632 lines
26 KiB
C++
632 lines
26 KiB
C++
#include "reducedmodeloptimizer.hpp"
|
|
#include "bobyqa.h"
|
|
#include "flatpattern.hpp"
|
|
#include "gradientDescent.h"
|
|
#include "matplot/matplot.h"
|
|
#include "simulationhistoryplotter.hpp"
|
|
#include "trianglepattterntopology.hpp"
|
|
|
|
const bool gShouldDraw = true;
|
|
size_t g_numberOfOptimizationRounds{0};
|
|
FormFinder simulator;
|
|
Eigen::MatrixX3d g_optimalReducedModelDisplacements;
|
|
SimulationJob gReducedPatternSimulationJob;
|
|
std::unordered_map<ReducedModelVertexIndex, FullModelVertexIndex>
|
|
g_reducedToFullInterfaceViMap;
|
|
matplot::line_handle gPlotHandle;
|
|
std::vector<double> gObjectiveValueHistory;
|
|
Eigen::Vector4d g_initialX;
|
|
std::unordered_set<size_t> g_reducedPatternExludedEdges;
|
|
Eigen::MatrixX4d g_initialStiffnessFactors;
|
|
|
|
struct OptimizationCallback {
|
|
double operator()(const size_t &iterations, const Eigen::VectorXd &x,
|
|
const double &fval, Eigen::VectorXd &gradient) const {
|
|
// run simulation
|
|
// SimulationResults reducedModelResults =
|
|
// simulator.executeSimulation(reducedModelSimulationJob);
|
|
// reducedModelResults.draw(reducedModelSimulationJob);
|
|
gObjectiveValueHistory.push_back(fval);
|
|
auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
|
|
gObjectiveValueHistory.size());
|
|
gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory);
|
|
// const std::string plotImageFilename = "objectivePlot.png";
|
|
// matplot::save(plotImageFilename);
|
|
// if (numberOfOptimizationRounds % 30 == 0) {
|
|
// std::filesystem::copy_file(
|
|
// std::filesystem::path(plotImageFilename),
|
|
// std::filesystem::path("objectivePlot_copy.png"));
|
|
// }
|
|
// std::stringstream ss;
|
|
// ss << x;
|
|
// reducedModelResults.simulationLabel = ss.str();
|
|
// SimulationResultsReporter resultsReporter;
|
|
// resultsReporter.reportResults(
|
|
// {reducedModelResults},
|
|
// std::filesystem::current_path().append("Results"));
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
struct Objective {
|
|
double operator()(const Eigen::VectorXd &x, Eigen::VectorXd &) const {
|
|
assert(x.rows() == 4);
|
|
|
|
// drawSimulationJob(simulationJob);
|
|
// Set mesh from x
|
|
std::shared_ptr<SimulationMesh> reducedModel =
|
|
gReducedPatternSimulationJob.mesh;
|
|
for (EdgeIndex ei = 0; ei < reducedModel->EN(); ei++) {
|
|
if (g_reducedPatternExludedEdges.contains(ei)) {
|
|
continue;
|
|
}
|
|
Element &e = reducedModel->elements[ei];
|
|
e.axialConstFactor *= x(0);
|
|
e.torsionConstFactor *= x(1);
|
|
e.firstBendingConstFactor *= x(2);
|
|
e.secondBendingConstFactor *= x(3);
|
|
}
|
|
// run simulation
|
|
SimulationResults reducedModelResults =
|
|
simulator.executeSimulation(gReducedPatternSimulationJob);
|
|
// std::stringstream ss;
|
|
// ss << x;
|
|
// reducedModelResults.simulationLabel = ss.str();
|
|
// SimulationResultsReporter resultsReporter;
|
|
// resultsReporter.reportResults(
|
|
// {reducedModelResults},
|
|
// std::filesystem::current_path().append("Results"));
|
|
// compute error and return it
|
|
double error = 0;
|
|
for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
|
|
VertexIndex reducedModelVi = reducedFullViPair.first;
|
|
Eigen::Vector3d vertexDisplacement(
|
|
