#include "reducedmodeloptimizer.hpp" #include "linearsimulationmodel.hpp" #include "simulationhistoryplotter.hpp" #include "trianglepatterngeometry.hpp" #include "trianglepattterntopology.hpp" #include #include #include struct GlobalOptimizationVariables { std::vector g_optimalReducedModelDisplacements; std::vector> fullPatternDisplacements; std::vector objectiveNormalizationValues; std::vector> fullPatternSimulationJobs; std::vector> reducedPatternSimulationJobs; std::unordered_map reducedToFullInterfaceViMap; matplot::line_handle gPlotHandle; std::vector gObjectiveValueHistory; Eigen::VectorXd g_initialParameters; std::vector simulationScenarioIndices; std::vector g_innerHexagonVectors{6, VectorType(0, 0, 0)}; double innerHexagonInitialRotationAngle{30}; double g_innerHexagonInitialPos{0}; double minY{DBL_MAX}; std::vector minX; int numOfSimulationCrashes{false}; int numberOfFunctionCalls{0}; int numberOfOptimizationParameters{5}; ReducedModelOptimizer::Settings optimizationSettings; } global; std::vector reducedPatternMaximumDisplacementSimulationJobs; double ReducedModelOptimizer::computeError( const std::vector &reducedPatternDisplacements, const std::vector &fullPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor) { const double rawError = computeRawError(reducedPatternDisplacements, fullPatternDisplacements, reducedToFullInterfaceViMap); if (global.optimizationSettings.normalizationStrategy != Settings::NormalizationStrategy::NonNormalized) { return rawError / normalizationFactor; } return rawError; } double ReducedModelOptimizer::computeRawError( const std::vector &reducedPatternDisplacements, const std::vector &fullPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap) { double error = 0; for (const auto reducedFullViPair : reducedToFullInterfaceViMap) { const VertexIndex reducedModelVi = reducedFullViPair.first; Eigen::Vector3d reducedVertexDisplacement( reducedPatternDisplacements[reducedModelVi][0], reducedPatternDisplacements[reducedModelVi][1], reducedPatternDisplacements[reducedModelVi][2]); if (!std::isfinite(reducedVertexDisplacement[0]) || !std::isfinite(reducedVertexDisplacement[1]) || !std::isfinite(reducedVertexDisplacement[2])) { std::cout << "Displacements are not finite" << std::endl; std::terminate(); } const VertexIndex fullModelVi = reducedFullViPair.second; Eigen::Vector3d fullVertexDisplacement( fullPatternDisplacements[fullModelVi][0], fullPatternDisplacements[fullModelVi][1], fullPatternDisplacements[fullModelVi][2]); Eigen::Vector3d errorVector = fullVertexDisplacement - reducedVertexDisplacement; // error += errorVector.squaredNorm(); error += errorVector.norm(); } return error; } void updateMesh(long n, const double *x) { std::shared_ptr &pReducedPatternSimulationMesh = global.reducedPatternSimulationJobs[global.simulationScenarioIndices[0]] ->pMesh; // const Element &elem = g_reducedPatternSimulationJob[0]->mesh->elements[0]; // std::cout << elem.axialConstFactor << " " << elem.torsionConstFactor << " // " // << elem.firstBendingConstFactor << " " // << elem.secondBendingConstFactor << std::endl; for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; // if (g_reducedPatternExludedEdges.contains(ei)) { // continue; // } // e.properties.E = g_initialParameters * x[ei]; // e.properties.E = g_initialParameters(0) * x[0]; // e.properties.G = g_initialParameters(1) * x[1]; e.setDimensions( RectangularBeamDimensions(global.g_initialParameters(0) * x[0], global.g_initialParameters(0) * x[0] / (global.g_initialParameters(1) * x[1]))); e.setMaterial(ElementMaterial(e.material.poissonsRatio, global.g_initialParameters(2) * x[2])); // e.properties.A = g_initialParameters(0) * x[0]; // e.properties.J = g_initialParameters(1) * x[1]; // e.properties.I2 = g_initialParameters(2) * x[2]; // e.properties.I3 = g_initialParameters(3) * x[3]; // e.properties.G = e.properties.E / (2 * (1 + 0.3)); // e.axialConstFactor = e.properties.E * e.properties.A / // e.initialLength; e.torsionConstFactor = e.properties.G * // e.properties.J / e.initialLength; e.firstBendingConstFactor = // 2 * e.properties.E * e.properties.I2 / e.initialLength; // e.secondBendingConstFactor = // 2 * e.properties.E * e.properties.I3 / e.initialLength; } // std::cout << elem.axialConstFactor << " " << elem.torsionConstFactor << " // " // << elem.firstBendingConstFactor << " " // << elem.secondBendingConstFactor << std::endl; // const Element &e = pReducedPatternSimulationMesh->elements[0]; // std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; assert(pReducedPatternSimulationMesh->EN() == 