#include "reducedmodeloptimizer.hpp" #include "bobyqa.h" #include "flatpattern.hpp" #include "gradientDescent.h" #include "simulationhistoryplotter.hpp" #include "trianglepattterntopology.hpp" const bool gShouldDraw = true; FormFinder simulator; Eigen::MatrixX3d g_optimalReducedModelDisplacements; SimulationJob g_reducedPatternSimulationJob; std::unordered_map g_reducedToFullInterfaceViMap; matplot::line_handle gPlotHandle; std::vector gObjectiveValueHistory; Eigen::Vector4d g_initialX; std::unordered_set g_reducedPatternExludedEdges; double g_initialParameters; // struct OptimizationCallback { // double operator()(const size_t &iterations, const Eigen::VectorXd &x, // const double &fval, Eigen::VectorXd &gradient) const { // // run simulation // // SimulationResults reducedModelResults = // // simulator.executeSimulation(reducedModelSimulationJob); // // reducedModelResults.draw(reducedModelSimulationJob); // gObjectiveValueHistory.push_back(fval); // auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(), // gObjectiveValueHistory.size()); // gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory); // // const std::string plotImageFilename = "objectivePlot.png"; // // matplot::save(plotImageFilename); // // if (numberOfOptimizationRounds % 30 == 0) { // // std::filesystem::copy_file( // // std::filesystem::path(plotImageFilename), // // std::filesystem::path("objectivePlot_copy.png")); // // } // // std::stringstream ss; // // ss << x; // // reducedModelResults.simulationLabel = ss.str(); // // SimulationResultsReporter resultsReporter; // // resultsReporter.reportResults( // // {reducedModelResults}, // // std::filesystem::current_path().append("Results")); // return true; // } //}; // struct Objective { // double operator()(const Eigen::VectorXd &x, Eigen::VectorXd &) const { // assert(x.rows() == 4); // // drawSimulationJob(simulationJob); // // Set mesh from x // std::shared_ptr reducedModel = // g_reducedPatternSimulationJob.mesh; // for (EdgeIndex ei = 0; ei < reducedModel->EN(); ei++) { // if (g_reducedPatternExludedEdges.contains(ei)) { // continue; // } // Element &e = reducedModel->elements[ei]; // e.axialConstFactor = g_initialStiffnessFactors(ei, 0) * x(0); // e.torsionConstFactor = g_initialStiffnessFactors(ei, 1) * x(1); // e.firstBendingConstFactor = g_initialStiffnessFactors(ei, 2) * x(2); // e.secondBendingConstFactor = g_initialStiffnessFactors(ei, 3) * x(3); // } // // run simulation // SimulationResults reducedModelResults = // simulator.executeSimulation(g_reducedPatternSimulationJob); // // std::stringstream ss; // // ss << x; // // reducedModelResults.simulationLabel = ss.str(); // // SimulationResultsReporter resultsReporter; // // resultsReporter.reportResults( // // {reducedModelResults}, // // std::filesystem::current_path().append("Results")); // // compute error and return it // double error = 0; // for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) { // VertexIndex reducedModelVi = reducedFullViPair.first; // Eigen::Vector3d vertexDisplacement( // reducedModelResults.displacements[reducedModelVi][0], // reducedModelResults.displacements[reducedModelVi][1], // reducedModelResults.displacements[reducedModelVi][2]); // Eigen::Vector3d errorVector = // Eigen::Vector3d( // g_optimalReducedModelDisplacements.row(reducedModelVi)) - // vertexDisplacement; // error += errorVector.norm(); // } // return error; // } //}; double ReducedModelOptimizer::objective(long n, const double *x) { for (size_t parameterIndex = 0; parameterIndex < n; parameterIndex++) { std::cout << "x[" + std::to_string(parameterIndex) + "]=" << x[parameterIndex] << std::endl; } for (EdgeIndex ei = 0; ei < g_reducedPatternSimulationJob.mesh->EN(); ei++) { Element &e = g_reducedPatternSimulationJob.mesh->elements[ei]; // if (g_reducedPatternExludedEdges.contains(ei)) { // continue; // } e.properties.E = g_initialParameters * x[0]; // e.properties.G = g_initialParameters(1) * x[1]; // e.properties.A = g_initialParameters(0, 0) * x[0]; // e.properties.J = g_initialParameters(0, 1) * x[1]; // e.properties.I2 = g_initialParameters(0, 2) * x[2]; // e.properties.I3 = g_initialParameters(0, 3) * x[3]; e.properties.G = e.properties.E / (2 * (1 + 0.3)); e.axialConstFactor = e.properties.E * e.properties.A / e.initialLength; e.torsionConstFactor = e.properties.G * e.properties.J / e.initialLength; e.firstBendingConstFactor = 2 * e.properties.E * e.properties.I2 / e.initialLength; e.secondBendingConstFactor = 2 * e.properties.E * e.properties.I3 / e.initialLength; } // run simulation SimulationResults reducedModelResults = simulator.executeSimulation(g_reducedPatternSimulationJob, false, false); // compute error and return it double error = 0; for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) { VertexIndex reducedModelVi = reducedFullViPair.first; // const auto pos = // g_reducedPatternSimulationJob.mesh->vert[reducedModelVi].cP(); // std::cout << "Interface vi " << reducedModelVi << " is at position " // << pos[0] << " " << pos[1] << " " << pos[2] << std::endl; Eigen::Vector3d vertexDisplacement( reducedModelResults.displacements[reducedModelVi][0], reducedModelResults.displacements[reducedModelVi][1], reducedModelResults.displacements[reducedModelVi][2]); Eigen::Vector3d errorVector = Eigen::Vector3d( g_optimalReducedModelDisplacements.row(reducedModelVi)) - vertexDisplacement; // error += errorVector.squaredNorm(); error += errorVector.norm(); } // gObjectiveValueHistory.push_back(error); // auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(), // gObjectiveValueHistory.size()); // gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory); return error; } void ReducedModelOptimizer::computeMaps( FlatPattern &fullPattern, FlatPattern &reducedPattern, const std::unordered_set &reducedModelExcludedEges) { // Compute the offset between the interface nodes const size_t interfaceSlotIndex = 4; // bottom edge assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() && slotToNode.find(interfaceSlotIndex)->second.size() == 1); // Assuming that in the bottom edge there is only one vertex which is also the // interface const size_t baseTriangleInterfaceVi = *(slotToNode.find(interfaceSlotIndex)->second.begin()); vcg::tri::Allocator::PointerUpdater pu_fullModel; fullPattern.deleteDanglingVertices(pu_fullModel); const size_t fullModelBaseTriangleInterfaceVi = pu_fullModel.remap.empty() ? baseTriangleInterfaceVi : pu_fullModel.remap[baseTriangleInterfaceVi]; const size_t fullModelBaseTriangleVN = fullPattern.VN(); fullPattern.createFan(); const size_t duplicateVerticesPerFanPair = fullModelBaseTriangleVN - fullPattern.VN() / 6; const size_t fullPatternInterfaceVertexOffset = fullModelBaseTriangleVN - duplicateVerticesPerFanPair; // std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair << // std::endl; // Save excluded edges g_reducedPatternExludedEdges.clear(); const size_t fanSize = 6; const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN(); for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { for (const size_t ei : reducedModelExcludedEges) { g_reducedPatternExludedEdges.insert( fanIndex * reducedBaseTriangleNumberOfEdges + ei); } } // Construct reduced->full and full->reduced interface vi map g_reducedToFullInterfaceViMap.clear(); vcg::tri::Allocator::PointerUpdater pu_reducedModel; reducedPattern.deleteDanglingVertices(pu_reducedModel); const size_t reducedModelBaseTriangleInterfaceVi = pu_reducedModel.remap[baseTriangleInterfaceVi]; const size_t reducedModelInterfaceVertexOffset = reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/; reducedPattern.createFan(); for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { g_reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex + reducedModelBaseTriangleInterfaceVi] = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; } m_fullToReducedInterfaceViMap.clear(); constructInverseMap(g_reducedToFullInterfaceViMap, m_fullToReducedInterfaceViMap); // fullPattern.setLabel("FullPattern"); // reducedPattern.setLabel("ReducedPattern"); // Create opposite vertex map m_fullPatternOppositeInterfaceViMap.clear(); for (size_t fanIndex = 0; fanIndex < fanSize / 2; fanIndex++) { const size_t vi0 = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset; assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN()); m_fullPatternOppositeInterfaceViMap[vi0] = vi1; } const bool debugMapping = false; if (debugMapping) { reducedPattern.registerForDrawing(); std::vector colors_reducedPatternExcludedEdges( reducedPattern.EN(), glm::vec3(0, 0, 0)); for (const size_t ei : g_reducedPatternExludedEdges) { colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0); } const std::string label = reducedPattern.getLabel(); polyscope::getCurveNetwork(label) ->addEdgeColorQuantity("Excluded edges", colors_reducedPatternExcludedEdges) ->setEnabled(true); polyscope::show(); std::vector nodeColorsOpposite(fullPattern.VN(), glm::vec3(0, 0, 0)); for (const std::pair oppositeVerts : m_fullPatternOppositeInterfaceViMap) { auto color = polyscope::getNextUniqueColor(); nodeColorsOpposite[oppositeVerts.first] = color; nodeColorsOpposite[oppositeVerts.second] = color; } fullPattern.registerForDrawing(); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("oppositeMap", nodeColorsOpposite) ->setEnabled(true); polyscope::show(); std::vector nodeColorsReducedToFull_reduced(reducedPattern.VN(), glm::vec3(0, 0, 0)); std::vector nodeColorsReducedToFull_full(fullPattern.VN(), glm::vec3(0, 0, 0)); for (size_t vi = 0; vi < reducedPattern.VN(); vi++) { if (g_reducedToFullInterfaceViMap.contains(vi)) { auto color = polyscope::getNextUniqueColor(); nodeColorsReducedToFull_reduced[vi] = color; nodeColorsReducedToFull_full[g_reducedToFullInterfaceViMap[vi]] = color; } } polyscope::getCurveNetwork(reducedPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_reduced", nodeColorsReducedToFull_reduced) ->setEnabled(true); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_full", nodeColorsReducedToFull_full) ->setEnabled(true); polyscope::show(); } } void ReducedModelOptimizer::createSimulationMeshes(FlatPattern &fullModel, FlatPattern &reducedModel) { m_pReducedPatternElementalMesh = std::make_shared(reducedModel); m_pReducedPatternElementalMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); m_pReducedPatternElementalMesh->setBeamMaterial(0.3, 1); m_pFullModelElementalMesh = std::make_shared(fullModel); m_pFullModelElementalMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); m_pFullModelElementalMesh->setBeamMaterial(0.3, 1); } ReducedModelOptimizer::ReducedModelOptimizer( const std::vector &numberOfNodesPerSlot) { FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot); FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode); } void ReducedModelOptimizer::initialize( FlatPattern &fullPattern, FlatPattern &reducedPattern, const std::unordered_set &reducedModelExcludedEdges) { assert(fullPattern.VN() == reducedPattern.VN() && fullPattern.EN() >= reducedPattern.EN()); polyscope::removeAllStructures(); // Create copies of the input models FlatPattern copyFullPattern; FlatPattern copyReducedPattern; copyFullPattern.copy(fullPattern); copyReducedPattern.copy(reducedPattern); computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges); createSimulationMeshes(copyFullPattern, copyReducedPattern); initializeStiffnesses(); } void ReducedModelOptimizer::initializeStiffnesses() { // g_initialParameters.resize(1, 2); // Save save the beam stiffnesses // for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) { // Element &e = pReducedModelElementalMesh->elements[ei]; // if (g_reducedPatternExludedEdges.contains(ei)) { // const double stiffnessFactor = 5; // e.axialConstFactor *= stiffnessFactor; // e.torsionConstFactor *= stiffnessFactor; // e.firstBendingConstFactor *= stiffnessFactor; // e.secondBendingConstFactor *= stiffnessFactor; // } g_initialParameters = m_pReducedPatternElementalMesh->elements[0].properties.E; // g_initialParameters(1) = // pReducedModelElementalMesh->elements[0].properties.G; // g_initialParameters(0, 0) = // pReducedModelElementalMesh->elements[0].properties.A; // g_initialParameters(0, 1) = // pReducedModelElementalMesh->elements[0].properties.J; // g_initialParameters(0, 2) = // pReducedModelElementalMesh->elements[0].properties.I2; // g_initialParameters(0, 3) = // pReducedModelElementalMesh->elements[0].properties.I3; // } } void ReducedModelOptimizer::computeReducedModelSimulationJob( const SimulationJob &simulationJobOfFullModel, SimulationJob &simulationJobOfReducedModel) { std::unordered_map> reducedModelFixedVertices; for (auto fullModelFixedVertex : simulationJobOfFullModel.fixedVertices) { reducedModelFixedVertices[m_fullToReducedInterfaceViMap.at( fullModelFixedVertex.first)] = fullModelFixedVertex.second; } std::unordered_map reducedModelNodalForces; for (auto fullModelNodalForce : simulationJobOfFullModel.nodalExternalForces) { reducedModelNodalForces[m_fullToReducedInterfaceViMap.at( fullModelNodalForce.first)] = fullModelNodalForce.second; } std::unordered_map reducedModelNodalForcedNormals; for (auto fullModelNodalForcedRotation : simulationJobOfFullModel.nodalForcedNormals) { reducedModelNodalForcedNormals[m_fullToReducedInterfaceViMap.at( fullModelNodalForcedRotation.first)] = fullModelNodalForcedRotation.second; } simulationJobOfReducedModel = SimulationJob{m_pReducedPatternElementalMesh, reducedModelFixedVertices, reducedModelNodalForces, {}, reducedModelNodalForcedNormals}; } SimulationJob ReducedModelOptimizer::getReducedSimulationJob( const SimulationJob &fullModelSimulationJob) { SimulationJob reducedModelSimulationJob; computeReducedModelSimulationJob(fullModelSimulationJob, reducedModelSimulationJob); return reducedModelSimulationJob; } void ReducedModelOptimizer::computeDesiredReducedModelDisplacements( const SimulationResults &fullModelResults, Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) { optimalDisplacementsOfReducedModel.resize(0, 3); optimalDisplacementsOfReducedModel.resize( m_pReducedPatternElementalMesh->VN(), 3); optimalDisplacementsOfReducedModel.setZero( optimalDisplacementsOfReducedModel.rows(), optimalDisplacementsOfReducedModel.cols()); for (auto reducedFullViPair : g_reducedToFullInterfaceViMap) { const VertexIndex fullModelVi = reducedFullViPair.second; const Vector6d fullModelViDisplacements = fullModelResults.displacements[fullModelVi]; optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) = Eigen::Vector3d(fullModelViDisplacements[0], fullModelViDisplacements[1], fullModelViDisplacements[2]); } } Eigen::VectorXd ReducedModelOptimizer::optimizeForSimulationJob( const SimulationJob &fullPatternSimulationJob) { // fullPatternSimulationJob.registerForDrawing(); // polyscope::show(); gObjectiveValueHistory.clear(); fullPatternSimulationJob.mesh->savePly( "Fanned_" + m_pFullModelElementalMesh->getLabel() + ".ply"); SimulationResults fullModelResults = simulator.executeSimulation(fullPatternSimulationJob, false, true); fullModelResults.simulationLabel = "fullModel"; fullModelResults.registerForDrawing(fullPatternSimulationJob); registerWorldAxes(); polyscope::show(); computeDesiredReducedModelDisplacements(fullModelResults, g_optimalReducedModelDisplacements); computeReducedModelSimulationJob(fullPatternSimulationJob, g_reducedPatternSimulationJob); // gReducedPatternSimulationJob.registerForDrawing(); // polyscope::show(); fullModelResults.registerForDrawing(fullPatternSimulationJob); polyscope::show(); double (*pObjectiveFunction)(long, const double *) = &objective; const size_t n = 1; // g_initialParameters.rows(); const size_t npt = ((n + 2) + ((n + 1) * (n + 2) / 2)) / 2; assert(npt <= (n + 1) * (n + 2) / 2 && npt >= n + 2); assert(npt <= 2 * n + 1 && "The choice of the number of interpolation " "conditions is not recommended."); // Set initial guess of solution const double initialGuess = 1; std::vector x(n, initialGuess); // {1, 5.9277}; // {initialGuess(0), initialGuess(1), initialGuess(2), // initialGuess(3)}; const double xMin = 1; const double xMax = 100; // assert(x.end() == find_if(x.begin(), x.end(), [&](const double &d) { // return d >= xMax || d <= xMin; // })); std::vector xLow(x.size(), xMin); std::vector xUpper(x.size(), xMax); const double maxX = *std::max_element( x.begin(), x.end(), [](const double &a, const double &b) { return abs(a) < abs(b); }); const double rhobeg = std::min(0.95, 0.2 * maxX); // const double rhobeg = 10; const double rhoend = rhobeg * 1e-6; const size_t wSize = (npt + 5) * (npt + n) + 3 * n * (n + 5) / 2; std::vector w(wSize); // const size_t maxFun = 10 * (x.size() ^ 2); const size_t maxFun = 120; bobyqa(pObjectiveFunction, n, npt, x.data(), xLow.data(), xUpper.data(), rhobeg, rhoend, maxFun, w.data()); SimulationResults reducedModelOptimizedResults = simulator.executeSimulation(g_reducedPatternSimulationJob); double error = 0; for (const auto reducedToFullViPair : g_reducedToFullInterfaceViMap) { const size_t reducedInterfaceVi = reducedToFullViPair.first; error += (Eigen::Vector3d( g_optimalReducedModelDisplacements.row(reducedInterfaceVi)) - Eigen::Vector3d( reducedModelOptimizedResults.displacements[reducedInterfaceVi][0], reducedModelOptimizedResults.displacements[reducedInterfaceVi][1], reducedModelOptimizedResults.displacements[reducedInterfaceVi][2])) .norm(); } std::cout << "Final objective value:" << error << std::endl; reducedModelOptimizedResults.simulationLabel = "reducedModel"; reducedModelOptimizedResults.registerForDrawing( g_reducedPatternSimulationJob); polyscope::show(); Eigen::VectorXd eigenX(x.size(), 1); for (size_t xi = 0; xi < x.size(); xi++) { eigenX(xi) = x[xi]; } return eigenX; } std::vector ReducedModelOptimizer::createScenarios( const std::shared_ptr &pMesh) { std::vector scenarios; std::unordered_map> fixedVertices; std::unordered_map nodalForces; const double forceMagnitude = 1; // Assuming the patterns lays on the x-y plane const CoordType patternPlaneNormal(0, 0, 1); // Make the first interface node lay on the x axis const size_t fullPatternFirstInterfaceNodeIndex = m_fullPatternOppositeInterfaceViMap.begin()->second; CoordType fullPatternFirstInterfaceNodePosition = m_pFullModelElementalMesh->vert[fullPatternFirstInterfaceNodeIndex].cP(); const vcg::Matrix33d R = vcg::RotationMatrix( fullPatternFirstInterfaceNodePosition, CoordType(fullPatternFirstInterfaceNodePosition.Norm(), 0, 0), false); std::for_each(m_pFullModelElementalMesh->vert.begin(), m_pFullModelElementalMesh->vert.end(), [&](auto &v) { v.P() = R * v.P(); v.N() = R * v.N(); }); std::for_each(m_pReducedPatternElementalMesh->vert.begin(), m_pReducedPatternElementalMesh->vert.end(), [&](auto &v) { v.P() = R * v.P(); v.N() = R * v.N(); }); m_pFullModelElementalMesh->updateEigenEdgeAndVertices(); m_pReducedPatternElementalMesh->updateEigenEdgeAndVertices(); // //// Axial // for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { // CoordType forceDirection = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // nodalForces[viPair.first] = Vector6d({forceDirection[0], // forceDirection[1], // forceDirection[2], 0, 0, 0}) * // forceMagnitude * 10; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // } // scenarios.push_back({pMesh, fixedVertices, nodalForces, {}}); // //// In-plane