reducedModelResults.displacements[reducedModelVi][0],
|
|
reducedModelResults.displacements[reducedModelVi][1],
|
|
reducedModelResults.displacements[reducedModelVi][2]);
|
|
Eigen::Vector3d errorVector =
|
|
Eigen::Vector3d(
|
|
g_optimalReducedModelDisplacements.row(reducedModelVi)) -
|
|
vertexDisplacement;
|
|
error += errorVector.norm();
|
|
}
|
|
|
|
return error;
|
|
}
|
|
};
|
|
|
|
double objective(long n, const double *x) {
|
|
Eigen::VectorXd eigenX(n, 1);
|
|
for (size_t xi = 0; xi < n; xi++) {
|
|
eigenX(xi) = x[xi];
|
|
}
|
|
|
|
std::shared_ptr<SimulationMesh> reducedPattern =
|
|
gReducedPatternSimulationJob.mesh;
|
|
for (EdgeIndex ei = 0; ei < reducedPattern->EN(); ei++) {
|
|
Element &e = reducedPattern->elements[ei];
|
|
if (g_reducedPatternExludedEdges.contains(ei)) {
|
|
continue;
|
|
}
|
|
e.axialConstFactor = g_initialStiffnessFactors(ei, 0) * eigenX(0);
|
|
e.torsionConstFactor = g_initialStiffnessFactors(ei, 1) * eigenX(1);
|
|
e.firstBendingConstFactor = g_initialStiffnessFactors(ei, 2) * eigenX(2);
|
|
e.secondBendingConstFactor = g_initialStiffnessFactors(ei, 3) * eigenX(3);
|
|
}
|
|
// run simulation
|
|
SimulationResults reducedModelResults =
|
|
simulator.executeSimulation(gReducedPatternSimulationJob, false, false);
|
|
|
|
// compute error and return it
|
|
double error = 0;
|
|
for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
|
|
VertexIndex reducedModelVi = reducedFullViPair.first;
|
|
Eigen::Vector3d vertexDisplacement(
|
|
reducedModelResults.displacements[reducedModelVi][0],
|
|
reducedModelResults.displacements[reducedModelVi][1],
|
|
reducedModelResults.displacements[reducedModelVi][2]);
|
|
Eigen::Vector3d errorVector =
|
|
Eigen::Vector3d(
|
|
g_optimalReducedModelDisplacements.row(reducedModelVi)) -
|
|
vertexDisplacement;
|
|
error += errorVector.norm();
|
|
}
|
|
|
|
gObjectiveValueHistory.push_back(error);
|
|
auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
|
|
gObjectiveValueHistory.size());
|
|
gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory);
|
|
|
|
return error;
|
|
}
|
|
|
|
void ReducedModelOptimizer::computeMaps(
|
|
FlatPattern &fullPattern, FlatPattern &reducedPattern,
|
|
const std::unordered_set<size_t> &reducedModelExcludedEges) {
|
|
// Compute the offset between the interface nodes
|
|
const size_t interfaceSlotIndex = 4; // bottom edge
|
|
assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() &&
|
|
slotToNode.find(interfaceSlotIndex)->second.size() == 1);
|
|
// Assuming that in the bottom edge there is only one vertex which is also the
|
|
// interface
|
|
const size_t baseTriangleInterfaceVi =
|
|
*(slotToNode.find(interfaceSlotIndex)->second.begin());
|
|
|
|
vcg::tri::Allocator<FlatPattern>::PointerUpdater<FlatPattern::VertexPointer>
|
|
pu_fullModel;
|
|
fullPattern.deleteDanglingVertices(pu_fullModel);
|
|
const size_t fullModelBaseTriangleInterfaceVi =
|
|
pu_fullModel.remap.empty() ? baseTriangleInterfaceVi
|
|
: pu_fullModel.remap[baseTriangleInterfaceVi];
|
|
const size_t fullModelBaseTriangleVN = fullPattern.VN();
|
|
fullPattern.createFan();
|
|
const size_t duplicateVerticesPerFanPair =
|
|
fullModelBaseTriangleVN - fullPattern.VN() / 6;
|
|
const size_t fullPatternInterfaceVertexOffset =
|
|
fullModelBaseTriangleVN - duplicateVerticesPerFanPair;
