ReducedModelOptimization/src/reducedmodeloptimizer.cpp

632 lines
26 KiB
C++

#include "reducedmodeloptimizer.hpp"
#include "bobyqa.h"
#include "flatpattern.hpp"
#include "gradientDescent.h"
#include "matplot/matplot.h"
#include "simulationhistoryplotter.hpp"
#include "trianglepattterntopology.hpp"
const bool gShouldDraw = true;
size_t g_numberOfOptimizationRounds{0};
FormFinder simulator;
Eigen::MatrixX3d g_optimalReducedModelDisplacements;
SimulationJob gReducedPatternSimulationJob;
std::unordered_map<ReducedModelVertexIndex, FullModelVertexIndex>
g_reducedToFullInterfaceViMap;
matplot::line_handle gPlotHandle;
std::vector<double> gObjectiveValueHistory;
Eigen::Vector4d g_initialX;
std::unordered_set<size_t> g_reducedPatternExludedEdges;
Eigen::MatrixX4d g_initialStiffnessFactors;
struct OptimizationCallback {
double operator()(const size_t &iterations, const Eigen::VectorXd &x,
const double &fval, Eigen::VectorXd &gradient) const {
// run simulation
// SimulationResults reducedModelResults =
// simulator.executeSimulation(reducedModelSimulationJob);
// reducedModelResults.draw(reducedModelSimulationJob);
gObjectiveValueHistory.push_back(fval);
auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
gObjectiveValueHistory.size());
gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory);
// const std::string plotImageFilename = "objectivePlot.png";
// matplot::save(plotImageFilename);
// if (numberOfOptimizationRounds % 30 == 0) {
// std::filesystem::copy_file(
// std::filesystem::path(plotImageFilename),
// std::filesystem::path("objectivePlot_copy.png"));
// }
// std::stringstream ss;
// ss << x;
// reducedModelResults.simulationLabel = ss.str();
// SimulationResultsReporter resultsReporter;
// resultsReporter.reportResults(
// {reducedModelResults},
// std::filesystem::current_path().append("Results"));
return true;
}
};
struct Objective {
double operator()(const Eigen::VectorXd &x, Eigen::VectorXd &) const {
assert(x.rows() == 4);
// drawSimulationJob(simulationJob);
// Set mesh from x
std::shared_ptr<SimulationMesh> reducedModel =
gReducedPatternSimulationJob.mesh;
for (EdgeIndex ei = 0; ei < reducedModel->EN(); ei++) {
if (g_reducedPatternExludedEdges.contains(ei)) {
continue;
}
Element &e = reducedModel->elements[ei];
e.axialConstFactor *= x(0);
e.torsionConstFactor *= x(1);
e.firstBendingConstFactor *= x(2);
e.secondBendingConstFactor *= x(3);
}
// run simulation
SimulationResults reducedModelResults =
simulator.executeSimulation(gReducedPatternSimulationJob);
// std::stringstream ss;
// ss << x;
// reducedModelResults.simulationLabel = ss.str();
// SimulationResultsReporter resultsReporter;
// resultsReporter.reportResults(
// {reducedModelResults},
// std::filesystem::current_path().append("Results"));
// compute error and return it
double error = 0;
for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
VertexIndex reducedModelVi = reducedFullViPair.first;
Eigen::Vector3d vertexDisplacement(
reducedModelResults.displacements[reducedModelVi][0],
reducedModelResults.displacements[reducedModelVi][1],
reducedModelResults.displacements[reducedModelVi][2]);
Eigen::Vector3d errorVector =
Eigen::Vector3d(
g_optimalReducedModelDisplacements.row(reducedModelVi)) -
vertexDisplacement;
error += errorVector.norm();
}
return error;
}
};
double objective(long n, const double *x) {
Eigen::VectorXd eigenX(n, 1);
for (size_t xi = 0; xi < n; xi++) {
eigenX(xi) = x[xi];
}
std::shared_ptr<SimulationMesh> reducedPattern =
gReducedPatternSimulationJob.mesh;
for (EdgeIndex ei = 0; ei < reducedPattern->EN(); ei++) {
Element &e = reducedPattern->elements[ei];
if (g_reducedPatternExludedEdges.contains(ei)) {
continue;
}
e.axialConstFactor = g_initialStiffnessFactors(ei, 0) * eigenX(0);