Bending // fixedVertices.clear(); // nodalForces.clear(); // for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { // CoordType v = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // CoordType forceDirection = (v ^ patternPlaneNormal).Normalize(); // nodalForces[viPair.first] = Vector6d({forceDirection[0], // forceDirection[1], // forceDirection[2], 0, 0, 0}) * // 0.40 * forceMagnitude; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // } // scenarios.push_back({pMesh, fixedVertices, nodalForces, {}}); // //// Torsion // fixedVertices.clear(); // nodalForces.clear(); // for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); // viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { // const auto &viPair = *viPairIt; // if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { // CoordType v = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // CoordType normalVDerivativeDir = (v ^ patternPlaneNormal).Normalize(); // nodalForces[viPair.first] = Vector6d{ // 0, 0, 0, normalVDerivativeDir[0], normalVDerivativeDir[1], 0}; // fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; // } else { // fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; // fixedVertices[viPair.second] = std::unordered_set{0, 1, 2}; // } // } // scenarios.push_back({pMesh, fixedVertices, nodalForces}); // // Out - of - plane bending.Pull towards Z // fixedVertices.clear(); // nodalForces.clear(); // for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) { // nodalForces[viPair.first] = Vector6d({0, 0, forceMagnitude, 0, 0, 0}) * // 1; fixedVertices[viPair.second] = // std::unordered_set{0, 1, 2, 3, 4, 5}; // } // scenarios.push_back({pMesh, fixedVertices, nodalForces, {}}); // //// Double using moments // fixedVertices.clear(); // nodalForces.clear(); // for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); // viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { // const auto viPair = *viPairIt; // if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { // fixedVertices[viPair.first] = std::unordered_set{0, 1, 2}; // fixedVertices[viPair.second] = std::unordered_set{1, 2}; // } else { // fixedVertices[viPair.first] = std::unordered_set{2}; // fixedVertices[viPair.second] = std::unordered_set{2}; // } // CoordType v = // (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // .Normalize(); // nodalForces[viPair.first] = // Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude * 0.1; // nodalForces[viPair.second] = // Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude * 0.1; // } // scenarios.push_back({pMesh, fixedVertices, nodalForces, {}}); //// Saddle fixedVertices.clear(); nodalForces.clear(); for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin(); viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) { const auto &viPair = *viPairIt; CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) .Normalize(); if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) { nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.02 * forceMagnitude; nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.02 * forceMagnitude; } else { fixedVertices[viPair.first] = std::unordered_set{2}; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2}; nodalForces[viPair.first] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * 0.01 * forceMagnitude; nodalForces[viPair.second] = Vector6d({0, 0, 0, v[0], v[1], 0}) * 0.01 * forceMagnitude; } } scenarios.push_back({pMesh, fixedVertices, nodalForces, {}}); return scenarios; } Eigen::VectorXd ReducedModelOptimizer::optimize() { std::vector simulationJobs = createScenarios(m_pFullModelElementalMesh); std::vector results; for (const SimulationJob &job : simulationJobs) { polyscope::removeAllStructures(); auto result = optimizeForSimulationJob(job); results.push_back(result); } if (results.empty()) { return Eigen::VectorXd(); } return results[0]; }