|
|
// std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair <<
|
|
// std::endl;
|
|
|
|
// Save excluded edges
|
|
g_reducedPatternExludedEdges.clear();
|
|
const size_t fanSize = 6;
|
|
const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN();
|
|
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
|
|
for (const size_t ei : reducedModelExcludedEges) {
|
|
g_reducedPatternExludedEdges.insert(
|
|
fanIndex * reducedBaseTriangleNumberOfEdges + ei);
|
|
}
|
|
}
|
|
|
|
// Construct reduced->full and full->reduced interface vi map
|
|
g_reducedToFullInterfaceViMap.clear();
|
|
vcg::tri::Allocator<FlatPattern>::PointerUpdater<FlatPattern::VertexPointer>
|
|
pu_reducedModel;
|
|
reducedPattern.deleteDanglingVertices(pu_reducedModel);
|
|
const size_t reducedModelBaseTriangleInterfaceVi =
|
|
pu_reducedModel.remap[baseTriangleInterfaceVi];
|
|
const size_t reducedModelInterfaceVertexOffset =
|
|
reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/;
|
|
reducedPattern.createFan();
|
|
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
|
|
g_reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex +
|
|
reducedModelBaseTriangleInterfaceVi] =
|
|
fullModelBaseTriangleInterfaceVi +
|
|
fanIndex * fullPatternInterfaceVertexOffset;
|
|
}
|
|
m_fullToReducedInterfaceViMap.clear();
|
|
constructInverseMap(g_reducedToFullInterfaceViMap,
|
|
m_fullToReducedInterfaceViMap);
|
|
|
|
// fullPattern.setLabel("FullPattern");
|
|
// reducedPattern.setLabel("ReducedPattern");
|
|
// Create opposite vertex map
|
|
m_fullPatternOppositeInterfaceViMap.clear();
|
|
for (size_t fanIndex = 0; fanIndex < fanSize / 2; fanIndex++) {
|
|
const size_t vi0 = fullModelBaseTriangleInterfaceVi +
|
|
fanIndex * fullPatternInterfaceVertexOffset;
|
|
const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset;
|
|
assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN());
|
|
m_fullPatternOppositeInterfaceViMap[vi0] = vi1;
|
|
}
|
|
|
|
const bool debugMapping = false;
|
|
if (debugMapping) {
|
|
reducedPattern.registerForDrawing();
|
|
std::vector<glm::vec3> colors_reducedPatternExcludedEdges(
|
|
reducedPattern.EN(), glm::vec3(0, 0, 0));
|
|
for (const size_t ei : g_reducedPatternExludedEdges) {
|
|
colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0);
|
|
}
|
|
const std::string label = reducedPattern.getLabel();
|
|
polyscope::getCurveNetwork(label)
|
|
->addEdgeColorQuantity("Excluded edges",
|
|
colors_reducedPatternExcludedEdges)
|
|
->setEnabled(true);
|
|
polyscope::show();
|
|
|
|
std::vector<glm::vec3> nodeColorsOpposite(fullPattern.VN(),
|
|
glm::vec3(0, 0, 0));
|
|
for (const std::pair<size_t, size_t> oppositeVerts :
|
|
m_fullPatternOppositeInterfaceViMap) {
|
|
auto color = polyscope::getNextUniqueColor();
|
|
nodeColorsOpposite[oppositeVerts.first] = color;
|
|
nodeColorsOpposite[oppositeVerts.second] = color;
|
|
}
|
|
fullPattern.registerForDrawing();
|
|
polyscope::getCurveNetwork(fullPattern.getLabel())
|
|
->addNodeColorQuantity("oppositeMap", nodeColorsOpposite)
|
|
->setEnabled(true);
|
|
polyscope::show();
|
|
|
|
std::vector<glm::vec3> nodeColorsReducedToFull_reduced(reducedPattern.VN(),
|
|
glm::vec3(0, 0, 0));
|
|
std::vector<glm::vec3> nodeColorsReducedToFull_full(fullPattern.VN(),
|
|
glm::vec3(0, 0, 0));