e.torsionConstFactor = g_initialStiffnessFactors(ei, 1) * eigenX(1);
e.firstBendingConstFactor = g_initialStiffnessFactors(ei, 2) * eigenX(2);
e.secondBendingConstFactor = g_initialStiffnessFactors(ei, 3) * eigenX(3);
}
// run simulation
SimulationResults reducedModelResults =
simulator.executeSimulation(gReducedPatternSimulationJob, false, false);
// compute error and return it
double error = 0;
for (const auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
VertexIndex reducedModelVi = reducedFullViPair.first;
Eigen::Vector3d vertexDisplacement(
reducedModelResults.displacements[reducedModelVi][0],
reducedModelResults.displacements[reducedModelVi][1],
reducedModelResults.displacements[reducedModelVi][2]);
Eigen::Vector3d errorVector =
Eigen::Vector3d(
g_optimalReducedModelDisplacements.row(reducedModelVi)) -
vertexDisplacement;
error += errorVector.norm();
}
gObjectiveValueHistory.push_back(error);
auto xPlot = matplot::linspace(0, gObjectiveValueHistory.size(),
gObjectiveValueHistory.size());
gPlotHandle = matplot::scatter(xPlot, gObjectiveValueHistory);
return error;
}
void ReducedModelOptimizer::computeMaps(
FlatPattern &fullPattern, FlatPattern &reducedPattern,
const std::unordered_set<size_t> &reducedModelExcludedEges) {
// Compute the offset between the interface nodes
const size_t interfaceSlotIndex = 4; // bottom edge
assert(slotToNode.find(interfaceSlotIndex) != slotToNode.end() &&
slotToNode.find(interfaceSlotIndex)->second.size() == 1);
// Assuming that in the bottom edge there is only one vertex which is also the
// interface
const size_t baseTriangleInterfaceVi =
*(slotToNode.find(interfaceSlotIndex)->second.begin());
vcg::tri::Allocator<FlatPattern>::PointerUpdater<FlatPattern::VertexPointer>
pu_fullModel;
fullPattern.deleteDanglingVertices(pu_fullModel);
const size_t fullModelBaseTriangleInterfaceVi =
pu_fullModel.remap.empty() ? baseTriangleInterfaceVi
: pu_fullModel.remap[baseTriangleInterfaceVi];
const size_t fullModelBaseTriangleVN = fullPattern.VN();
fullPattern.createFan();
const size_t duplicateVerticesPerFanPair =
fullModelBaseTriangleVN - fullPattern.VN() / 6;
const size_t fullPatternInterfaceVertexOffset =
fullModelBaseTriangleVN - duplicateVerticesPerFanPair;
// std::cout << "Dups in fan pair:" << duplicateVerticesPerFanPair <<
// std::endl;
// Save excluded edges
g_reducedPatternExludedEdges.clear();
const size_t fanSize = 6;
const size_t reducedBaseTriangleNumberOfEdges = reducedPattern.EN();
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
for (const size_t ei : reducedModelExcludedEges) {
g_reducedPatternExludedEdges.insert(
fanIndex * reducedBaseTriangleNumberOfEdges + ei);
}
}
// Construct reduced->full and full->reduced interface vi map
g_reducedToFullInterfaceViMap.clear();
vcg::tri::Allocator<FlatPattern>::PointerUpdater<FlatPattern::VertexPointer>
pu_reducedModel;
reducedPattern.deleteDanglingVertices(pu_reducedModel);
const size_t reducedModelBaseTriangleInterfaceVi =
pu_reducedModel.remap[baseTriangleInterfaceVi];
const size_t reducedModelInterfaceVertexOffset =
reducedPattern.VN() - 1 /*- reducedModelBaseTriangleInterfaceVi*/;
reducedPattern.createFan();
for (size_t fanIndex = 0; fanIndex < fanSize; fanIndex++) {
g_reducedToFullInterfaceViMap[reducedModelInterfaceVertexOffset * fanIndex +
reducedModelBaseTriangleInterfaceVi] =
fullModelBaseTriangleInterfaceVi +
fanIndex * fullPatternInterfaceVertexOffset;
}
m_fullToReducedInterfaceViMap.clear();
constructInverseMap(g_reducedToFullInterfaceViMap,
m_fullToReducedInterfaceViMap);
// fullPattern.setLabel("FullPattern");
// reducedPattern.setLabel("ReducedPattern");
// Create opposite vertex map
m_fullPatternOppositeInterfaceViMap.clear();
