545 lines
14 KiB
C
545 lines
14 KiB
C
|
/****************************************************************************
|
||
|
* VCGLib o o *
|
||
|
* Visual and Computer Graphics Library o o *
|
||
|
* _ O _ *
|
||
|
* Copyright(C) 2004 \/)\/ *
|
||
|
* Visual Computing Lab /\/| *
|
||
|
* ISTI - Italian National Research Council | *
|
||
|
* \ *
|
||
|
* All rights reserved. *
|
||
|
* *
|
||
|
* This program is free software; you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation; either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
|
* for more details. *
|
||
|
* *
|
||
|
****************************************************************************/
|
||
|
/****************************************************************************
|
||
|
History
|
||
|
|
||
|
$Log: not supported by cvs2svn $
|
||
|
Revision 1.15 2006/07/06 12:46:19 ganovelli
|
||
|
added GeometicType e SmallestEnclosingSphere
|
||
|
|
||
|
Revision 1.14 2005/12/12 11:10:36 ganovelli
|
||
|
modifications to compile with gcc
|
||
|
|
||
|
Revision 1.13 2004/10/04 17:07:58 pietroni
|
||
|
changed Q() function
|
||
|
|
||
|
Revision 1.12 2004/09/01 12:18:39 pietroni
|
||
|
minor changes to comply gcc compiler (typename's )
|
||
|
|
||
|
Revision 1.11 2004/08/26 13:15:23 pietroni
|
||
|
added IsS() function
|
||
|
|
||
|
Revision 1.10 2004/07/09 10:13:00 ganovelli
|
||
|
C() ,Q() ,hastetracolor(),hasqualityt()....
|
||
|
plus some misuse of tetra3 corrected
|
||
|
|
||
|
Revision 1.9 2004/07/08 08:43:22 pietroni
|
||
|
changed functions used to compute the aspect ratio
|
||
|
|
||
|
Revision 1.8 2004/05/20 13:04:23 pietroni
|
||
|
modified setBorderV function
|
||
|
|
||
|
Revision 1.7 2004/05/14 11:48:43 pietroni
|
||
|
templated with also tetratype...
|
||
|
|
||
|
Revision 1.6 2004/05/14 11:07:36 turini
|
||
|
Changed swap in std::swap.
|
||
|
|
||
|
Revision 1.5 2004/05/06 15:29:42 pietroni
|
||
|
changed names to topology functions
|
||
|
|
||
|
Revision 1.4 2004/04/28 11:37:14 pietroni
|
||
|
*** empty log message ***
|
||
|
|
||
|
Revision 1.3 2004/04/26 09:38:54 pietroni
|
||
|
*** empty log message ***
|
||
|
|
||
|
Revision 1.2 2004/04/20 12:42:37 pietroni
|
||
|
*** empty log message ***
|
||
|
|
||
|
Revision 1.1 2004/04/15 08:54:20 pietroni
|
||
|
*** empty log message ***
|
||
|
|
||
|
|
||
|
****************************************************************************/
|
||
|
|
||
|
#ifndef TETRA_TYPE
|
||
|
#pragma message("\nYou should never directly include this file\_n")
|
||
|
#else
|
||
|
|
||
|
#include<vcg/space/point3.h>
|
||
|
#include<vcg/space/tetra3.h>
|
||
|
#include<vcg/space/sphere3.h>
|
||
|
|
||
|
namespace vcg {
|
||
|
/**
|
||
|
\ingroup tetrahedron
|
||
|
@name Tetrahedron
|
||
|
Class Tetrahedron.
|
||
|
This is the base class for definition of a Tetrahedron of the mesh.
|
||
|
@param VTYPE (Template Parameter) Specifies the type for the vertex.
|
||
|
*/
|
||
|
|
||
|
template < class VTYPE, class TTYPE >
|
||
|
class TETRA_TYPE{
|
||
|
|
||
|
public:
|
||
|
|
||
|
/// The base type of the face
|
||
|
typedef TETRA_TYPE BaseTetraType;
|
||
|
/// The vertex type
|
||
|
typedef VTYPE VertexType;
|
||
|
/// The coordinate type used to represent the point (i.e. Point3f, Point3d, ...)
|
||
|
typedef typename VertexType::CoordType CoordType;
|
||
|
/// The scalar type used to represent coords (i.e. float, double, ...)