|
|
for (size_t vi = 0; vi < reducedPattern.VN(); vi++) {
|
|
if (g_reducedToFullInterfaceViMap.contains(vi)) {
|
|
|
|
auto color = polyscope::getNextUniqueColor();
|
|
nodeColorsReducedToFull_reduced[vi] = color;
|
|
nodeColorsReducedToFull_full[g_reducedToFullInterfaceViMap[vi]] = color;
|
|
}
|
|
}
|
|
polyscope::getCurveNetwork(reducedPattern.getLabel())
|
|
->addNodeColorQuantity("reducedToFull_reduced",
|
|
nodeColorsReducedToFull_reduced)
|
|
->setEnabled(true);
|
|
polyscope::getCurveNetwork(fullPattern.getLabel())
|
|
->addNodeColorQuantity("reducedToFull_full",
|
|
nodeColorsReducedToFull_full)
|
|
->setEnabled(true);
|
|
polyscope::show();
|
|
}
|
|
}
|
|
|
|
void ReducedModelOptimizer::createSimulationMeshes(FlatPattern &fullModel,
|
|
FlatPattern &reducedModel) {
|
|
pReducedModelElementalMesh = std::make_shared<SimulationMesh>(reducedModel);
|
|
pFullModelElementalMesh = std::make_shared<SimulationMesh>(fullModel);
|
|
}
|
|
|
|
ReducedModelOptimizer::ReducedModelOptimizer(
|
|
const std::vector<size_t> &numberOfNodesPerSlot) {
|
|
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot);
|
|
FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode);
|
|
}
|
|
|
|
void ReducedModelOptimizer::initialize(
|
|
FlatPattern &fullPattern, FlatPattern &reducedPattern,
|
|
const std::unordered_set<size_t> &reducedModelExcludedEdges) {
|
|
assert(fullPattern.VN() == reducedPattern.VN() &&
|
|
fullPattern.EN() > reducedPattern.EN());
|
|
polyscope::removeAllStructures();
|
|
// Create copies of the input models
|
|
FlatPattern copyFullPattern;
|
|
FlatPattern copyReducedPattern;
|
|
copyFullPattern.copy(fullPattern);
|
|
copyReducedPattern.copy(reducedPattern);
|
|
computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges);
|
|
createSimulationMeshes(copyFullPattern, copyReducedPattern);
|
|
initializeStiffnesses();
|
|
|
|
int i = 0;
|
|
i++;
|
|
}
|
|
|
|
void ReducedModelOptimizer::initializeStiffnesses() {
|
|
g_initialStiffnessFactors.resize(pReducedModelElementalMesh->EN(), 4);
|
|
// Save save the beam stiffnesses
|
|
for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) {
|
|
Element &e = pReducedModelElementalMesh->elements[ei];
|
|
// if (g_reducedPatternExludedEdges.contains(ei)) {
|
|
// const double stiffnessFactor = 1;
|
|
// e.axialConstFactor *= stiffnessFactor;
|
|
// e.torsionConstFactor *= stiffnessFactor;
|
|
// e.firstBendingConstFactor *= stiffnessFactor;
|
|
// e.secondBendingConstFactor *= stiffnessFactor;
|
|
// }
|
|
g_initialStiffnessFactors(ei, 0) = e.axialConstFactor;
|
|
g_initialStiffnessFactors(ei, 1) = e.torsionConstFactor;
|
|
g_initialStiffnessFactors(ei, 2) = e.firstBendingConstFactor;
|
|
g_initialStiffnessFactors(ei, 3) = e.secondBendingConstFactor;
|
|
}
|
|
}
|
|
|
|
void ReducedModelOptimizer::computeReducedModelSimulationJob(
|
|
const SimulationJob &simulationJobOfFullModel,
|
|
SimulationJob &simulationJobOfReducedModel) {
|
|
std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
|
|
reducedModelFixedVertices;
|
|
for (auto fullModelFixedVertex : simulationJobOfFullModel.fixedVertices) {
|
|
reducedModelFixedVertices[m_fullToReducedInterfaceViMap.at(
|
|
fullModelFixedVertex.first)] = fullModelFixedVertex.second;
|
|
}
|
|
|
|
std::unordered_map<VertexIndex, Vector6d> reducedModelNodalForces;