for (size_t fanIndex = 0; fanIndex < fanSize / 2; fanIndex++) {
const size_t vi0 = fullModelBaseTriangleInterfaceVi +
fanIndex * fullPatternInterfaceVertexOffset;
const size_t vi1 = vi0 + (fanSize / 2) * fullPatternInterfaceVertexOffset;
assert(vi0 < fullPattern.VN() && vi1 < fullPattern.VN());
m_fullPatternOppositeInterfaceViMap[vi0] = vi1;
}
const bool debugMapping = false;
if (debugMapping) {
reducedPattern.registerForDrawing();
std::vector<glm::vec3> colors_reducedPatternExcludedEdges(
reducedPattern.EN(), glm::vec3(0, 0, 0));
for (const size_t ei : g_reducedPatternExludedEdges) {
colors_reducedPatternExcludedEdges[ei] = glm::vec3(1, 0, 0);
}
const std::string label = reducedPattern.getLabel();
polyscope::getCurveNetwork(label)
->addEdgeColorQuantity("Excluded edges",
colors_reducedPatternExcludedEdges)
->setEnabled(true);
polyscope::show();
std::vector<glm::vec3> nodeColorsOpposite(fullPattern.VN(),
glm::vec3(0, 0, 0));
for (const std::pair<size_t, size_t> oppositeVerts :
m_fullPatternOppositeInterfaceViMap) {
auto color = polyscope::getNextUniqueColor();
nodeColorsOpposite[oppositeVerts.first] = color;
nodeColorsOpposite[oppositeVerts.second] = color;
}
fullPattern.registerForDrawing();
polyscope::getCurveNetwork(fullPattern.getLabel())
->addNodeColorQuantity("oppositeMap", nodeColorsOpposite)
->setEnabled(true);
polyscope::show();
std::vector<glm::vec3> nodeColorsReducedToFull_reduced(reducedPattern.VN(),
glm::vec3(0, 0, 0));
std::vector<glm::vec3> nodeColorsReducedToFull_full(fullPattern.VN(),
glm::vec3(0, 0, 0));
for (size_t vi = 0; vi < reducedPattern.VN(); vi++) {
if (g_reducedToFullInterfaceViMap.contains(vi)) {
auto color = polyscope::getNextUniqueColor();
nodeColorsReducedToFull_reduced[vi] = color;
nodeColorsReducedToFull_full[g_reducedToFullInterfaceViMap[vi]] = color;
}
}
polyscope::getCurveNetwork(reducedPattern.getLabel())
->addNodeColorQuantity("reducedToFull_reduced",
nodeColorsReducedToFull_reduced)
->setEnabled(true);
polyscope::getCurveNetwork(fullPattern.getLabel())
->addNodeColorQuantity("reducedToFull_full",
nodeColorsReducedToFull_full)
->setEnabled(true);
polyscope::show();
}
}
void ReducedModelOptimizer::createSimulationMeshes(FlatPattern &fullModel,
FlatPattern &reducedModel) {
pReducedModelElementalMesh = std::make_shared<SimulationMesh>(reducedModel);
pFullModelElementalMesh = std::make_shared<SimulationMesh>(fullModel);
}
ReducedModelOptimizer::ReducedModelOptimizer(
const std::vector<size_t> &numberOfNodesPerSlot) {
FlatPatternTopology::constructNodeToSlotMap(numberOfNodesPerSlot, nodeToSlot);
FlatPatternTopology::constructSlotToNodeMap(nodeToSlot, slotToNode);
}
void ReducedModelOptimizer::initialize(
FlatPattern &fullPattern, FlatPattern &reducedPattern,
const std::unordered_set<size_t> &reducedModelExcludedEdges) {
assert(fullPattern.VN() == reducedPattern.VN() &&
fullPattern.EN() > reducedPattern.EN());
polyscope::removeAllStructures();
// Create copies of the input models
FlatPattern copyFullPattern;
FlatPattern copyReducedPattern;
copyFullPattern.copy(fullPattern);
copyReducedPattern.copy(reducedPattern);
computeMaps(copyFullPattern, copyReducedPattern, reducedModelExcludedEdges);
createSimulationMeshes(copyFullPattern, copyReducedPattern);
initializeStiffnesses();
int i = 0;
i++;
}
void ReducedModelOptimizer::initializeStiffnesses() {
g_initialStiffnessFactors.resize(pReducedModelElementalMesh->EN(), 4);
// Save save the beam stiffnesses
for (size_t ei = 0; ei < pReducedModelElementalMesh->EN(); ei++) {
Element &e = pReducedModelElementalMesh->elements[ei];
// if (g_reducedPatternExludedEdges.contains(ei)) {
// const double stiffnessFactor = 1;
// e.axialConstFactor *= stiffnessFactor;
// e.torsionConstFactor *= stiffnessFactor;
