// Copyright 2015. All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: ryan.latture@gmail.com (Ryan Latture) #include #include "threed_beam_fea.h" int main(int argc, char *argv[]) { using namespace fea; // define the vector perpendicular to the beam elements // in general you will need 1 normal vector per element std::vector normal_vec = {0.0, 1.0, 0.0}; // set up the properties for the elements double EA = 10.0; // extensional stiffness double EIz = 10.0; // bending stiffness along z-axis double EIy = 10.0; // bending stiffness along y-axis double GJ = 10.0; // torsional stiffness Props props1(EA, EIz, EIy, GJ, normal_vec); // make the second element's bending stiffness lower Props props2(EA, 0.1 * EIz, 0.1 * EIy, GJ, normal_vec); // define the (x, y, z) coordinate of the nodes std::vector nodes = {Node(0.0, 0.0, 0.0), Node(1.0, 0.0, 0.0), Node(2.0, 0.0, 0.0), Node(2.0, 0.0, 1.0)}; // define which nodes are connected to form elements std::vector elems = {Elem(0, 1, props1), Elem(1, 2, props1), Elem(2, 3, props2)}; // assemble nodes and elements into a Job for analysis Job job(nodes, elems); // define boundary conditions for the mesh BC bc1(0, 0, 0.0); BC bc2(0, 1, 0.0); BC bc3(0, 2, 0.0); BC bc4(0, 3, 0.0); BC bc5(0, 4, 0.0); BC bc6(0, 5, 0.0); BC bc7(3, 1, 0.5); std::vector bcs = {bc1, bc2, bc3, bc4, bc5, bc6, bc7}; // initialize empty vector of ties std::vector ties; // initialize empty vector of equation constraints std::vector equations; // initialize vector of prescribed forces std::vector forces; // use default options Options opts; // solve for nodal displacements Summary summary = solve(job, bcs, forces, ties, equations, opts); // write report to terminal std::cout << summary.FullReport() << std::endl; return 0; }