|
|
for (auto fullModelNodalForce :
|
|
simulationJobOfFullModel.nodalExternalForces) {
|
|
reducedModelNodalForces[m_fullToReducedInterfaceViMap.at(
|
|
fullModelNodalForce.first)] = fullModelNodalForce.second;
|
|
}
|
|
|
|
simulationJobOfReducedModel = SimulationJob{pReducedModelElementalMesh,
|
|
reducedModelFixedVertices,
|
|
reducedModelNodalForces,
|
|
{}};
|
|
}
|
|
|
|
SimulationJob ReducedModelOptimizer::getReducedSimulationJob(
|
|
const SimulationJob &fullModelSimulationJob) {
|
|
SimulationJob reducedModelSimulationJob;
|
|
computeReducedModelSimulationJob(fullModelSimulationJob,
|
|
reducedModelSimulationJob);
|
|
return reducedModelSimulationJob;
|
|
}
|
|
|
|
void ReducedModelOptimizer::computeDesiredReducedModelDisplacements(
|
|
const SimulationResults &fullModelResults,
|
|
Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) {
|
|
|
|
optimalDisplacementsOfReducedModel.resize(pReducedModelElementalMesh->VN(),
|
|
3);
|
|
optimalDisplacementsOfReducedModel.setZero(
|
|
optimalDisplacementsOfReducedModel.rows(),
|
|
optimalDisplacementsOfReducedModel.cols());
|
|
|
|
for (auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
|
|
const VertexIndex fullModelVi = reducedFullViPair.second;
|
|
const Vector6d fullModelViDisplacements =
|
|
fullModelResults.displacements[fullModelVi];
|
|
optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) =
|
|
Eigen::Vector3d(fullModelViDisplacements[0],
|
|
fullModelViDisplacements[1],
|
|
fullModelViDisplacements[2]);
|
|
}
|
|
}
|
|
|
|
Eigen::VectorXd ReducedModelOptimizer::optimizeForSimulationJob(
|
|
const SimulationJob &fullModelSimulationJob) {
|
|
|
|
gObjectiveValueHistory.clear();
|
|
SimulationResults fullModelResults =
|
|
simulator.executeSimulation(fullModelSimulationJob, false, false);
|
|
fullModelResults.simulationLabel = "fullModel";
|
|
computeDesiredReducedModelDisplacements(fullModelResults,
|
|
g_optimalReducedModelDisplacements);
|
|
computeReducedModelSimulationJob(fullModelSimulationJob,
|
|
gReducedPatternSimulationJob);
|
|
// fullModelSimulationJob.registerForDrawing();
|
|
// polyscope::show();
|
|
// gReducedPatternSimulationJob.registerForDrawing();
|
|
// polyscope::show();
|
|
fullModelResults.registerForDrawing(fullModelSimulationJob);
|
|
polyscope::show();
|
|
|
|
// Set initial guess of solution
|
|
Eigen::VectorXd initialGuess(4);
|
|
const double stifnessFactor = 1;
|
|
initialGuess(0) = stifnessFactor;
|
|
initialGuess(1) = stifnessFactor;
|
|
initialGuess(2) = stifnessFactor;
|
|
initialGuess(3) = stifnessFactor;
|
|
|
|
const bool useGradientDescent = false;
|
|
if (useGradientDescent) {
|
|
|
|
// gdc::GradientDescent<double, Objective,
|
|
// gdc::DecreaseBacktracking<double>,
|
|
// OptimizationCallback>
|
|
gdc::GradientDescent<double, Objective, gdc::BarzilaiBorwein<double>,
|
|
OptimizationCallback>
|
|
// gdc::GradientDescent<double, Objective,
|
|
// gdc::DecreaseBacktracking<double>,
|
|
// OptimizationCallback>
|
|
// gdc::GradientDescent<double, Objective,
|
|
// gdc::DecreaseBacktracking<double>,
|
|
// OptimizationCallback>
|
|
optimizer;
|
|
|
|
// Turn verbosity on, so the optimizer prints status updates after each
|
|
// iteration.
|
|
optimizer.setVerbosity(1);
|
|
|
|
// Set initial guess.