// e.firstBendingConstFactor *= stiffnessFactor;
// e.secondBendingConstFactor *= stiffnessFactor;
// }
g_initialStiffnessFactors(ei, 0) = e.axialConstFactor;
g_initialStiffnessFactors(ei, 1) = e.torsionConstFactor;
g_initialStiffnessFactors(ei, 2) = e.firstBendingConstFactor;
g_initialStiffnessFactors(ei, 3) = e.secondBendingConstFactor;
}
}
void ReducedModelOptimizer::computeReducedModelSimulationJob(
const SimulationJob &simulationJobOfFullModel,
SimulationJob &simulationJobOfReducedModel) {
std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
reducedModelFixedVertices;
for (auto fullModelFixedVertex : simulationJobOfFullModel.fixedVertices) {
reducedModelFixedVertices[m_fullToReducedInterfaceViMap.at(
fullModelFixedVertex.first)] = fullModelFixedVertex.second;
}
std::unordered_map<VertexIndex, Vector6d> reducedModelNodalForces;
for (auto fullModelNodalForce :
simulationJobOfFullModel.nodalExternalForces) {
reducedModelNodalForces[m_fullToReducedInterfaceViMap.at(
fullModelNodalForce.first)] = fullModelNodalForce.second;
}
simulationJobOfReducedModel = SimulationJob{pReducedModelElementalMesh,
reducedModelFixedVertices,
reducedModelNodalForces,
{}};
}
SimulationJob ReducedModelOptimizer::getReducedSimulationJob(
const SimulationJob &fullModelSimulationJob) {
SimulationJob reducedModelSimulationJob;
computeReducedModelSimulationJob(fullModelSimulationJob,
reducedModelSimulationJob);
return reducedModelSimulationJob;
}
void ReducedModelOptimizer::computeDesiredReducedModelDisplacements(
const SimulationResults &fullModelResults,
Eigen::MatrixX3d &optimalDisplacementsOfReducedModel) {
optimalDisplacementsOfReducedModel.resize(pReducedModelElementalMesh->VN(),
3);
optimalDisplacementsOfReducedModel.setZero(
optimalDisplacementsOfReducedModel.rows(),
optimalDisplacementsOfReducedModel.cols());
for (auto reducedFullViPair : g_reducedToFullInterfaceViMap) {
const VertexIndex fullModelVi = reducedFullViPair.second;
const Vector6d fullModelViDisplacements =
fullModelResults.displacements[fullModelVi];
optimalDisplacementsOfReducedModel.row(reducedFullViPair.first) =
Eigen::Vector3d(fullModelViDisplacements[0],
fullModelViDisplacements[1],
fullModelViDisplacements[2]);
}
}
Eigen::VectorXd ReducedModelOptimizer::optimizeForSimulationJob(
const SimulationJob &fullModelSimulationJob) {
gObjectiveValueHistory.clear();
SimulationResults fullModelResults =
simulator.executeSimulation(fullModelSimulationJob, false, false);
fullModelResults.simulationLabel = "fullModel";
computeDesiredReducedModelDisplacements(fullModelResults,
g_optimalReducedModelDisplacements);
computeReducedModelSimulationJob(fullModelSimulationJob,
gReducedPatternSimulationJob);
// fullModelSimulationJob.registerForDrawing();
// polyscope::show();
// gReducedPatternSimulationJob.registerForDrawing();
// polyscope::show();
fullModelResults.registerForDrawing(fullModelSimulationJob);
polyscope::show();
// Set initial guess of solution
Eigen::VectorXd initialGuess(4);
const double stifnessFactor = 1;
initialGuess(0) = stifnessFactor;
initialGuess(1) = stifnessFactor;
initialGuess(2) = stifnessFactor;
initialGuess(3) = stifnessFactor;
const bool useGradientDescent = false;
if (useGradientDescent) {
// gdc::GradientDescent<double, Objective,
// gdc::DecreaseBacktracking<double>,
// OptimizationCallback>
gdc::GradientDescent<double, Objective, gdc::BarzilaiBorwein<double>,
OptimizationCallback>
// gdc::GradientDescent<double, Objective,
// gdc::DecreaseBacktracking<double>,
// OptimizationCallback>
// gdc::GradientDescent<double, Objective,
// gdc::DecreaseBacktracking<double>,
// OptimizationCallback>
optimizer;
// Turn verbosity on, so the optimizer prints status updates after each
// iteration.
