pFullPatternSimulationJob, simulationSettings); #endif // if (!fullPatternResults.converged) { // DRMSimulationModel::Settings simulationSettings_secondRound; // simulationSettings_secondRound.viscousDampingFactor = 2e-3; // simulationSettings_secondRound.useKineticDamping = true; // simulationSettings.maxDRMIterations = 200000; // fullPatternResults = simulator.executeSimulation(pFullPatternSimulationJob, // simulationSettings_secondRound); #ifdef POLYSCOPE_DEFINED // std::cout << "Simulation job " << pFullPatternSimulationJob->getLabel() // << " used viscous damping." << std::endl; #endif if (!fullPatternResults.converged) { results.wasSuccessful = false; std::cerr << "Simulation job " << pFullPatternSimulationJob->getLabel() << " did not converge." << std::endl; #ifdef POLYSCOPE_DEFINED // DRMSimulationModel::Settings debugSimulationSettings; // debugSimulationSettings.debugModeStep = 50; // // // debugSimulationSettings.maxDRMIterations = 100000; // debugSimulationSettings.shouldDraw = true; // // debugSimulationSettings.drawingStep = debugSimulationSettings.debugModeStep; // debugSimulationSettings.shouldCreatePlots = true; // // // debugSimulationSettings.Dtini = 0.06; // debugSimulationSettings.beVerbose = true; // debugSimulationSettings.averageResidualForcesCriterionThreshold = 1e-5; // debugSimulationSettings.maxDRMIterations = 100000; // debugSimulationSettings.totalTranslationalKineticEnergyThreshold = 1e-8; // debugSimulationSettings.viscousDampingFactor = 1e-2; // // // debugSimulationSettings.totalExternalForcesNormPercentageTermination = 1e-3; // // // debugSimulationSettings.shouldUseTranslationalKineticEnergyThreshold = true; // auto debugResults = simulator.executeSimulation(pFullPatternSimulationJob, // debugSimulationSettings); // debugResults.setLabelPrefix("debugResults"); // debugResults.registerForDrawing(); // polyscope::show(); // debugResults.unregister(); std::filesystem::path outputPath( std::filesystem::path("../nonConvergingJobs") .append(m_pFullPatternSimulationMesh->getLabel()) .append("final_" + pFullPatternSimulationJob->getLabel())); std::filesystem::create_directories(outputPath); pFullPatternSimulationJob->save(outputPath); simulationSettings.save(outputPath); #endif std::terminate(); return; // } } #ifdef POLYSCOPE_DEFINED if (drawFullPatternSimulationResults) { // SimulationResults fullPatternResults_linear = linearSimulator.executeSimulation( // pFullPatternSimulationJob); fullPatternResults.registerForDrawing(ReducedPatternOptimization::Colors::fullDeformed, true); // fullPatternResults_linear.labelPrefix += "_linear"; // fullPatternResults_linear.registerForDrawing(ReducedModelOptimization::Colors::fullDeformed, // true, // true); polyscope::show(); fullPatternResults.unregister(); // fullPatternResults_linear.unregister(); } #endif global.fullPatternResults[simulationScenarioIndex] = fullPatternResults; SimulationJob reducedPatternSimulationJob; reducedPatternSimulationJob.pMesh = m_pReducedPatternSimulationMesh; computeReducedModelSimulationJob(*pFullPatternSimulationJob, m_fullToReducedInterfaceViMap, reducedPatternSimulationJob); global.reducedPatternSimulationJobs[simulationScenarioIndex] = std::make_shared(reducedPatternSimulationJob); // std::cout << "Ran sim scenario:" << simulationScenarioIndex << std::endl; } #ifdef POLYSCOPE_DEFINED if (drawFullPatternSimulationResults) { global.fullPatternSimulationJobs[0]->pMesh->unregister(); } #endif if (global.optimizationSettings.normalizationStrategy == Settings::NormalizationStrategy::Epsilon) { computeObjectiveValueNormalizationFactors(); } #ifdef POLYSCOPE_DEFINED std::cout << "Running reduced model optimization" << std::endl; #endif runOptimization(optimizationSettings, results); results.notes = optimizationNotes; }