12); auto R = vcg::RotationMatrix( ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(x[4] - global.innerHexagonInitialRotationAngle)); // for (VertexIndex vi = 0; vi < pReducedPatternSimulationMesh->VN(); // vi += 2) { for (int rotationCounter = 0; rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) { pReducedPatternSimulationMesh->vert[2 * rotationCounter].P() = R * global.g_innerHexagonVectors[rotationCounter] * x[3]; } pReducedPatternSimulationMesh->reset(); #ifdef POLYSCOPE_DEFINED pReducedPatternSimulationMesh->updateEigenEdgeAndVertices(); #endif } double ReducedModelOptimizer::objective(double b, double r, double E) { std::vector x{b, r, E}; return ReducedModelOptimizer::objective(x.size(), x.data()); } double ReducedModelOptimizer::objective(double b, double h, double E, double innerHexagonSize, double innerHexagonRotationAngle) { std::vector x{b, h, E, innerHexagonSize, innerHexagonRotationAngle}; return ReducedModelOptimizer::objective(x.size(), x.data()); } double ReducedModelOptimizer::objective(long n, const double *x) { // std::cout.precision(17); // const Element &e = // global.reducedPatternSimulationJobs[0]->pMesh->elements[0]; std::cout << // e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; updateMesh(n, x); // std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; // run simulations double totalError = 0; // LinearSimulationModel simulator; FormFinder simulator; for (const int simulationScenarioIndex : global.simulationScenarioIndices) { SimulationResults reducedModelResults = simulator.executeSimulation( global.reducedPatternSimulationJobs[simulationScenarioIndex]); //#ifdef POLYSCOPE_DEFINED // global.reducedPatternSimulationJobs[simulationScenarioIndex] // ->pMesh->registerForDrawing(colors.reducedInitial); // reducedModelResults.registerForDrawing(colors.reducedDeformed); // polyscope::show(); // reducedModelResults.unregister(); //#endif // std::string filename; if (!reducedModelResults.converged) { totalError += std::numeric_limits::max(); global.numOfSimulationCrashes++; #ifdef POLYSCOPE_DEFINED std::cout << "Failed simulation" << std::endl; #endif } else { double simulationScenarioError = computeError( reducedModelResults.displacements, global.fullPatternDisplacements[simulationScenarioIndex], global.reducedToFullInterfaceViMap, global.objectiveNormalizationValues[simulationScenarioIndex]); // if (global.optimizationSettings.normalizationStrategy != // NormalizationStrategy::Epsilon && // simulationScenarioError > 1) { // std::cout << "Simulation scenario " // << // simulationScenarioStrings[simulationScenarioIndex] // << " results in an error bigger than one." << // std::endl; // for (size_t parameterIndex = 0; parameterIndex < n; // parameterIndex++) { // std::cout << "x[" + std::to_string(parameterIndex) + "]=" // << x[parameterIndex] << std::endl; // } // } //#ifdef POLYSCOPE_DEFINED // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // global.reducedPatternSimulationJobs[simulationScenarioIndex], // global.reducedToFullInterfaceViMap, false); // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // std::make_shared( // reducedPatternMaximumDisplacementSimulationJobs // [simulationScenarioIndex]), // global.reducedToFullInterfaceViMap, true); // polyscope::removeAllStructures(); //#endif // POLYSCOPE_DEFINED totalError += simulationScenarioError; } } // std::cout << error << std::endl; if (totalError < global.minY) { global.minY = totalError; global.minX.assign(x, x + n); } #ifdef POLYSCOPE_DEFINED if (++global.numberOfFunctionCalls % 100 == 0) { std::cout << "Number of function calls:" << global.numberOfFunctionCalls << std::endl; } #endif // compute error and return it // global.gObjectiveValueHistory.push_back(error); // auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(), // gObjectiveValueHistory.size()); // std::vector colors(gObjectiveValueHistory.size(), 2); // if (g_firstRoundIterationIndex != 0) { // for_each(colors.begin() + g_firstRoundIterationIndex, colors.end(), // [](double &c) { c = 0.7; }); // } // gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory, 6, colors); // SimulationResultsReporter::createPlot("Number of Steps", "Objective // value", // gObjectiveValueHistory); return totalError; } void ReducedModelOptimizer::createSimulationMeshes( PatternGeometry &fullModel, PatternGeometry &reducedModel, std::shared_ptr &pFullPatternSimulationMesh, std::shared_ptr &pReducedPatternSimulationMesh) { if (typeid(CrossSectionType) != typeid(RectangularBeamDimensions)) { std::cerr << "Error: A rectangular cross section is expected." << std::endl; terminate(); } // Full pattern pFullPatternSimulationMesh = std::make_shared(fullModel); pFullPatternSimulationMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); pFullPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9); // Reduced pattern pReducedPatternSimulationMesh = std::make_shared(reducedModel); pReducedPatternSimulationMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); pReducedPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9); } void ReducedModelOptimizer::createSimulationMeshes( PatternGeometry &fullModel, PatternGeometry &reducedModel) { ReducedModelOptimizer::createSimulationMeshes( fullModel, reducedModel, m_pFullPatternSimulationMesh, m_pReducedPatternSimulationMesh); } void ReducedModelOptimizer::computeMaps( const std::unordered_set &reducedModelExcludedEdges, const std::unordered_map> &slotToNode, PatternGeometry &fullPattern, PatternGeometry &reducedPattern, std::unordered_map &reducedToFullInterfaceViMap, std::unordered_map &fullToReducedInterfaceViMap, std::unordered_map &fullPatternOppositeInterfaceViMap) { // Compute the offset between the interface nodes const size_t interfaceSlotIndex = 4; // bottom edge assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() && slotToNode.find(interfaceSlotIndex)->second.size() == 1); // Assuming that in the bottom edge there is only one vertex which is also the // interface const size_t baseTriangleInterfaceVi = *(slotToNode.find(interfaceSlotIndex)->second.begin()); vcg::tri::Allocator::PointerUpdater< PatternGeometry::VertexPointer> pu_fullModel; fullPattern.deleteDanglingVertices(pu_fullModel); const size_t fullModelBaseTriangleInterfaceVi = pu_fullModel.remap.empty() ? baseTriangleInterfaceVi : pu_fullModel.remap[baseTriangleInterfaceVi]; const size_t fullModelBaseTriangleVN = fullPattern.VN(); fullPattern.createFan(); const size_t duplicateVerticesPerFanPair = fullModelBaseTriangleVN - fullPattern.VN() / 6; const size_t fullPatternInterfaceVertexOffset = fullModelBaseTriangleVN - duplicateVerticesPerFanPair; // std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair << // std::endl; // Save excluded edges TODO:this changes the global object. Should this be a // function parameter? // global.reducedPatternExludedEdges.clear(); // const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN(); // for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { // for (const size_t ei : reducedModelExcludedEdges) { // global.reducedPatternExludedEdges.insert( // fanIndex * reducedBaseTriangleNumberOfEdges + ei); // } // } // Construct reduced->full and full->reduced interface vi map reducedToFullInterfaceViMap.clear(); vcg::tri::Allocator::PointerUpdater< PatternGeometry::VertexPointer> pu_reducedModel; reducedPattern.deleteDanglingVertices(pu_reducedModel); const size_t reducedModelBaseTriangleInterfaceVi = pu_reducedModel.remap[baseTriangleInterfaceVi]; const size_t reducedModelInterfaceVertexOffset = reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/; reducedPattern.createFan(); for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex + reducedModelBaseTriangleInterfaceVi] = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; } fullToReducedInterfaceViMap.clear(); constructInverseMap(reducedToFullInterfaceViMap, fullToReducedInterfaceViMap); // Create opposite vertex map fullPatternOppositeInterfaceViMap.clear(); for (int fanIndex = fanSize / 2 - 1; fanIndex >= 0; fanIndex--) { const size_t vi0 = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset; assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN()); fullPatternOppositeInterfaceViMap[vi0] = vi1; } const bool debugMapping = false; if (debugMapping) { #if POLYSCOPE_DEFINED reducedPattern.registerForDrawing(); // std::vector colors_reducedPatternExcludedEdges( // reducedPattern.EN(), glm::vec3(0, 0, 0)); // for (const size_t ei : global.reducedPatternExludedEdges) { // colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0); // } // const std::string label = reducedPattern.getLabel(); // polyscope::getCurveNetwork(label) // ->addEdgeColorQuantity("Excluded edges", // colors_reducedPatternExcludedEdges) // ->setEnabled(true); // polyscope::show(); std::vector nodeColorsOpposite(fullPattern.VN(), glm::vec3(0, 0, 0)); for (const std::pair oppositeVerts : fullPatternOppositeInterfaceViMap) { auto color = polyscope::getNextUniqueColor(); nodeColorsOpposite[oppositeVerts.first] = color; nodeColorsOpposite[oppositeVerts.second] = color; } fullPattern.registerForDrawing(); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("oppositeMap", nodeColorsOpposite) ->setEnabled(true); polyscope::show(); std::vector