optimizer.setVerbosity(1);
// Set initial guess.
matplot::xlabel("Optimization iterations");
matplot::ylabel("Objective value");
// matplot::figure(false);
matplot::grid(matplot::on);
// Start the optimization
auto result = optimizer.minimize(initialGuess);
std::cout << "Done! Converged: " << (result.converged ? "true" : "false")
<< " Iterations: " << result.iterations << std::endl;
// do something with final function value
std::cout << "Final fval: " << result.fval << std::endl;
// do something with final x-value
std::cout << "Final xval: " << result.xval.transpose() << std::endl;
SimulationResults reducedModelOptimizedResults =
simulator.executeSimulation(gReducedPatternSimulationJob);
reducedModelOptimizedResults.simulationLabel = "reducedModel";
reducedModelOptimizedResults.registerForDrawing(
gReducedPatternSimulationJob);
return result.xval;
} else { // use bobyqa
double (*pObjectiveFunction)(long, const double *) = &objective;
const size_t n = 4;
const size_t npt = 8;
assert(npt <= (n + 1) * (n + 2) / 2 && npt >= n + 2);
assert(npt < 2 * n + 1 && "The choice of the number of interpolation "
"conditions is not recommended.");
std::vector<double> x
// {1.03424, 0.998456, 0.619916, -0.202997};
{initialGuess(0), initialGuess(1), initialGuess(2), initialGuess(3)};
std::vector<double> xLow(x.size(), -100);
std::vector<double> xUpper(x.size(), 100);
const double maxX = *std::max_element(
x.begin(), x.end(),
[](const double &a, const double &b) { return abs(a) < abs(b); });
const double rhobeg = std::min(0.95, 0.2 * maxX);
const double rhoend = rhobeg * 1e-6;
const size_t wSize = (npt + 5) * (npt + n) + 3 * n * (n + 5) / 2;
std::vector<double> w(wSize);
bobyqa(pObjectiveFunction, n, npt, x.data(), xLow.data(), xUpper.data(),
rhobeg, rhoend, 100, w.data());
std::cout << "Final objective value:" << objective(n, x.data())
<< std::endl;
Eigen::VectorXd eigenX(x.size(), 1);
for (size_t xi = 0; xi < x.size(); xi++) {
eigenX(xi) = x[xi];
}
SimulationResults reducedModelOptimizedResults =
simulator.executeSimulation(gReducedPatternSimulationJob);
reducedModelOptimizedResults.simulationLabel = "reducedModel";
reducedModelOptimizedResults.registerForDrawing(
gReducedPatternSimulationJob);
polyscope::show();
return eigenX;
}
}
std::vector<SimulationJob> ReducedModelOptimizer::createScenarios(
const std::shared_ptr<SimulationMesh> &pMesh) {
std::vector<SimulationJob> scenarios;
std::unordered_map<VertexIndex, std::unordered_set<DoFType>> fixedVertices;
std::unordered_map<VertexIndex, Vector6d> nodalForces;
const double forceMagnitude = 250;
// // Axial
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
// CoordType forceDirection =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
// forceDirection[1],
// forceDirection[2], 0, 0, 0}) *
// forceMagnitude;
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// // In-plane Bending
// // Assuming the patterns lay on the x-y plane
// const CoordType patternPlane(0, 0, 1);
// fixedVertices.clear();
// nodalForces.clear();
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
// CoordType v =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// CoordType forceDirection = patternPlane ^ v;
// nodalForces[viPair.first] = Vector6d({forceDirection[0],
// forceDirection[1],
// forceDirection[2], 0, 0, 0}) *
// forceMagnitude;
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// // Torsion
// {
// fixedVertices.clear();
// nodalForces.clear();
// for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
// viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++)
// {
// const auto &viPair = *viPairIt;
// if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
// CoordType v =
// (pMesh->vert[viPair.first].cP() -
// pMesh->vert[viPair.second].cP())
// .Normalize();
// nodalForces[viPair.first] =
// Vector6d({0, 0, 0, v[1], v[0], 0}) * forceMagnitude;
// } else {
// fixedVertices[viPair.first] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
// fixedVertices[viPair.second] =
// std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// }
// Out-of-plane bending . Pull towards Z
fixedVertices.clear();
nodalForces.clear();
for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
nodalForces[viPair.first] = Vector6d({0, 0, forceMagnitude, 0, 0, 0});
fixedVertices[viPair.second] =
std::unordered_set<DoFType>{0, 1, 2, 3, 4, 5};
}
scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// // Dou??
