#include "reducedmodeloptimizer.hpp" #include "linearsimulationmodel.hpp" #include "simulationhistoryplotter.hpp" #include "trianglepatterngeometry.hpp" #include "trianglepattterntopology.hpp" #include using namespace ReducedPatternOptimization; struct GlobalOptimizationVariables { // std::vector> fullPatternDisplacements; std::vector fullPatternResults; std::vector translationalDisplacementNormalizationValues; std::vector rotationalDisplacementNormalizationValues; std::vector> fullPatternSimulationJobs; std::vector> reducedPatternSimulationJobs; std::unordered_map reducedToFullInterfaceViMap; matplot::line_handle gPlotHandle; std::vector objectiveValueHistory; Eigen::VectorXd initialParameters; std::vector simulationScenarioIndices; double minY{DBL_MAX}; std::vector minX; int numOfSimulationCrashes{false}; int numberOfFunctionCalls{0}; int numberOfOptimizationParameters{5}; ReducedPatternOptimization::Settings optimizationSettings; vcg::Triangle3 baseTriangle; } global; double ReducedModelOptimizer::computeDisplacementError( const std::vector &fullPatternDisplacements, const std::vector &reducedPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor) { const double rawError = computeRawTranslationalError(fullPatternDisplacements, reducedPatternDisplacements, reducedToFullInterfaceViMap); return rawError / normalizationFactor; } double ReducedModelOptimizer::computeRawTranslationalError( const std::vector &fullPatternDisplacements, const std::vector &reducedPatternDisplacements, const std::unordered_map &reducedToFullInterfaceViMap) { double error = 0; for (const auto reducedFullViPair : reducedToFullInterfaceViMap) { const VertexIndex reducedModelVi = reducedFullViPair.first; const VertexIndex fullModelVi = reducedFullViPair.second; const Eigen::Vector3d fullPatternVertexDiplacement = fullPatternDisplacements[fullModelVi] .getTranslation(); const Eigen::Vector3d reducedPatternVertexDiplacement = reducedPatternDisplacements[reducedModelVi].getTranslation(); const double vertexError = (fullPatternVertexDiplacement - reducedPatternVertexDiplacement) .norm(); error += vertexError; } return error; } double ReducedModelOptimizer::computeRawRotationalError( const std::vector> &rotatedQuaternion_fullPattern, const std::vector> &rotatedQuaternion_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap) { double rawRotationalError = 0; for (const auto &reducedToFullInterfaceViPair : reducedToFullInterfaceViMap) { const double vertexRotationalError = rotatedQuaternion_fullPattern[reducedToFullInterfaceViPair.second].angularDistance( rotatedQuaternion_reducedPattern[reducedToFullInterfaceViPair.first]); rawRotationalError += vertexRotationalError; } return rawRotationalError; } double ReducedModelOptimizer::computeRotationalError( const std::vector> &rotatedQuaternion_fullPattern, const std::vector> &rotatedQuaternion_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor) { const double rawRotationalError = computeRawRotationalError(rotatedQuaternion_fullPattern, rotatedQuaternion_reducedPattern, reducedToFullInterfaceViMap); return rawRotationalError / normalizationFactor; } double ReducedModelOptimizer::computeError( const SimulationResults &simulationResults_fullPattern, const SimulationResults &simulationResults_reducedPattern, const std::unordered_map &reducedToFullInterfaceViMap, const double &normalizationFactor_translationalDisplacement, const double &normalizationFactor_rotationalDisplacement) { const double translationalError = computeDisplacementError(simulationResults_fullPattern.displacements, simulationResults_reducedPattern.displacements, reducedToFullInterfaceViMap, normalizationFactor_translationalDisplacement); const double rotationalError = computeRotationalError(simulationResults_fullPattern.rotationalDisplacementQuaternion, simulationResults_reducedPattern.rotationalDisplacementQuaternion, reducedToFullInterfaceViMap, normalizationFactor_rotationalDisplacement); return 1.5 * translationalError + 0.5 * rotationalError; } double ReducedModelOptimizer::objective(double E,double A,double J,double I2,double I3, double innerHexagonSize, double innerHexagonRotationAngle) { std::vector x{E,A,J,I2,I3, innerHexagonSize, innerHexagonRotationAngle}; return ReducedModelOptimizer::objective(x.size(), x.data()); } double ReducedModelOptimizer::objective(long n, const double *x) { // std::cout.precision(17); // for (int i = 0; i < n; i++) { // std::cout << x[i] << " "; // } // std::cout << std::endl; // const Element &e = // global.reducedPatternSimulationJobs[0]->pMesh->elements[0]; std::cout << // e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; updateMesh(n, x); // std::cout << e.axialConstFactor << " " << e.torsionConstFactor << " " // << e.firstBendingConstFactor << " " << // e.secondBendingConstFactor // << std::endl; // run simulations double totalError = 0; LinearSimulationModel simulator; // FormFinder simulator; for (const int simulationScenarioIndex : global.simulationScenarioIndices) { SimulationResults reducedModelResults = simulator.executeSimulation( global.reducedPatternSimulationJobs[simulationScenarioIndex]); // std::string filename; if (!reducedModelResults.converged) { totalError += std::numeric_limits::max(); global.numOfSimulationCrashes++; #ifdef POLYSCOPE_DEFINED std::cout << "Failed simulation" << std::endl; #endif } else { const bool usePotentialEnergy = false; double simulationScenarioError; if (usePotentialEnergy) { simulationScenarioError = std::abs( reducedModelResults.internalPotentialEnergy - global.fullPatternResults[simulationScenarioIndex].internalPotentialEnergy); } else { simulationScenarioError = computeError( global.fullPatternResults[simulationScenarioIndex], reducedModelResults, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex], global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); } //#ifdef POLYSCOPE_DEFINED // std::cout << "sim error:" << simulationScenarioError << std::endl; // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->registerForDrawing( // ReducedModelOptimization::Colors::reducedInitial); // reducedModelResults.registerForDrawing( // ReducedModelOptimization::Colors::reducedDeformed); // polyscope::show(); // reducedModelResults.unregister(); //#endif // if (global.optimizationSettings.normalizationStrategy != // NormalizationStrategy::Epsilon && // simulationScenarioError > 1) { // std::cout << "Simulation scenario " // << // simulationScenarioStrings[simulationScenarioIndex] // << " results in an error bigger than one." << // std::endl; // for (size_t parameterIndex = 0; parameterIndex < n; // parameterIndex++) { // std::cout << "x[" + std::to_string(parameterIndex) + "]=" // << x[parameterIndex] << std::endl; // } // } //#ifdef POLYSCOPE_DEFINED // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // global.reducedPatternSimulationJobs[simulationScenarioIndex], // global.reducedToFullInterfaceViMap, false); // ReducedModelOptimizer::visualizeResults( // global.fullPatternSimulationJobs[simulationScenarioIndex], // std::make_shared( // reducedPatternMaximumDisplacementSimulationJobs // [simulationScenarioIndex]), // global.reducedToFullInterfaceViMap, true); // polyscope::removeAllStructures(); //#endif // POLYSCOPE_DEFINED totalError += simulationScenarioError; } } // std::cout << error << std::endl; if (totalError < global.minY) { global.minY = totalError; global.minX.assign(x, x + n); } #ifdef POLYSCOPE_DEFINED ++global.numberOfFunctionCalls; if (global.numberOfFunctionCalls % 100 == 0) { std::cout << "Number of function calls:" << global.numberOfFunctionCalls << std::endl; } #endif // compute error and return it // global.objectiveValueHistory.push_back(totalError); // auto xPlot = matplot::linspace(0, global.objectiveValueHistory.size(), // global.objectiveValueHistory.size()); // std::vector colors(global.gObjectiveValueHistory.size(), 2); // if (global.g_firstRoundIterationIndex != 0) { // for_each(colors.begin() + g_firstRoundIterationIndex, colors.end(), // [](double &c) { c = 0.7; }); // } // global.gPlotHandle = matplot::scatter(xPlot, global.objectiveValueHistory); // SimulationResultsReporter::createPlot("Number of Steps", "Objective value", // global.objectiveValueHistory); return totalError; } void ReducedModelOptimizer::createSimulationMeshes( PatternGeometry &fullModel, PatternGeometry &reducedModel, std::shared_ptr &pFullPatternSimulationMesh, std::shared_ptr &pReducedPatternSimulationMesh) { if (typeid(CrossSectionType) != typeid(RectangularBeamDimensions)) { std::cerr << "Error: A rectangular cross section is expected." << std::endl; terminate(); } // Full pattern pFullPatternSimulationMesh = std::make_shared(fullModel); pFullPatternSimulationMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); pFullPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9); // Reduced pattern pReducedPatternSimulationMesh = std::make_shared(reducedModel); pReducedPatternSimulationMesh->setBeamCrossSection( CrossSectionType{0.002, 0.002}); pReducedPatternSimulationMesh->setBeamMaterial(0.3, 1 * 1e9); } void ReducedModelOptimizer::createSimulationMeshes( PatternGeometry &fullModel, PatternGeometry &reducedModel) { ReducedModelOptimizer::createSimulationMeshes( fullModel, reducedModel, m_pFullPatternSimulationMesh, m_pReducedPatternSimulationMesh); } void ReducedModelOptimizer::computeMaps( const std::unordered_map> &slotToNode, PatternGeometry &fullPattern, PatternGeometry &reducedPattern, std::unordered_map &reducedToFullInterfaceViMap, std::unordered_map &fullToReducedInterfaceViMap, std::vector> &fullPatternOppositeInterfaceViMap) { // Compute the offset between the interface nodes const size_t interfaceSlotIndex = 4; // bottom edge assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() && slotToNode.find(interfaceSlotIndex)->second.size() == 1); // Assuming that in the bottom edge there is only one vertex which is also the // interface const size_t baseTriangleInterfaceVi = *(slotToNode.find(interfaceSlotIndex)->second.begin()); vcg::tri::Allocator::PointerUpdater pu_fullModel; fullPattern.deleteDanglingVertices(pu_fullModel); const size_t fullModelBaseTriangleInterfaceVi = pu_fullModel.remap.empty() ? baseTriangleInterfaceVi : pu_fullModel.remap[baseTriangleInterfaceVi]; const size_t fullModelBaseTriangleVN = fullPattern.VN(); fullPattern.createFan(); const size_t duplicateVerticesPerFanPair = fullModelBaseTriangleVN - fullPattern.VN() / 6; const size_t fullPatternInterfaceVertexOffset = fullModelBaseTriangleVN - duplicateVerticesPerFanPair; // std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair << // std::endl; // Save excluded edges TODO:this changes the global object. Should this be a // function parameter? // global.reducedPatternExludedEdges.clear(); // const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN(); // for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { // for (const size_t ei : reducedModelExcludedEdges) { // global.reducedPatternExludedEdges.insert( // fanIndex * reducedBaseTriangleNumberOfEdges + ei); // } // } // Construct reduced->full and full->reduced interface vi map reducedToFullInterfaceViMap.clear(); vcg::tri::Allocator::PointerUpdater pu_reducedModel; reducedPattern.deleteDanglingVertices(pu_reducedModel); const size_t reducedModelBaseTriangleInterfaceVi = pu_reducedModel.remap[baseTriangleInterfaceVi]; const size_t reducedModelInterfaceVertexOffset = reducedPattern.VN() /*- 1*/ /*- reducedModelBaseTriangleInterfaceVi*/; reducedPattern.createFan({1}); //TODO: should be an input parameter from main for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) { reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex + reducedModelBaseTriangleInterfaceVi] = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; } fullToReducedInterfaceViMap.clear(); constructInverseMap(reducedToFullInterfaceViMap, fullToReducedInterfaceViMap); // Create