|
|
matplot::xlabel("Optimization iterations");
|
|
matplot::ylabel("Objective value");
|
|
// matplot::figure(false);
|
|
matplot::grid(matplot::on);
|
|
// Start the optimization
|
|
auto result = optimizer.minimize(initialGuess);
|
|
|
|
std::cout << "Done! Converged: " << (result.converged ? "true" : "false")
|
|
<< " Iterations: " << result.iterations << std::endl;
|
|
|
|
// do something with final function value
|
|
std::cout << "Final fval: " << result.fval << std::endl;
|
|
|
|
// do something with final x-value
|
|
std::cout << "Final xval: " << result.xval.transpose() << std::endl;
|
|
|
|
SimulationResults reducedModelOptimizedResults =
|
|
simulator.executeSimulation(gReducedPatternSimulationJob);
|
|
reducedModelOptimizedResults.simulationLabel = "reducedModel";
|
|
reducedModelOptimizedResults.registerForDrawing(
|
|
gReducedPatternSimulationJob);
|
|
|
|
return result.xval;
|
|
} else { // use bobyqa
|
|
double (*pObjectiveFunction)(long, const double *) = &objective;
|
|
const size_t n = 4;
|
|
const size_t npt = 8;
|
|
assert(npt <= (n + 1) * (n + 2) / 2 && npt >= n + 2);
|
|
assert(npt < 2 * n + 1 && "The choice of the number of interpolation "
|
|
"conditions is not recommended.");
|
|
std::vector<double> x
|
|
// {1.03424, 0.998456, 0.619916, -0.202997};
|
|
{initialGuess(0), initialGuess(1), initialGuess(2), initialGuess(3)};
|
|
std::vector<double> xLow(x.size(), -100);
|
|
std::vector<double> xUpper(x.size(), 100);
|
|
const double maxX = *std::max_element(
|
|
x.begin(), x.end(),
|
|
[](const double &a, const double &b) { return abs(a) < abs(b); });
|
|
const double rhobeg = std::min(0.95, 0.2 * maxX);
|
|
const double rhoend = rhobeg * 1e-6;
|
|
const size_t wSize = (npt + 5) * (npt + n) + 3 * n * (n + 5) / 2;
|
|
std::vector<double> w(wSize);
|
|
bobyqa(pObjectiveFunction, n, npt, x.data(), xLow.data(), xUpper.data(),
|
|
rhobeg, rhoend, 100, w.data());
|
|
|
|
std::cout << "Final objective value:" << objective(n, x.data())
|
|
<< std::endl;
|
|
|
|
Eigen::VectorXd eigenX(x.size(), 1);
|
|
|
|
for (size_t xi = 0; xi < x.size(); xi++) {
|
|
eigenX(xi) = x[xi];
|
|
}
|
|
|
|
SimulationResults reducedModelOptimizedResults =
|
|
simulator.executeSimulation(gReducedPatternSimulationJob);
|
|
reducedModelOptimizedResults.simulationLabel = "reducedModel";
|
|
reducedModelOptimizedResults.registerForDrawing(
|
|
gReducedPatternSimulationJob);
|
|
polyscope::show();
|
|
|
|
return eigenX;
|
|
}
|
|
}
|
|
|
|
std::vector<SimulationJob> ReducedModelOptimizer::createScenarios(
|
|
const std::shared_ptr<SimulationMesh> &pMesh) {
|
|
std::vector<SimulationJob> scenarios;
|
|
std::unordered_map<VertexIndex, std::unordered_set<DoFType>> fixedVertices;
|
|
std::unordered_map<VertexIndex, Vector6d> nodalForces;
|
|
const double forceMagnitude = 250;
|
|
|
|
// // Axial
|
|
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
|
|
// CoordType forceDirection =
|
|
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
|
|
// .Normalize();
|
|
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
|
|
// forceDirection[1],
|
|
// forceDirection[2], 0, 0, 0}) *
|
|
// forceMagnitude;
|
|
// fixedVertices[viPair.second] =
|
|
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
|
|
// }
|
|
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
|
|
// // In-plane Bending
|
|
// // Assuming the patterns lay on the x-y plane
|
|
// const CoordType patternPlane(0, 0, 1);
|
|
// fixedVertices.clear();
|
|
// nodalForces.clear();
|
|
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
|
|
// CoordType v =
|
|
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
|
|
// .Normalize();
|
|
// CoordType forceDirection = patternPlane ^ v;
|
|
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
|
|
// forceDirection[1],
|
|
// forceDirection[2], 0, 0, 0}) *
|
|
// forceMagnitude;
|
|
// fixedVertices[viPair.second] =
|
|
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
|
|
// }
|
|
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
|
|
// // Torsion
|
|
// {
|
|
// fixedVertices.clear();
|
|
// nodalForces.clear();
|
|
// for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