|
||
|
typedef typename VertexType::ScalarType ScalarType;
|
||
|
/// The geometric type of the tetrahedron
|
||
|
typedef Tetra3<ScalarType> GeometricType;
|
||
|
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @name Tetrahedron Flags
|
||
|
For each Tetrahedron we store a set of boolean values packed in a int.
|
||
|
The default value for each flag is 0. Most commonly used flags are the \a deleted and the \a selected ones.
|
||
|
Users can ask and dispose for a bit for their own purposes with the vcg::TetrahedronFull::NewUserBit() and vcg::TetrahedronFull::DeleteUserBit() functions.
|
||
|
The value returned by these functions has to be passed to the
|
||
|
vcg::TetrahedronFull::SetUserBit() vcg::TetrahedronFull::ClearUserBit() and vcg::TetrahedronFull::IsUserBit() functions to check and modify the obtained bit flag.
|
||
|
|
||
|
**/
|
||
|
//@{
|
||
|
|
||
|
/// This are the flags of tetrahedron, the default value is 0
|
||
|
int _flags;
|
||
|
|
||
|
enum {
|
||
|
DELETED = 0x00000001, // deleted tetrahedron flag
|
||
|
SELECTED = 0x00000002, // Selection flag
|
||
|
BORDERF0 = 0x00000004, // Border flag, Face 0
|
||
|
BORDERF1 = 0x00000008, // Border flag, Face 1
|
||
|
BORDERF2 = 0x00000010, // Border flag, Face 2
|
||
|
BORDERF3 = 0x00000020, // Border flag, Face 3
|
||
|
BORDERE0 = 0x00000040, // Border flag, Edge 0
|
||
|
BORDERE1 = 0x00000080, // Border flag, Edge 1
|
||
|
BORDERE2 = 0x00000100, // Border flag, Edge 2
|
||
|
BORDERE3 = 0x00000200, // Border flag, Edge 3
|
||
|
BORDERE4 = 0x00000400, // Border flag, Edge 4
|
||
|
BORDERE5 = 0x00000800, // Border flag, Edge 5
|
||
|
USER0 = 0x00001000, // new flag for user
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
/// Return the vector of _flags
|
||
|
inline int & Flags ()
|
||
|
{
|
||
|
assert( (_flags & DELETED) == 0 );
|
||
|
return _flags;
|
||
|
}
|
||
|
|
||
|
static int &LastBitFlag()
|
||
|
{
|
||
|
static int b =USER0;
|
||
|
return b;
|
||
|
}
|
||
|
static inline int NewBitFlag()
|
||
|
{
|
||
|
LastBitFlag()=LastBitFlag()<<1;
|
||
|
return LastBitFlag();
|
||
|
}
|
||
|
static inline bool DeleteBitFlag(int bitval)
|
||
|
{
|
||
|
if(LastBitFlag()==bitval) {
|
||
|
LastBitFlag()= LastBitFlag()>>1;
|
||
|
return true;
|
||
|
}
|
||
|
assert(0);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/// Get the flags without any control
|
||
|
inline int & UberFlags()
|
||
|
{
|
||
|
return _flags;
|
||
|
}
|
||
|
|
||
|
/// This function checks if the given user bit is true.
|
||
|
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
|
||
|
/// This function set the given user bit.
|
||
|
void SetUserBit(int userBit){_flags |=userBit;}
|
||
|
/// This function clear the given user bit.
|
||
|
void ClearUserBit(int userBit){_flags &= (~userBit);}
|
||
|
/// This function checks if the tetrahedron is deleted.
|
||
|
bool IsD() const {return (_flags & DELETED) != 0;}
|
||
|
/// This function mark the tetrahedron as deleted.
|
||
|
void SetD() {_flags |=DELETED;}
|
||
|
/// This function mark the tetrahedron as not deleted.
|
||
|
void ClearD() {_flags &=~DELETED;}
|
||
|
/// This answer true if a tetrahedron is selected
|
||
|
bool IsS() const {return (_flags & SELECTED) != 0;}
|
||
|
/// This function mark the tetrahedron as selected.
|
||
|
void SetS() {_flags |=SELECTED;}
|
||
|
/// This function mark the tetrahedron as not selected.