// fixedVertices.clear();
// nodalForces.clear();
// for (const auto &viPair : m_fullPatternOppositeInterfaceViMap) {
// CoordType v =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// CoordType momentDirection = patternPlane ^ v;
// nodalForces[viPair.first] =
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) *
// forceMagnitude;
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
// fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// // Saddle
// fixedVertices.clear();
// nodalForces.clear();
// for (auto viPairIt = m_fullPatternOppositeInterfaceViMap.begin();
// viPairIt != m_fullPatternOppositeInterfaceViMap.end(); viPairIt++) {
// const auto &viPair = *viPairIt;
// CoordType v =
// (pMesh->vert[viPair.first].cP() - pMesh->vert[viPair.second].cP())
// .Normalize();
// CoordType momentDirection = patternPlane ^ v;
// if (viPairIt == m_fullPatternOppositeInterfaceViMap.begin()) {
// nodalForces[viPair.first] =
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) * 3
// * forceMagnitude;
// nodalForces[viPair.second] =
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) * 3
// *
// (-forceMagnitude);
// } else {
// fixedVertices[viPair.first] = std::unordered_set<DoFType>{2};
// nodalForces[viPair.first] =
// Vector6d({0, 0, 0, momentDirection[0], momentDirection[1], 0}) *
// (-forceMagnitude);
// fixedVertices[viPair.second] = std::unordered_set<DoFType>{0, 1, 2};
// }
// }
// scenarios.push_back({pMesh, fixedVertices, nodalForces, {}});
// std::unordered_map<VertexIndex, std::unordered_set<DoFType>>
// saddleFixedVertices;
// // saddle_fixedVertices[3] = std::unordered_set<DoFType>{0, 1, 2};
// saddleFixedVertices[7] = std::unordered_set<DoFType>{0, 1, 2};
// saddleFixedVertices[11] = std::unordered_set<DoFType>{0, 1, 2};
// // saddle_fixedVertices[15] = std::unordered_set<DoFType>{0, 1, 2};
// // saddle_fixedVertices[19] = std::unordered_set<DoFType>{0, 1, 2};
// // saddle_fixedVertices[23] = std::unordered_set<DoFType>{0, 1, 2};
// std::unordered_map<VertexIndex, Vector6d> saddleNodalForces{
// {15, {0, 0, 0, 0, -4 * 90, 0}}, {3, {0, 0, 0, 0, 4 * 90, 0}},
// {7, {0, 0, 0, 4 * 70, 0, 0}}, {11, {0, 0, 0, 4 * 70, 0, 0}},
// {19, {0, 0, 0, -4 * 70, 0, 0}}, {23, {0, 0, 0, -4 * 70, 0, 0}}};
// scenarios.push_back({pMesh, saddleFixedVertices, saddleNodalForces, {}});
return scenarios;
}
Eigen::VectorXd ReducedModelOptimizer::optimize() {
std::vector<SimulationJob> simulationJobs =
createScenarios(pFullModelElementalMesh);
std::vector<Eigen::VectorXd> results;
for (const SimulationJob &job : simulationJobs) {
polyscope::removeAllStructures();
auto result = optimizeForSimulationJob(job);
results.push_back(result);
}
if (results.empty()) {
return Eigen::VectorXd();
}
return results[0];
}