nodeColorsReducedToFull_reduced(reducedPattern.VN(), glm::vec3(0, 0, 0)); std::vector nodeColorsReducedToFull_full(fullPattern.VN(), glm::vec3(0, 0, 0)); for (size_t vi = 0; vi < reducedPattern.VN(); vi++) { if (global.reducedToFullInterfaceViMap.contains(vi)) { auto color = polyscope::getNextUniqueColor(); nodeColorsReducedToFull_reduced[vi] = color; nodeColorsReducedToFull_full[global.reducedToFullInterfaceViMap[vi]] = color; } } polyscope::getCurveNetwork(reducedPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_reduced", nodeColorsReducedToFull_reduced) ->setEnabled(true); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_full", nodeColorsReducedToFull_full) ->setEnabled(true); polyscope::show(); #endif } } void ReducedModelOptimizer::computeMaps( PatternGeometry &fullPattern, PatternGeometry &reducedPattern, const std::unordered_set &reducedModelExcludedEdges) { ReducedModelOptimizer::computeMaps( reducedModelExcludedEdges, slotToNode, fullPattern, reducedPattern, global.reducedToFullInterfaceViMap, m_fullToReducedInterfaceViMap, m_fullPatternOppositeInterfaceViMap); } ReducedModelOptimizer::ReducedModelOptimizer( const std::vector &numberOfNodesPerSlot) { FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot); FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode); } void ReducedModelOptimizer::initializePatterns( PatternGeometry &fullPattern, PatternGeometry &reducedPattern, const std::unordered_set &reducedModelExcludedEdges) { // fullPattern.setLabel("full_pattern_" + fullPattern.getLabel()); // reducedPattern.setLabel("reduced_pattern_" + reducedPattern.getLabel()); assert(fullPattern.VN() == reducedPattern.VN() && fullPattern.EN() >= reducedPattern.EN()); #if POLYSCOPE_DEFINED polyscope::removeAllStructures(); #endif // Create copies of the input models PatternGeometry copyFullPattern; PatternGeometry copyReducedPattern; copyFullPattern.copy(fullPattern); copyReducedPattern.copy(reducedPattern); /* * Here we create the vector that connects the central node with the bottom * left node of the base triangle. During the optimization the vi%2==0 nodes * move on these vectors. * */ const double h = copyReducedPattern.getBaseTriangleHeight(); double baseTriangle_bottomEdgeSize = 2 * h / tan(vcg::math::ToRad(60.0)); VectorType baseTriangle_leftBottomNode(-baseTriangle_bottomEdgeSize / 2, -h, 0); for (int rotationCounter = 0; rotationCounter < fanSize; rotationCounter++) { VectorType rotatedVector = vcg::RotationMatrix(patternPlaneNormal, vcg::math::ToRad(rotationCounter * 60.0)) * baseTriangle_leftBottomNode; global.g_innerHexagonVectors[rotationCounter] = rotatedVector; } const double innerHexagonInitialPos_x = copyReducedPattern.vert[0].cP()[0] / global.g_innerHexagonVectors[0][0]; const double innerHexagonInitialPos_y = copyReducedPattern.vert[0].cP()[1] / global.g_innerHexagonVectors[0][1]; global.g_innerHexagonInitialPos = innerHexagonInitialPos_x; global.innerHexagonInitialRotationAngle = 30; /* NOTE: Here I assume that the CW reduced pattern is given as input. This is not very generic */ computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges); createSimulationMeshes(copyFullPattern, copyReducedPattern); initializeOptimizationParameters(m_pReducedPatternSimulationMesh); } void ReducedModelOptimizer::initializeOptimizationParameters( const std::shared_ptr &mesh) { global.numberOfOptimizationParameters = 5; global.g_initialParameters.resize(global.numberOfOptimizationParameters); // Save save the beam stiffnesses // for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) { // Element &e = pReducedModelElementalMesh->elements[ei]; // if (g_reducedPatternExludedEdges.contains(ei)) { // const double stiffnessFactor = 5; // e.axialConstFactor *= stiffnessFactor; // e.torsionConstFactor *= stiffnessFactor; // e.firstBendingConstFactor *= stiffnessFactor; // e.secondBendingConstFactor *= stiffnessFactor; // } const double initialB = std::sqrt(mesh->elements[0].A); const double initialRatio = 1; global.g_initialParameters(0) = initialB; global.g_initialParameters(1) = initialRatio; global.g_initialParameters(2) = mesh->elements[0].material.youngsModulus; global.g_initialParameters(3) = global.g_innerHexagonInitialPos; global.innerHexagonInitialRotationAngle = 30; global.g_initialParameters(4) = global.innerHexagonInitialRotationAngle; // g_initialParameters = // m_pReducedPatternSimulationMesh->elements[0].properties.E; // for (size_t ei = 0; ei < m_pReducedPatternSimulationMesh->EN(); ei++) { // } // g_initialParameters(0) = mesh->elements[0].properties.E; // g_initialParameters(1) = mesh->elements[0].properties.G; // g_initialParameters(0) = mesh->elements[0].properties.A; // g_initialParameters(1) = mesh->elements[0].properties.J; // g_initialParameters(2) = mesh->elements[0].properties.I2; // g_initialParameters(3) = mesh->elements[0].properties.I3; // } } void ReducedModelOptimizer::computeReducedModelSimulationJob( const SimulationJob &simulationJobOfFullModel, const std::unordered_map &simulationJobFullToReducedMap, SimulationJob &simulationJobOfReducedModel) { assert(simulationJobOfReducedModel.pMesh->VN() != 0); std::unordered_map> reducedModelFixedVertices; for (auto fullModelFixedVertex : simulationJobOfFullModel.constrainedVertices) { reducedModelFixedVertices[simulationJobFullToReducedMap.at( fullModelFixedVertex.first)] = fullModelFixedVertex.second; } std::unordered_map reducedModelNodalForces; for (auto fullModelNodalForce : simulationJobOfFullModel.nodalExternalForces) { reducedModelNodalForces[simulationJobFullToReducedMap.at( fullModelNodalForce.first)] = fullModelNodalForce.second; } // std::unordered_map // reducedModelNodalForcedNormals; for (auto fullModelNodalForcedRotation : // simulationJobOfFullModel.nodalForcedNormals) { // reducedModelNodalForcedNormals[simulationJobFullToReducedMap.at( // fullModelNodalForcedRotation.first)] = // fullModelNodalForcedRotation.second; // } simulationJobOfReducedModel.constrainedVertices = reducedModelFixedVertices; simulationJobOfReducedModel.nodalExternalForces = reducedModelNodalForces; simulationJobOfReducedModel.label = simulationJobOfFullModel.getLabel(); // simulationJobOfReducedModel.nodalForcedNormals = // reducedModelNodalForcedNormals; } #if POLYSCOPE_DEFINED void ReducedModelOptimizer::visualizeResults( const std::vector> &fullPatternSimulationJobs, const std::vector> &reducedPatternSimulationJobs, const std::vector &simulationScenarios, const std::unordered_map &reducedToFullInterfaceViMap) { FormFinder simulator; std::shared_ptr pFullPatternSimulationMesh = fullPatternSimulationJobs[0]->pMesh; pFullPatternSimulationMesh->registerForDrawing(); pFullPatternSimulationMesh->savePly(pFullPatternSimulationMesh->getLabel() + "_undeformed.ply"); reducedPatternSimulationJobs[0]->pMesh->savePly( reducedPatternSimulationJobs[0]->pMesh->getLabel() + "_undeformed.ply"); double totalError = 0; for (const int simulationScenarioIndex : simulationScenarios) { const std::shared_ptr &pFullPatternSimulationJob = fullPatternSimulationJobs[simulationScenarioIndex]; pFullPatternSimulationJob->registerForDrawing( pFullPatternSimulationMesh->getLabel()); SimulationResults fullModelResults = simulator.executeSimulation(pFullPatternSimulationJob); fullModelResults.registerForDrawing(); // fullModelResults.saveDeformedModel(); const std::shared_ptr &pReducedPatternSimulationJob = reducedPatternSimulationJobs[simulationScenarioIndex]; SimulationResults reducedModelResults = simulator.executeSimulation(pReducedPatternSimulationJob); double normalizationFactor = 1; if (global.optimizationSettings.normalizationStrategy != Settings::NormalizationStrategy::NonNormalized) { normalizationFactor = global.objectiveNormalizationValues[simulationScenarioIndex]; } reducedModelResults.saveDeformedModel(); fullModelResults.saveDeformedModel(); double error = computeError( reducedModelResults.displacements, fullModelResults.displacements, reducedToFullInterfaceViMap, normalizationFactor); std::cout << "Error of simulation scenario " << simulationScenarioStrings[simulationScenarioIndex] << " is " << error << std::endl; totalError += error; reducedModelResults.registerForDrawing(); // firstOptimizationRoundResults[simulationScenarioIndex].registerForDrawing(); // registerWorldAxes(); const std::string screenshotFilename = "/home/iason/Coding/Projects/Approximating shapes with flat " "patterns/RodModelOptimizationForPatterns/build/OptimizationResults/" "Images/" + pFullPatternSimulationMesh->getLabel() + "_" + simulationScenarioStrings[simulationScenarioIndex]; polyscope::show(); polyscope::screenshot(screenshotFilename, false); fullModelResults.unregister(); reducedModelResults.unregister(); // firstOptimizationRoundResults[simulationScenarioIndex].unregister(); } std::cout << "Total error:" << totalError << std::endl; } void ReducedModelOptimizer::registerResultsForDrawing( const std::shared_ptr &pFullPatternSimulationJob, const