|
||
|
void ClearS() {_flags &=~SELECTED;}
|
||
|
/// This function return true if one face is extern.
|
||
|
bool HaveBorderF() {return ((_flags & (BORDERF0 | BORDERF1 | BORDERF2 | BORDERF3)) != 0);}
|
||
|
/// This function return true if the face is extern.
|
||
|
bool IsBorderF(int face) {
|
||
|
assert ((face<4)&&(face>-1));
|
||
|
return (this->TTp(face) == this);
|
||
|
}
|
||
|
//@}
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @name Vertex Pointers
|
||
|
For each Tetrahedron we store 4 pointers to vertex
|
||
|
**/
|
||
|
//@{
|
||
|
/// The 4 vertices of the tetrahedron
|
||
|
protected:
|
||
|
VertexType *_v[4];
|
||
|
public:
|
||
|
|
||
|
/** Return the pointer to the j-th vertex of the terahedron.
|
||
|
@param j Index of the tetrahedron's vertex.
|
||
|
*/
|
||
|
inline VertexType * & V( const int j )
|
||
|
{
|
||
|
assert( (_flags & DELETED) == 0 );
|
||
|
assert(j >= 0);
|
||
|
assert(j < 4);
|
||
|
return _v[j];
|
||
|
}
|
||
|
|
||
|
inline const VertexType * const & V( const int j ) const
|
||
|
{
|
||
|
assert( (_flags & DELETED) == 0 );
|
||
|
assert(j>=0);
|
||
|
assert(j<4);
|
||
|
return _v[j];
|
||
|
}
|
||
|
|
||
|
inline const VertexType * const & cV( const int j ) const
|
||
|
{
|
||
|
assert( (_flags & DELETED) == 0 );
|
||
|
assert(j>=0);
|
||
|
assert(j<4);
|
||
|
return _v[j];
|
||
|
}
|
||
|
|
||
|
inline CoordType & P( const int j ) { return V(j)->P();}
|
||
|
inline const CoordType & cP( const int j ) const { return V(j)->cP();}
|
||
|
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @name Topology Structures
|
||
|
For each Tetrahedron we store 2 array for Tatrahedron - Tetrahedron topology ( sharing Face)
|
||
|
and 2 array to implement the list of Vertex - Tetrahedron Topology (List of Tetrahedron sharing a vertex).
|
||
|
**/
|
||
|
//@{
|
||
|
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_AT
|
||
|
protected:
|
||
|
///pointers to tetrahedron for tetrahedron-tetrahedron topology (sharing same face)
|
||
|
TTYPE *_ttp[4];
|
||
|
///index of face for tetrahedron-tetrahedron topology (sharing same face)
|
||
|
int _tti[4];
|
||
|
public:
|
||
|
///Function to access the Tetrahedron that share the index-face (extern face returns a pointer to himself)
|
||
|
TTYPE *&TTp(const int &index)
|
||
|
{
|
||
|
return _ttp[index];
|
||
|
}
|
||
|
///Function to see the index of the face as seen from the other tetrahedron (extern face returns -1)
|
||
|
int &TTi(const int &index)
|
||
|
{
|
||
|
return _tti[index];
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_AV
|
||
|
protected:
|
||
|
///pointers to tetrahedron for vertex-tetrahedron topology (sharing same vertex)
|
||
|
TTYPE *_tvp[4];
|
||
|
///index of vertex for vertex-tetrahedron topology (sharing same vertex)
|
||
|
short int _tvi[4];
|
||
|
public:
|
||
|
///Function to access the Next Tetrahedron of the list that share the index-face (end of list is Null)
|
||
|
TTYPE *&TVp(const int &index)
|
||
|
{
|
||
|
return _tvp[index];
|
||
|
}
|
||
|
///Function to see the index of the Vertex as seen from the next tetrahedron of the list ( end of list is -1)
|
||
|
short int &TVi(const int &index)
|
||
|
{
|
||
|
return _tvi[index];
|
||
|
}
|
||
|
#endif
|
||
|
//@}
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @Default Tatrahedron Functions**/