opposite vertex map fullPatternOppositeInterfaceViMap.clear(); fullPatternOppositeInterfaceViMap.reserve(fanSize / 2); // for (int fanIndex = fanSize / 2 - 1; fanIndex >= 0; fanIndex--) { for (int fanIndex = 0; fanIndex < fanSize / 2; fanIndex++) { const size_t vi0 = fullModelBaseTriangleInterfaceVi + fanIndex * fullPatternInterfaceVertexOffset; const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset; assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN()); fullPatternOppositeInterfaceViMap.emplace_back(std::make_pair(vi0, vi1)); } const bool debugMapping = false; if (debugMapping) { #if POLYSCOPE_DEFINED reducedPattern.registerForDrawing(); // std::vector colors_reducedPatternExcludedEdges( // reducedPattern.EN(), glm::vec3(0, 0, 0)); // for (const size_t ei : global.reducedPatternExludedEdges) { // colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0); // } // const std::string label = reducedPattern.getLabel(); // polyscope::getCurveNetwork(label) // ->addEdgeColorQuantity("Excluded edges", // colors_reducedPatternExcludedEdges) // ->setEnabled(true); // polyscope::show(); std::vector nodeColorsOpposite(fullPattern.VN(), glm::vec3(0, 0, 0)); for (const std::pair oppositeVerts : fullPatternOppositeInterfaceViMap) { auto color = polyscope::getNextUniqueColor(); nodeColorsOpposite[oppositeVerts.first] = color; nodeColorsOpposite[oppositeVerts.second] = color; } fullPattern.registerForDrawing(); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("oppositeMap", nodeColorsOpposite) ->setEnabled(true); polyscope::show(); std::vector nodeColorsReducedToFull_reduced(reducedPattern.VN(), glm::vec3(0, 0, 0)); std::vector nodeColorsReducedToFull_full(fullPattern.VN(), glm::vec3(0, 0, 0)); for (size_t vi = 0; vi < reducedPattern.VN(); vi++) { if (global.reducedToFullInterfaceViMap.contains(vi)) { auto color = polyscope::getNextUniqueColor(); nodeColorsReducedToFull_reduced[vi] = color; nodeColorsReducedToFull_full[global.reducedToFullInterfaceViMap[vi]] = color; } } polyscope::getCurveNetwork(reducedPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_reduced", nodeColorsReducedToFull_reduced) ->setEnabled(true); polyscope::getCurveNetwork(fullPattern.getLabel()) ->addNodeColorQuantity("reducedToFull_full", nodeColorsReducedToFull_full) ->setEnabled(true); polyscope::show(); #endif } } void ReducedModelOptimizer::computeMaps(PatternGeometry &fullPattern, PatternGeometry &reducedPattern) { ReducedModelOptimizer::computeMaps(slotToNode, fullPattern, reducedPattern, global.reducedToFullInterfaceViMap, m_fullToReducedInterfaceViMap, m_fullPatternOppositeInterfaceViPairs); } ReducedModelOptimizer::ReducedModelOptimizer(const std::vector &numberOfNodesPerSlot) { FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot); FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode); } void ReducedModelOptimizer::initializePatterns(PatternGeometry &fullPattern, PatternGeometry &reducedPattern, const int &optimizationParameters) { assert(fullPattern.VN() == reducedPattern.VN() && fullPattern.EN() >= reducedPattern.EN()); #if POLYSCOPE_DEFINED polyscope::removeAllStructures(); #endif // Create copies of the input models PatternGeometry copyFullPattern; PatternGeometry copyReducedPattern; copyFullPattern.copy(fullPattern); copyReducedPattern.copy(reducedPattern); global.baseTriangle = copyReducedPattern.getBaseTriangle(); computeMaps(copyFullPattern, copyReducedPattern); createSimulationMeshes(copyFullPattern, copyReducedPattern); initializeOptimizationParameters(m_pReducedPatternSimulationMesh,optimizationParameters); } void updateMesh(long n, const double *x) { std::shared_ptr &pReducedPatternSimulationMesh = global.reducedPatternSimulationJobs[global.simulationScenarioIndices[0]] ->pMesh; const double E=global.initialParameters(0)*x[0]; const double A=global.initialParameters(1) * x[1]; const double beamWidth=std::sqrt(A); const double beamHeight=beamWidth; const double J=global.initialParameters(2) * x[2]; const double I2=global.initialParameters(3) * x[3]; const double I3=global.initialParameters(4) * x[4]; for (EdgeIndex ei = 0; ei < pReducedPatternSimulationMesh->EN(); ei++) { Element &e = pReducedPatternSimulationMesh->elements[ei]; e.setDimensions( RectangularBeamDimensions(beamWidth, beamHeight)); e.setMaterial(ElementMaterial(e.material.poissonsRatio, E)); e.J = J; e.I2 = I2; e.I3 = I3; } assert(pReducedPatternSimulationMesh->EN() == 12); assert(n>=2); CoordType center_barycentric(1, 0, 0); CoordType interfaceEdgeMiddle_barycentric(0, 0.5, 0.5); CoordType movableVertex_barycentric((center_barycentric + interfaceEdgeMiddle_barycentric) * x[n - 2]); CoordType baseTriangleMovableVertexPosition = global.baseTriangle.cP(0) * movableVertex_barycentric[0] + global.baseTriangle.cP(1) * movableVertex_barycentric[1] + global.baseTriangle.cP(2) * movableVertex_barycentric[2]; baseTriangleMovableVertexPosition = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(x[n - 1])) * baseTriangleMovableVertexPosition; for (int rotationCounter = 0; rotationCounter < ReducedModelOptimizer::fanSize; rotationCounter++) { pReducedPatternSimulationMesh->vert[2 * rotationCounter + 1].P() = vcg::RotationMatrix(ReducedModelOptimizer::patternPlaneNormal, vcg::math::ToRad(60.0 * rotationCounter)) * baseTriangleMovableVertexPosition; } pReducedPatternSimulationMesh->reset(); //#ifdef POLYSCOPE_DEFINED // pReducedPatternSimulationMesh->updateEigenEdgeAndVertices(); // pReducedPatternSimulationMesh->registerForDrawing(); // std::cout << "Angle:" + std::to_string(x[n - 1]) + " size:" + std::to_string(x[n - 2]) // << std::endl; // std::cout << "Verts:" << pReducedPatternSimulationMesh->VN() << std::endl; // polyscope::show(); //#endif } void ReducedModelOptimizer::initializeOptimizationParameters( const std::shared_ptr &mesh,const int& optimizationParamters) { global.numberOfOptimizationParameters = optimizationParamters; global.initialParameters.resize(global.numberOfOptimizationParameters); global.initialParameters(0) = mesh->elements[0].material.youngsModulus; global.initialParameters(1) = mesh->elements[0].A; global.initialParameters(2) = mesh->elements[0].J; global.initialParameters(3) = mesh->elements[0].I2; global.initialParameters(4) = mesh->elements[0].I3; } void ReducedModelOptimizer::computeReducedModelSimulationJob( const SimulationJob &simulationJobOfFullModel, const std::unordered_map &fullToReducedMap, SimulationJob &simulationJobOfReducedModel) { assert(simulationJobOfReducedModel.pMesh->VN() != 0); std::unordered_map> reducedModelFixedVertices; for (auto fullModelFixedVertex : simulationJobOfFullModel.constrainedVertices) { reducedModelFixedVertices[fullToReducedMap.at(fullModelFixedVertex.first)] = fullModelFixedVertex.second; } std::unordered_map reducedModelNodalForces; for (auto fullModelNodalForce : simulationJobOfFullModel.nodalExternalForces) { reducedModelNodalForces[fullToReducedMap.at(fullModelNodalForce.first)] = fullModelNodalForce.second; } std::unordered_map reducedNodalForcedDisplacements; for (auto fullForcedDisplacement : simulationJobOfFullModel.nodalForcedDisplacements) { reducedNodalForcedDisplacements[fullToReducedMap.at(fullForcedDisplacement.first)] = fullForcedDisplacement.second; } simulationJobOfReducedModel.constrainedVertices = reducedModelFixedVertices; simulationJobOfReducedModel.nodalExternalForces = reducedModelNodalForces; simulationJobOfReducedModel.label = simulationJobOfFullModel.getLabel(); simulationJobOfReducedModel.nodalForcedDisplacements = reducedNodalForcedDisplacements; } //#if POLYSCOPE_DEFINED //void ReducedModelOptimizer::visualizeResults( // const std::vector> &fullPatternSimulationJobs, // const std::vector> &reducedPatternSimulationJobs, // const std::vector &simulationScenarios, // const std::unordered_map // &reducedToFullInterfaceViMap) //{ // DRMSimulationModel simulator; // std::shared_ptr pFullPatternSimulationMesh = // fullPatternSimulationJobs[0]->pMesh; // pFullPatternSimulationMesh->registerForDrawing(); // pFullPatternSimulationMesh->save(pFullPatternSimulationMesh->getLabel() + "_undeformed.ply"); // reducedPatternSimulationJobs[0]->pMesh->save(reducedPatternSimulationJobs[0]->pMesh->getLabel() // + "_undeformed.ply"); // double totalError = 0; // for (const int simulationScenarioIndex : simulationScenarios) { // const std::shared_ptr &pFullPatternSimulationJob = // fullPatternSimulationJobs[simulationScenarioIndex]; // pFullPatternSimulationJob->registerForDrawing( // pFullPatternSimulationMesh->getLabel()); // SimulationResults fullModelResults = // simulator.executeSimulation(pFullPatternSimulationJob); // fullModelResults.registerForDrawing(); // // fullModelResults.saveDeformedModel(); // const std::shared_ptr &pReducedPatternSimulationJob = // reducedPatternSimulationJobs[simulationScenarioIndex]; // SimulationResults reducedModelResults = // simulator.executeSimulation(pReducedPatternSimulationJob); // double normalizationFactor = 1; // if (global.optimizationSettings.normalizationStrategy != // ReducedModelOptimization::Settings::NormalizationStrategy::NonNormalized) { // normalizationFactor // = global.translationalDisplacementNormalizationValues[simulationScenarioIndex]; // } // reducedModelResults.saveDeformedModel(); // fullModelResults.saveDeformedModel(); // double error = computeDisplacementError(reducedModelResults.displacements, // fullModelResults.displacements, // reducedToFullInterfaceViMap, // normalizationFactor); // std::cout << "Error of simulation scenario " // getLabel() + "_" // + baseSimulationScenarioNames[simulationScenarioIndex]; // polyscope::show(); // polyscope::screenshot(screenshotFilename, false); // fullModelResults.unregister(); // reducedModelResults.unregister(); // // firstOptimizationRoundResults[simulationScenarioIndex].unregister(); // } // std::cout << "Total error:" << totalError << std::endl; //} //void ReducedModelOptimizer::registerResultsForDrawing( // const std::shared_ptr &pFullPatternSimulationJob, // const std::shared_ptr &pReducedPatternSimulationJob, // const std::unordered_map // &reducedToFullInterfaceViMap) { // DRMSimulationModel simulator; // std::shared_ptr pFullPatternSimulationMesh = // pFullPatternSimulationJob->pMesh; // pFullPatternSimulationMesh->registerForDrawing(); // // pFullPatternSimulationMesh->savePly(pFullPatternSimulationMesh->getLabel() // // + // // "_undeformed.ply"); // // reducedPatternSimulationJobs[0]->pMesh->savePly( // // reducedPatternSimulationJobs[0]->pMesh->getLabel() + // // "_undeformed.ply"); // pFullPatternSimulationJob->registerForDrawing( // pFullPatternSimulationMesh->getLabel()); // SimulationResults fullModelResults = // simulator.executeSimulation(pFullPatternSimulationJob); // fullModelResults.registerForDrawing(); // // fullModelResults.saveDeformedModel(); // SimulationResults reducedModelResults = // simulator.executeSimulation(pReducedPatternSimulationJob); // // reducedModelResults.saveDeformedModel(); // // fullModelResults.saveDeformedModel(); // double error = computeRawDisplacementError( // reducedModelResults.displacements, fullModelResults.displacements, // reducedToFullInterfaceViMap/*, // global.reducedPatternMaximumDisplacementNormSum[simulationScenarioIndex]*/); // std::cout << "Error is " << error << std::endl; // reducedModelResults.registerForDrawing(); //} //#endif // POLYSCOPE_DEFINED void ReducedModelOptimizer::computeDesiredReducedModelDisplacements( const SimulationResults &fullModelResults, const std::unordered_map &displacementsReducedToFullMap, Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) { assert(optimalDisplacementsOfReducedModel.rows() != 0 && optimalDisplacementsOfReducedModel.cols() == 3); optimalDisplacementsOfReducedModel.setZero( optimalDisplacementsOfReducedModel.rows(), optimalDisplacementsOfReducedModel.cols()); for (auto