std::shared_ptr &pReducedPatternSimulationJob, const std::unordered_map &reducedToFullInterfaceViMap) { FormFinder simulator; std::shared_ptr pFullPatternSimulationMesh = pFullPatternSimulationJob->pMesh; pFullPatternSimulationMesh->registerForDrawing(); // pFullPatternSimulationMesh->savePly(pFullPatternSimulationMesh->getLabel() // + // "_undeformed.ply"); // reducedPatternSimulationJobs[0]->pMesh->savePly( // reducedPatternSimulationJobs[0]->pMesh->getLabel() + // "_undeformed.ply"); pFullPatternSimulationJob->registerForDrawing( pFullPatternSimulationMesh->getLabel()); SimulationResults fullModelResults = simulator.executeSimulation(pFullPatternSimulationJob); fullModelResults.registerForDrawing(); // fullModelResults.saveDeformedModel(); SimulationResults reducedModelResults = simulator.executeSimulation(pReducedPatternSimulationJob); // reducedModelResults.saveDeformedModel(); // fullModelResults.saveDeformedModel(); double error = computeRawError( reducedModelResults.displacements, fullModelResults.displacements, reducedToFullInterfaceViMap/*, global.reducedPatternMaximumDisplacementNormSum[simulationScenarioIndex]*/); std::cout << "Error is " << error << std::endl; reducedModelResults.registerForDrawing(); } #endif // POLYSCOPE_DEFINED void ReducedModelOptimizer::computeDesiredReducedModelDisplacements( const SimulationResults &fullModelResults, const std::unordered_map &displacementsReducedToFullMap, Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) { assert(optimalDisplacementsOfReducedModel.rows() != 0 && optimalDisplacementsOfReducedModel.cols() == 3); optimalDisplacementsOfReducedModel.setZero( optimalDisplacementsOfReducedModel.rows(), optimalDisplacementsOfReducedModel.cols()); for (auto reducedFullViPair : displacementsReducedToFullMap) { const VertexIndex fullModelVi = reducedFullViPair.second; const Vector6d fullModelViDisplacements = fullModelResults.displacements[fullModelVi]; optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) = Eigen::Vector3d(fullModelViDisplacements[0], fullModelViDisplacements[1], fullModelViDisplacements[2]); } } ReducedModelOptimizer::Results ReducedModelOptimizer::runOptimization(const Settings &settings) { global.gObjectiveValueHistory.clear(); dlib::matrix xMin(global.numberOfOptimizationParameters); dlib::matrix xMax(global.numberOfOptimizationParameters); for (int i = 0; i < global.numberOfOptimizationParameters; i++) { xMin(i) = settings.xRanges[i].min; xMax(i) = settings.xRanges[i].max; } auto start = std::chrono::system_clock::now(); dlib::function_evaluation result; double (*objF)(double, double, double, double, double) = &objective; result = dlib::find_min_global( objF, xMin, xMax, dlib::max_function_calls(settings.numberOfFunctionCalls), std::chrono::hours(24 * 365 * 290), settings.solutionAccuracy); auto end = std::chrono::system_clock::now(); auto elapsed = std::chrono::duration_cast(end - start); Results results; results.numberOfSimulationCrashes = global.numOfSimulationCrashes; results.x = global.minX; results.objectiveValue = global.minY; if (global.minY != result.y) { std::cerr << "Global min objective is not equal to result objective" << std::endl; } // Compute obj value per simulation scenario results.rawObjectiveValue=0; updateMesh(results.x.size(), results.x.data()); results.objectiveValuePerSimulationScenario.resize( NumberOfSimulationScenarios); FormFinder::Settings simulationSettings; FormFinder simulator; for (int simulationScenarioIndex = 0; simulationScenarioIndex < NumberOfSimulationScenarios; simulationScenarioIndex++) { SimulationResults reducedModelResults = simulator.executeSimulation( global.reducedPatternSimulationJobs[simulationScenarioIndex], simulationSettings); const double error = computeError( reducedModelResults.displacements, global.fullPatternDisplacements[simulationScenarioIndex], global.reducedToFullInterfaceViMap, global.objectiveNormalizationValues[simulationScenarioIndex]); results.rawObjectiveValue+=computeRawError(reducedModelResults.displacements, global.fullPatternDisplacements[simulationScenarioIndex], global.reducedToFullInterfaceViMap); results.objectiveValuePerSimulationScenario[simulationScenarioIndex] = error; } // if (result.y != // std::accumulate(results.objectiveValuePerSimulationScenario.begin(), // results.objectiveValuePerSimulationScenario.end(), 0)) // { // std::cerr // << "Sum of per scenario objectives is not equal to result objective" // << std::endl; // } results.time = elapsed.count() / 1000.0; const bool printDebugInfo = false; if (printDebugInfo) { std::cout << "Finished optimizing." << endl; // std::cout << "Solution x:" << endl; // std::cout << result.x << endl; std::cout << "Objective value:" << global.minY << endl; } return results; } std::vector> ReducedModelOptimizer::createScenarios( const std::shared_ptr &pMesh) { std::vector> scenarios; scenarios.resize(SimulationScenario::NumberOfSimulationScenarios); std::unordered_map> fixedVertices; std::unordered_map nodalForces; const double forceMagnitude = 10; //// Axial SimulationScenario scenarioName = SimulationScenario::Axial; // NewMethod for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { if (viPairIt != m_fullPatternOppositeInterfaceViMap.begin()) { CoordType forceDirection(1, 0, 0); const auto viPair = *viPairIt; nodalForces[viPair.first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude * 8; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } // OldMethod // for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { // CoordType forceDirection = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // nodalForces[viPair.first] = Vector6d({forceDirection[0], // forceDirection[1], // forceDirection[2], 0, 0, 0}) * // forceMagnitude * 10; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // } scenarios[scenarioName] = std::make_shared( SimulationJob(pMesh, simulationScenarioStrings[scenarioName], fixedVertices, nodalForces, {})); //// Shear scenarioName = SimulationScenario::Shear; fixedVertices.clear(); nodalForces.clear(); // NewMethod for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { if (viPairIt != m_fullPatternOppositeInterfaceViMap.begin()) { CoordType forceDirection(0, 1, 0); const auto viPair = *viPairIt; nodalForces[viPair.first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude * 8; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } // OldMethod // for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { // CoordType v = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // CoordType forceDirection = (v ^ patternPlaneNormal).Normalize(); // nodalForces[viPair.first] = Vector6d({forceDirection[0], // forceDirection[1], // forceDirection[2], 0, 0, 0}) * // 0.40 * forceMagnitude; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // } scenarios[scenarioName] = std::make_shared( SimulationJob(pMesh, simulationScenarioStrings[scenarioName], fixedVertices, nodalForces, {})); // //// Torsion // fixedVertices.clear(); // nodalForces.clear(); // for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); // viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { // const auto &viPair = *viPairIt; // if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { // CoordType v = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // CoordType normalVDerivativeDir = (v ^ patternPlaneNormal).Normalize(); // nodalForces[viPair.first] = Vector6d{ // 0, 0, 0, normalVDerivativeDir[0], normalVDerivativeDir[1], 0}; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; // } else { // fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; // fixedVertices[viPair.second] = std::unordered_set{0, 1, 2}; // } // } // scenarios.push_back({pMesh, fixedVertices, nodalForces}); //// Bending scenarioName = SimulationScenario::Bending; fixedVertices.clear(); nodalForces.clear(); for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { nodalForces[viPair.first] = Vector6d({0, 0, forceMagnitude, 0, 0, 0}) * 1; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } scenarios[scenarioName] = std::make_shared( SimulationJob(pMesh, simulationScenarioStrings[scenarioName], fixedVertices, nodalForces, {})); //// Double using moments scenarioName = SimulationScenario::Dome; fixedVertices.clear(); nodalForces.clear(); for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { const auto viPair = *viPairIt; if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; fixedVertices[viPair.second] = std::unordered_set{0, 2}; } else { fixedVertices[viPair.first] = std::unordered_set{2}; fixedVertices[viPair.second] = std::unordered_set{2}; } CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) ^ CoordType(0, 0, -1).Normalize(); nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude * 1; nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude * 1; } scenarios[scenarioName] = std::make_shared( SimulationJob(pMesh, simulationScenarioStrings[scenarioName], fixedVertices, nodalForces, {})); //// Saddle scenarioName = SimulationScenario::Saddle; fixedVertices.clear(); nodalForces.clear(); for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { const auto &viPair = *viPairIt; CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) ^ CoordType(0, 0, -1).Normalize(); if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.2 * forceMagnitude; nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.2 * forceMagnitude; } else { fixedVertices[viPair.first] = std::unordered_set{2}; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2}; nodalForces[viPair.first] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.1 * forceMagnitude; nodalForces[viPair.second] = Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.1 * forceMagnitude; } } scenarios[scenarioName] = std::make_shared( SimulationJob(pMesh, simulationScenarioStrings[scenarioName], fixedVertices, nodalForces, {})); return scenarios; } void ReducedModelOptimizer::computeObjectiveValueNormalizationFactors() { if (global.optimizationSettings.normalizationStrategy == Settings::NormalizationStrategy::Epsilon) { // Compute the sum of the displacement norms std::vector fullPatternDisplacementNormSum( NumberOfSimulationScenarios); for (int simulationScenarioIndex : global.simulationScenarioIndices) { double displacementNormSum = 0; for (auto interfaceViPair : global.reducedToFullInterfaceViMap) { const Vector6d &vertexDisplacement = global.fullPatternDisplacements[simulationScenarioIndex] [interfaceViPair.second]; displacementNormSum += vertexDisplacement.getTranslation().norm(); } fullPatternDisplacementNormSum[simulationScenarioIndex] = displacementNormSum; } for (int simulationScenarioIndex : global.simulationScenarioIndices) { if (global.optimizationSettings.normalizationStrategy == Settings::NormalizationStrategy::Epsilon) { const double epsilon = global.optimizationSettings.normalizationParameter; if (epsilon > fullPatternDisplacementNormSum[simulationScenarioIndex]) { // std::cout << "Epsilon used in " // << // simulationScenarioStrings[simulationScenarioIndex] // << std::endl; } global.objectiveNormalizationValues[simulationScenarioIndex] = std::max( fullPatternDisplacementNormSum[simulationScenarioIndex], epsilon); // displacementNormSum; } } } } ReducedModelOptimizer::Results ReducedModelOptimizer::optimize( const Settings &optimizationSettings, const std::vector &simulationScenarios) { global.simulationScenarioIndices = simulationScenarios; if (global.simulationScenarioIndices.empty()) { global.simulationScenarioIndices = { SimulationScenario::Axial, SimulationScenario::Shear, SimulationScenario::Bending, SimulationScenario::Dome, SimulationScenario::Saddle}; } global.g_optimalReducedModelDisplacements.resize(NumberOfSimulationScenarios); global.reducedPatternSimulationJobs.resize(NumberOfSimulationScenarios); global.fullPatternDisplacements.resize(NumberOfSimulationScenarios); global.objectiveNormalizationValues.resize(NumberOfSimulationScenarios); global.minY = std::numeric_limits::max(); global.numOfSimulationCrashes = 0; global.numberOfFunctionCalls = 0; global.optimizationSettings = optimizationSettings; global.fullPatternSimulationJobs = createScenarios(m_pFullPatternSimulationMesh); reducedPatternMaximumDisplacementSimulationJobs.resize( NumberOfSimulationScenarios); // polyscope::removeAllStructures(); FormFinder::Settings simulationSettings; // settings.shouldDraw = true; for (int simulationScenarioIndex : global.simulationScenarioIndices) { const std::shared_ptr &pFullPatternSimulationJob = global.fullPatternSimulationJobs[simulationScenarioIndex]; SimulationResults fullModelResults = simulator.executeSimulation( pFullPatternSimulationJob, simulationSettings); global.fullPatternDisplacements[simulationScenarioIndex] = fullModelResults.displacements; SimulationJob reducedPatternSimulationJob; reducedPatternSimulationJob.pMesh = m_pReducedPatternSimulationMesh; computeReducedModelSimulationJob(*pFullPatternSimulationJob, m_fullToReducedInterfaceViMap, reducedPatternSimulationJob); global.reducedPatternSimulationJobs[simulationScenarioIndex] = std::make_shared(reducedPatternSimulationJob); } if (global.optimizationSettings.normalizationStrategy != Settings::NormalizationStrategy::NonNormalized) { computeObjectiveValueNormalizationFactors(); } Results optResults = runOptimization(optimizationSettings); for (int simulationScenarioIndex : global.simulationScenarioIndices) { optResults.fullPatternSimulationJobs.push_back( global.fullPatternSimulationJobs[simulationScenarioIndex]); optResults.reducedPatternSimulationJobs.push_back( global.reducedPatternSimulationJobs[simulationScenarioIndex]); } #ifdef POLYSCOPE_DEFINED optResults.draw(); #endif // POLYSCOPE_DEFINED return optResults; }