|
|
// viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++)
|
|
// {
|
|
// const auto &viPair = *viPairIt;
|
|
// if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
|
|
// CoordType v =
|
|
// (pMesh->vert[viPair.first].cP() -
|
|
// pMesh->vert[viPair.second].cP())
|
|
// .Normalize();
|
|
// nodalForces[viPair.first] =
|
|
// Vector6d({0, 0, 0, v[1], v[0], 0}) * forceMagnitude;
|
|
// } else {
|
|
// fixedVertices[viPair.first] =
|
|
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
|
|
// }
|
|
// fixedVertices[viPair.second] =
|
|
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
|
|
// }
|
|
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
// }
|
|
// Out-of-plane bending . Pull towards Z
|
|
fixedVertices.clear();
|
|
nodalForces.clear();
|
|
for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
|
|
nodalForces[viPair.first] = Vector6d({0, 0, forceMagnitude, 0, 0, 0});
|
|
fixedVertices[viPair.second] =
|
|
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
|
|
}
|
|
scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
|
|
// // Dou??
|
|
// fixedVertices.clear();
|
|
// nodalForces.clear();
|
|
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
|
|
// CoordType v =
|
|
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
|
|
// .Normalize();
|
|
// CoordType momentDirection = patternPlane ^ v;
|
|
// nodalForces[viPair.first] =
|
|
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) *
|
|
// forceMagnitude;
|
|
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
|
|
// fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// }
|
|
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
|
|
// // Saddle
|
|
// fixedVertices.clear();
|
|
// nodalForces.clear();
|
|
// for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
|
|
// viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
|
|
// const auto &viPair = *viPairIt;
|
|
// CoordType v =
|
|
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
|
|
// .Normalize();
|
|
// CoordType momentDirection = patternPlane ^ v;
|
|
// if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
|
|
// nodalForces[viPair.first] =
|
|
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) * 3
|
|
// * forceMagnitude;
|
|
// nodalForces[viPair.second] =
|
|
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) * 3
|
|
// *
|
|
// (-forceMagnitude);
|
|
// } else {
|
|
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
|
|
// nodalForces[viPair.first] =
|
|
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) *
|
|
// (-forceMagnitude);
|
|
// fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// }
|
|
// }
|
|
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
|
|
|
|
// std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
|
|
// saddleFixedVertices;
|
|
// // saddle_fixedVertices[3] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// saddleFixedVertices[7] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// saddleFixedVertices[11] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// // saddle_fixedVertices[15] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// // saddle_fixedVertices[19] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// // saddle_fixedVertices[23] = std::unordered_set<DoFType>{0, 1, 2};
|
|
// std::unordered_map<VertexIndex, Vector6d> saddleNodalForces{
|
|
// {15, {0, 0, 0, 0, -4 * 90, 0}}, {3, {0, 0, 0, 0, 4 * 90, 0}},
|
|
// {7, {0, 0, 0, 4 * 70, 0, 0}}, {11, {0, 0, 0, 4 * 70, 0, 0}},
|
|
// {19, {0, 0, 0, -4 * 70, 0, 0}}, {23, {0, 0, 0, -4 * 70, 0, 0}}};
|
|
// scenarios.push_back({pMesh, saddleFixedVertices, saddleNodalForces, {}});
|
|
|
|
return scenarios;
|
|
}
|
|
|
|
Eigen::VectorXd ReducedModelOptimizer::optimize() {
|
|
std::vector<SimulationJob> simulationJobs =
|
|
createScenarios(pFullModelElementalMesh);
|
|
std::vector<Eigen::VectorXd> results;
|
|
for (const SimulationJob &job : simulationJobs) {
|
|
polyscope::removeAllStructures();
|
|
auto result = optimizeForSimulationJob(job);
|
|
results.push_back(result);
|
|
}
|
|
|
|
if (results.empty()) {
|
|
return Eigen::VectorXd();
|
|
}
|
|
|
|
return results[0];
|
|
}
|