reducedFullViPair : displacementsReducedToFullMap) { const VertexIndex fullModelVi = reducedFullViPair.second; const Vector6d fullModelViDisplacements = fullModelResults.displacements[fullModelVi]; optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) = Eigen::Vector3d(fullModelViDisplacements[0], fullModelViDisplacements[1], fullModelViDisplacements[2]); } } ReducedPatternOptimization::Results ReducedModelOptimizer::getResults( const dlib::function_evaluation &optimizationResult_dlib, const Settings &settings) { ReducedPatternOptimization::Results results; results.baseTriangle = global.baseTriangle; //Number of crashes results.numberOfSimulationCrashes = global.numOfSimulationCrashes; //Value of optimal objective Y results.objectiveValue.total = optimizationResult_dlib.y; //Optimal X values results.optimalXNameValuePairs.resize(settings.xRanges.size()); std::vector optimalX(settings.xRanges.size()); for (int xVariableIndex = 0; xVariableIndex < settings.xRanges.size(); xVariableIndex++) { if (xVariableIndex < 5) { results.optimalXNameValuePairs[xVariableIndex] = std::make_pair(settings.xRanges[xVariableIndex].label, global.minX[xVariableIndex] * global.initialParameters(xVariableIndex)); } else { //Hex size and angle are pure values (not multipliers of the initial values) results.optimalXNameValuePairs[xVariableIndex] = std::make_pair(settings.xRanges[xVariableIndex].label, global.minX[xVariableIndex]); } assert(global.minX[xVariableIndex] == optimizationResult_dlib.x(xVariableIndex)); optimalX[xVariableIndex] = optimizationResult_dlib.x(xVariableIndex); } // Compute obj value per simulation scenario and the raw objective value updateMesh(optimalX.size(), optimalX.data()); // results.objectiveValue.totalPerSimulationScenario.resize(totalNumberOfSimulationScenarios); LinearSimulationModel simulator; results.objectiveValue.totalRaw = 0; results.objectiveValue.perSimulationScenario_translational.resize( totalNumberOfSimulationScenarios); results.objectiveValue.perSimulationScenario_rawTranslational.resize( totalNumberOfSimulationScenarios); results.objectiveValue.perSimulationScenario_rotational.resize(totalNumberOfSimulationScenarios); results.objectiveValue.perSimulationScenario_rawRotational.resize( totalNumberOfSimulationScenarios); results.objectiveValue.perSimulationScenario_total.resize(totalNumberOfSimulationScenarios); for (int simulationScenarioIndex : global.simulationScenarioIndices) { SimulationResults reducedModelResults = simulator.executeSimulation( global.reducedPatternSimulationJobs[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_total[simulationScenarioIndex] = computeError( global.fullPatternResults[simulationScenarioIndex], reducedModelResults, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex], global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); //Raw translational const double rawTranslationalError = computeRawTranslationalError( global.fullPatternResults[simulationScenarioIndex].displacements, reducedModelResults.displacements, global.reducedToFullInterfaceViMap); results.objectiveValue.perSimulationScenario_rawTranslational[simulationScenarioIndex] = rawTranslationalError; //Raw rotational const double rawRotationalError = computeRawRotationalError( global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, reducedModelResults.rotationalDisplacementQuaternion, global.reducedToFullInterfaceViMap); results.objectiveValue.perSimulationScenario_rawRotational[simulationScenarioIndex] = rawRotationalError; //Normalized translational const double normalizedTranslationalError = computeDisplacementError( global.fullPatternResults[simulationScenarioIndex].displacements, reducedModelResults.displacements, global.reducedToFullInterfaceViMap, global.translationalDisplacementNormalizationValues[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_translational[simulationScenarioIndex] = normalizedTranslationalError; // const double test_normalizedTranslationError = computeDisplacementError( // global.fullPatternResults[simulationScenarioIndex].displacements, // reducedModelResults.displacements, // global.reducedToFullInterfaceViMap, // global.translationalDisplacementNormalizationValues[simulationScenarioIndex]); //Normalized rotational const double normalizedRotationalError = computeRotationalError( global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, reducedModelResults.rotationalDisplacementQuaternion, global.reducedToFullInterfaceViMap, global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); results.objectiveValue.perSimulationScenario_rotational[simulationScenarioIndex] = normalizedRotationalError; // const double test_normalizedRotationalError = computeRotationalError( // global.fullPatternResults[simulationScenarioIndex].rotationalDisplacementQuaternion, // reducedModelResults.rotationalDisplacementQuaternion, // global.reducedToFullInterfaceViMap, // global.rotationalDisplacementNormalizationValues[simulationScenarioIndex]); // assert(test_normalizedTranslationError == normalizedTranslationalError); // assert(test_normalizedRotationalError == normalizedRotationalError); std::cout << "Simulation scenario:" << global.reducedPatternSimulationJobs[simulationScenarioIndex]->getLabel() << std::endl; std::cout << "raw translational error:" << rawTranslationalError << std::endl; std::cout << "translation normalization value:" << global.translationalDisplacementNormalizationValues[simulationScenarioIndex] << std::endl; std::cout << "Translational error:" << normalizedTranslationalError << std::endl; std::cout << "raw Rotational error:" << rawRotationalError << std::endl; std::cout << "rotational normalization value:" << global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] << std::endl; std::cout << "Rotational error:" << normalizedRotationalError << std::endl; // results.objectiveValuePerSimulationScenario[simulationScenarioIndex] // = normalizedTranslationalError + normalizedRotationalError; std::cout << "Objective value:" << results.objectiveValue.perSimulationScenario_total[simulationScenarioIndex] << std::endl; results.objectiveValue.totalRaw += rawTranslationalError + rawRotationalError; std::cout << std::endl; } const bool printDebugInfo = false; if (printDebugInfo) { std::cout << "Finished optimizing." << endl; std::cout << "Total optimal objective value:" << results.objectiveValue.total << std::endl; assert(global.minY == optimizationResult_dlib.y); } for (int simulationScenarioIndex : global.simulationScenarioIndices) { results.fullPatternSimulationJobs.push_back( global.fullPatternSimulationJobs[simulationScenarioIndex]); results.reducedPatternSimulationJobs.push_back( global.reducedPatternSimulationJobs[simulationScenarioIndex]); // const std::string temp = global.reducedPatternSimulationJobs[simulationScenarioIndex] // ->pMesh->getLabel(); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->setLabel("temp"); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->registerForDrawing(); // global.reducedPatternSimulationJobs[simulationScenarioIndex]->pMesh->setLabel(temp); } return results; } ReducedPatternOptimization::Results ReducedModelOptimizer::runOptimization(const Settings &settings) { global.objectiveValueHistory.clear(); dlib::matrix xMin(global.numberOfOptimizationParameters); dlib::matrix xMax(global.numberOfOptimizationParameters); for (int i = 0; i < global.numberOfOptimizationParameters; i++) { xMin(i) = settings.xRanges[i].min; xMax(i) = settings.xRanges[i].max; } auto start = std::chrono::system_clock::now(); dlib::function_evaluation result_dlib; double (*objF)(double, double, double, double, double,double,double) = &objective; result_dlib = dlib::find_min_global(objF, xMin, xMax, dlib::max_function_calls(settings.numberOfFunctionCalls), std::chrono::hours(24 * 365 * 290), settings.solutionAccuracy); auto end = std::chrono::system_clock::now(); auto elapsed = std::chrono::duration_cast(end - start); ReducedPatternOptimization::Results results = getResults(result_dlib, settings); results.time = elapsed.count() / 1000.0; return results; } //TODO: create a function that takes as arguments the magnitude range, a lambda that generates the simulation job and the base sim scenario index std::vector> ReducedModelOptimizer::createFullPatternSimulationScenarios( const std::shared_ptr &pMesh) { std::vector> scenarios; scenarios.resize(totalNumberOfSimulationScenarios); std::unordered_map> fixedVertices; std::unordered_map nodalForces; //// Axial const double maxForceMagnitude_axial = 500; const double minForceMagnitude_axial = -500; const int numberOfSimulationScenarios_axial = simulationScenariosResolution[BaseSimulationScenario::Axial]; const double forceMagnitudeStep_axial = numberOfSimulationScenarios_axial == 1 ? maxForceMagnitude_axial : (maxForceMagnitude_axial - minForceMagnitude_axial) / (numberOfSimulationScenarios_axial - 1); const int baseSimulationScenarioIndexOffset_axial = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + BaseSimulationScenario::Axial, 0); for (int axialSimulationScenarioIndex = 0; axialSimulationScenarioIndex < numberOfSimulationScenarios_axial; axialSimulationScenarioIndex++) { const double forceMagnitude = (forceMagnitudeStep_axial * axialSimulationScenarioIndex + minForceMagnitude_axial); for (auto viPairIt = m_fullPatternOppositeInterfaceViPairs.begin(); viPairIt != m_fullPatternOppositeInterfaceViPairs.end(); viPairIt++) { if (viPairIt != m_fullPatternOppositeInterfaceViPairs.begin()) { CoordType forceDirection(1, 0, 0); const auto viPair = *viPairIt; nodalForces[viPair.first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } scenarios[baseSimulationScenarioIndexOffset_axial + axialSimulationScenarioIndex] = std::make_shared( SimulationJob(pMesh, baseSimulationScenarioNames[BaseSimulationScenario::Axial] + "_" + std::to_string(axialSimulationScenarioIndex), fixedVertices, nodalForces, {})); } //// Shear const double maxForceMagnitude_shear = 50; const double minForceMagnitude_shear = -50; const int numberOfSimulationScenarios_shear = simulationScenariosResolution[BaseSimulationScenario::Shear]; const double forceMagnitudeStep_shear = numberOfSimulationScenarios_shear == 1 ? maxForceMagnitude_shear : (maxForceMagnitude_shear - minForceMagnitude_shear) / (numberOfSimulationScenarios_shear - 1); const int baseSimulationScenarioIndexOffset_shear = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + BaseSimulationScenario::Shear, 0); for (int shearSimulationScenarioIndex = 0; shearSimulationScenarioIndex < numberOfSimulationScenarios_shear; shearSimulationScenarioIndex++) { fixedVertices.clear(); nodalForces.clear(); const double forceMagnitude = (forceMagnitudeStep_shear * shearSimulationScenarioIndex + minForceMagnitude_shear); for (auto viPairIt = m_fullPatternOppositeInterfaceViPairs.begin(); viPairIt != m_fullPatternOppositeInterfaceViPairs.end(); viPairIt++) { if (viPairIt != m_fullPatternOppositeInterfaceViPairs.begin()) { CoordType forceDirection(0, 1, 0); const auto viPair = *viPairIt; nodalForces[viPair.first] = Vector6d({forceDirection[0], forceDirection[1], forceDirection[2], 0, 0, 0}) * forceMagnitude; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } } scenarios[baseSimulationScenarioIndexOffset_shear + shearSimulationScenarioIndex] = std::make_shared( SimulationJob(pMesh, baseSimulationScenarioNames[BaseSimulationScenario::Shear] + "_" + std::to_string(shearSimulationScenarioIndex), fixedVertices, nodalForces, {})); } //// Bending const double maxForceMagnitude_bending = 0.005; const double minForceMagnitude_bending = -0.005; const int numberOfSimulationScenarios_bending = simulationScenariosResolution[BaseSimulationScenario::Bending]; const double forceMagnitudeStep_bending = numberOfSimulationScenarios_bending == 1 ? maxForceMagnitude_bending : (maxForceMagnitude_bending - minForceMagnitude_bending) / (numberOfSimulationScenarios_bending - 1); const int baseSimulationScenarioIndexOffset_bending = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + BaseSimulationScenario::Bending, 0); for (int bendingSimulationScenarioIndex = 0; bendingSimulationScenarioIndex < numberOfSimulationScenarios_bending; bendingSimulationScenarioIndex++) { fixedVertices.clear(); nodalForces.clear(); const double forceMagnitude = (forceMagnitudeStep_bending * bendingSimulationScenarioIndex + minForceMagnitude_bending); for (const auto &viPair : m_fullPatternOppositeInterfaceViPairs) { nodalForces[viPair.first] = Vector6d({0, 0, 1, 0, 0, 0}) * forceMagnitude; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2, 3, 4, 5}; } scenarios[baseSimulationScenarioIndexOffset_bending + bendingSimulationScenarioIndex] = std::make_shared( SimulationJob(pMesh, baseSimulationScenarioNames[BaseSimulationScenario::Bending] + "_" + std::to_string(bendingSimulationScenarioIndex), fixedVertices, nodalForces, {})); } //// Dome const double maxForceMagnitude_dome = 0.025; const double minForceMagnitude_dome = -0.025; const int numberOfSimulationScenarios_dome = simulationScenariosResolution[BaseSimulationScenario::Dome]; const double forceMagnitudeStep_dome = numberOfSimulationScenarios_dome == 1 ? maxForceMagnitude_dome : (maxForceMagnitude_dome - minForceMagnitude_dome) / (numberOfSimulationScenarios_dome - 1); const int baseSimulationScenarioIndexOffset_dome = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + BaseSimulationScenario::Dome, 0); for (int domeSimulationScenarioIndex = 0; domeSimulationScenarioIndex < numberOfSimulationScenarios_dome; domeSimulationScenarioIndex++) { fixedVertices.clear(); nodalForces.clear(); std::unordered_map nodalForcedDisplacements; const double forceMagnitude = (forceMagnitudeStep_dome * domeSimulationScenarioIndex + minForceMagnitude_dome); for (auto viPairIt = m_fullPatternOppositeInterfaceViPairs.begin(); viPairIt != m_fullPatternOppositeInterfaceViPairs.end(); viPairIt++) { const auto viPair = *viPairIt; CoordType interfaceVector = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()); VectorType momentAxis = vcg::RotationMatrix(VectorType(0, 0, 1), vcg::math::ToRad(90.0)) * interfaceVector.Normalize(); if (viPairIt == m_fullPatternOppositeInterfaceViPairs.begin()) { nodalForcedDisplacements[viPair.first] = Eigen::Vector3d(-interfaceVector[0], -interfaceVector[1], 0) * std::abs(forceMagnitude); nodalForcedDisplacements[viPair.second] = Eigen::Vector3d(interfaceVector[0], interfaceVector[1], 0) * std::abs(forceMagnitude); // CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) // ^ CoordType(0, 0, -1).Normalize(); // nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude // * 0.0001; // nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude // * 0.0001; } else { nodalForces[viPair.first] = Vector6d({0, 0, 0, momentAxis[0], momentAxis[1], momentAxis[2]}) * forceMagnitude / 5; nodalForces[viPair.second] = Vector6d({0, 0, 0, -momentAxis[0], -momentAxis[1], -momentAxis[2]}) * forceMagnitude / 5; fixedVertices[viPair.first] = std::unordered_set{2}; fixedVertices[viPair.second] = std::unordered_set{2}; } } scenarios[baseSimulationScenarioIndexOffset_dome + domeSimulationScenarioIndex] = std::make_shared( SimulationJob(pMesh, baseSimulationScenarioNames[BaseSimulationScenario::Dome] + "_" + std::to_string(domeSimulationScenarioIndex), fixedVertices, nodalForces, nodalForcedDisplacements)); } //// Saddle const double maxForceMagnitude_saddle = 0.005; const double minForceMagnitude_saddle = -0.005; const int numberOfSimulationScenarios_saddle = simulationScenariosResolution[BaseSimulationScenario::Saddle]; const double forceMagnitudeStep_saddle = numberOfSimulationScenarios_saddle == 1 ? maxForceMagnitude_saddle : (maxForceMagnitude_saddle - minForceMagnitude_saddle) / (numberOfSimulationScenarios_saddle - 1); const int baseSimulationScenarioIndexOffset_saddle = std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + BaseSimulationScenario::Saddle, 0); for (int saddleSimulationScenarioIndex = 0; saddleSimulationScenarioIndex < numberOfSimulationScenarios_saddle; saddleSimulationScenarioIndex++) { fixedVertices.clear(); nodalForces.clear(); const double forceMagnitude = (forceMagnitudeStep_saddle * saddleSimulationScenarioIndex + minForceMagnitude_saddle); for (auto viPairIt = m_fullPatternOppositeInterfaceViPairs.begin(); viPairIt != m_fullPatternOppositeInterfaceViPairs.end(); viPairIt++) { const auto &viPair = *viPairIt; CoordType v = (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP()) ^ CoordType(0, 0, -1).Normalize(); if (viPairIt == m_fullPatternOppositeInterfaceViPairs.begin()) { nodalForces[viPair.first] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude; nodalForces[viPair.second] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude; } else { fixedVertices[viPair.first] = std::unordered_set{2}; fixedVertices[viPair.second] = std::unordered_set{0, 1, 2}; nodalForces[viPair.first] = Vector6d({0, 0, 0, -v[0], -v[1], 0}) * forceMagnitude / 2; nodalForces[viPair.second] = Vector6d({0, 0, 0, v[0], v[1], 0}) * forceMagnitude / 2; } } scenarios[baseSimulationScenarioIndexOffset_saddle + saddleSimulationScenarioIndex] = std::make_shared( SimulationJob(pMesh, baseSimulationScenarioNames[BaseSimulationScenario::Saddle] + "_" + std::to_string(saddleSimulationScenarioIndex), fixedVertices, nodalForces, {})); } return scenarios; } void ReducedModelOptimizer::computeObjectiveValueNormalizationFactors() { // Compute the sum of the displacement norms std::vector fullPatternTranslationalDisplacementNormSum( totalNumberOfSimulationScenarios); std::vector fullPatternAngularDistance(totalNumberOfSimulationScenarios); for (int simulationScenarioIndex : global.simulationScenarioIndices) { double translationalDisplacementNormSum = 0; for (auto interfaceViPair : global.reducedToFullInterfaceViMap) { const int fullPatternVi = interfaceViPair.second; //If the full pattern vertex is translationally constrained dont take it into account if (global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.contains(fullPatternVi)) { const std::unordered_set constrainedDof = global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.at(fullPatternVi); if (constrainedDof.contains(0) && constrainedDof.contains(1) && constrainedDof.contains(2)) { continue; } } const Vector6d &vertexDisplacement = global .fullPatternResults[simulationScenarioIndex] .displacements[fullPatternVi]; translationalDisplacementNormSum += vertexDisplacement.getTranslation().norm(); } double angularDistanceSum = 0; for (auto interfaceViPair : global.reducedToFullInterfaceViMap) { const int fullPatternVi = interfaceViPair.second; //If the full pattern vertex is rotationally constrained dont take it into account if (global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.contains(fullPatternVi)) { const std::unordered_set constrainedDof = global.fullPatternSimulationJobs[simulationScenarioIndex] ->constrainedVertices.at(fullPatternVi); if (constrainedDof.contains(3) && constrainedDof.contains(5) && constrainedDof.contains(4)) { continue; } } angularDistanceSum += global.fullPatternResults[simulationScenarioIndex] .rotationalDisplacementQuaternion[fullPatternVi] .angularDistance(Eigen::Quaterniond::Identity()); } fullPatternTranslationalDisplacementNormSum[simulationScenarioIndex] = translationalDisplacementNormSum; fullPatternAngularDistance[simulationScenarioIndex] = angularDistanceSum; } for (int simulationScenarioIndex : global.simulationScenarioIndices) { if (global.optimizationSettings.normalizationStrategy == Settings::NormalizationStrategy::Epsilon) { const double epsilon_translationalDisplacement = global.optimizationSettings .normalizationParameter; global.translationalDisplacementNormalizationValues[simulationScenarioIndex] = std::max(fullPatternTranslationalDisplacementNormSum[simulationScenarioIndex], epsilon_translationalDisplacement); // const double epsilon_rotationalDisplacement = vcg::math::ToRad(10.0); global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] = /*std::max(*/ fullPatternAngularDistance[simulationScenarioIndex] /*, epsilon_rotationalDisplacement)*/ ; } else { global.translationalDisplacementNormalizationValues[simulationScenarioIndex] = 1; global.rotationalDisplacementNormalizationValues[simulationScenarioIndex] = 1; } } } Results ReducedModelOptimizer::optimize( const Settings &optimizationSettings, const std::vector &desiredBaseSimulationScenarioIndices) { for (int baseSimulationScenarioIndex : desiredBaseSimulationScenarioIndices) { //Increase the size of the vector holding the simulation scenario indices global.simulationScenarioIndices.resize( global.simulationScenarioIndices.size() + simulationScenariosResolution[baseSimulationScenarioIndex]); //Add the simulation scenarios indices that correspond to this base simulation scenario std::iota(global.simulationScenarioIndices.end() - simulationScenariosResolution[baseSimulationScenarioIndex], global.simulationScenarioIndices.end(), std::accumulate(simulationScenariosResolution.begin(), simulationScenariosResolution.begin() + baseSimulationScenarioIndex, 0)); } if (desiredBaseSimulationScenarioIndices.empty()) { global.simulationScenarioIndices.resize(totalNumberOfSimulationScenarios); std::iota(global.simulationScenarioIndices.begin(), global.simulationScenarioIndices.end(), 0); } global.reducedPatternSimulationJobs.resize(totalNumberOfSimulationScenarios); global.fullPatternResults.resize(totalNumberOfSimulationScenarios); global.translationalDisplacementNormalizationValues.resize(totalNumberOfSimulationScenarios); global.rotationalDisplacementNormalizationValues.resize(totalNumberOfSimulationScenarios); global.minY = std::numeric_limits::max(); global.numOfSimulationCrashes = 0; global.numberOfFunctionCalls = 0; global.optimizationSettings = optimizationSettings; global.fullPatternSimulationJobs = createFullPatternSimulationScenarios( m_pFullPatternSimulationMesh); // polyscope::removeAllStructures(); DRMSimulationModel::Settings simulationSettings; simulationSettings.shouldDraw = false; // global.fullPatternSimulationJobs[0]->pMesh->registerForDrawing( // ReducedPatternOptimization::Colors::fullInitial); // LinearSimulationModel linearSimulator; for (int simulationScenarioIndex : global.simulationScenarioIndices) { const std::shared_ptr &pFullPatternSimulationJob = global.fullPatternSimulationJobs[simulationScenarioIndex]; SimulationResults fullPatternResults = simulator.executeSimulation(pFullPatternSimulationJob, simulationSettings); // SimulationResults fullPatternResults_linear = linearSimulator.executeSimulation( // pFullPatternSimulationJob); // fullPatternResults.registerForDrawing(ReducedPatternOptimization::Colors::fullDeformed, // true, // true); // fullPatternResults_linear.labelPrefix += "_linear"; // fullPatternResults_linear.registerForDrawing(ReducedModelOptimization::Colors::fullDeformed, // true, // true); // polyscope::show(); // fullPatternResults.unregister(); // fullPatternResults_linear.unregister(); global.fullPatternResults[simulationScenarioIndex] = fullPatternResults; SimulationJob reducedPatternSimulationJob; reducedPatternSimulationJob.pMesh = m_pReducedPatternSimulationMesh; computeReducedModelSimulationJob(*pFullPatternSimulationJob, m_fullToReducedInterfaceViMap, reducedPatternSimulationJob); global.reducedPatternSimulationJobs[simulationScenarioIndex] = std::make_shared(reducedPatternSimulationJob); // std::cout << "Ran sim scenario:" << simulationScenarioIndex << std::endl; } // global.fullPatternSimulationJobs[0]->pMesh->unregister(); // if (global.optimizationSettings.normalizationStrategy // != Settings::NormalizationStrategy::NonNormalized) { computeObjectiveValueNormalizationFactors(); // } Results optResults = runOptimization(optimizationSettings); return optResults; }