|
||
|
//@{
|
||
|
public:
|
||
|
|
||
|
///Constructor
|
||
|
TETRA_TYPE()
|
||
|
{
|
||
|
_flags=0;
|
||
|
}
|
||
|
///initialize default parameters of tetrahedron
|
||
|
virtual void Init(VertexType * p0,VertexType * p1,VertexType * p2,VertexType * p3)
|
||
|
{
|
||
|
_flags = 0;
|
||
|
_v[0]=p0;
|
||
|
_v[1]=p1;
|
||
|
_v[2]=p2;
|
||
|
_v[3]=p3;
|
||
|
|
||
|
if(vcg::ComputeVolume(*this)<0 )
|
||
|
std::swap(_v[1],_v[2]);
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_TA
|
||
|
_z[0]=_z[1]=_z[2]=_z[3]=-1;
|
||
|
_t[0]=_t[1]=_t[2]=_t[3]=NULL;
|
||
|
#endif
|
||
|
#ifdef __VCGLIB_TETRA_TV
|
||
|
_zv[0]=_zv[1]=_zv[2]=_zv[3]=-1;
|
||
|
_tv[0]=_tv[1]=_tv[2]=_tv[3]=NULL;
|
||
|
#endif
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
ComputeAspectRatio();
|
||
|
#endif
|
||
|
|
||
|
}
|
||
|
///set border vertices using TT-topology
|
||
|
#ifdef __VCGLIB_TETRA_AT
|
||
|
void setBorderV()
|
||
|
{
|
||
|
int i;
|
||
|
for (i=0;i<4;i++)
|
||
|
if (TTp(i)==this)
|
||
|
{
|
||
|
V(Tetra::VofF(i,0))->SetB();
|
||
|
V(Tetra::VofF(i,1))->SetB();
|
||
|
V(Tetra::VofF(i,2))->SetB();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
//@}
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @Generic geometric and quality funtions of a tetrahedron**/
|
||
|
//@{
|
||
|
#ifdef __VCGLIB_TETRA_TN
|
||
|
private:
|
||
|
CoordType _n[4];
|
||
|
public:
|
||
|
#endif
|
||
|
|
||
|
///return the normal of a face of the tetrahedron
|
||
|
CoordType N(const int &i){
|
||
|
assert((i>=0)&&(i<4));
|
||
|
#ifdef __VCGLIB_TETRA_TN
|
||
|
return _n[i];
|
||
|
#else
|
||
|
/* Tetra3<ScalarType> T=Tetra3<ScalarType>();
|
||
|
T.P0(0)=V(0)->P();
|
||
|
T.P1(0)=V(1)->P();
|
||
|
T.P2(0)=V(2)->P();
|
||
|
T.P3(0)=V(3)->P();*/
|
||
|
|
||
|
return (Normal(*this,i));
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/// Calculate the normal to all the faces of a tetrahedron, the value is store in a position of vecton _n for each face
|
||
|
void ComputeNormal()
|
||
|
{
|
||
|
#ifdef __VCGLIB_TETRA_TN
|
||
|
Tetra3<ScalarType> T=Tetra3<ScalarType>();
|
||
|
T.P0(0)=V(0)->P();
|
||
|
T.P1(0)=V(1)->P();
|
||
|
T.P2(0)=V(2)->P();
|
||
|
T.P3(0)=V(3)->P();
|
||
|
|
||
|
for (int i=0;i<4;i++)
|
||
|
_n[i]=(Normal<Tetra3<ScalarType> >(T,i));
|
||
|
#else
|
||
|
assert(0);
|
||
|
#endif
|
||
|
}
|
||
|
//@}
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @Generic geometric and quality funtions of a tetrahedron**/
|
||
|
//@{
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
ScalarType _volume;
|
||
|
ScalarType _aspect_ratio;
|
||
|
ScalarType _q;
|
||
|
#endif
|
||
|
|
||
|
ScalarType & Q(){
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
return _q;
|
||
|
#else
|
||
|
assert(0);
|
||
|
return *(ScalarType*)(&_flags);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
const ScalarType & Q()const{
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
return _q;
|
||
|
#else
|
||
|
assert(0);
|
||
|
return *(ScalarType*)(&_flags);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
ScalarType ComputeVolume(){
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
_volume = vcg::ComputeVolume<BaseTetraType>(*this);
|
||
|
return _volume;
|
||
|
#else
|
||
|
return vcg::ComputeVolume<BaseTetraType>(*this);
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
///return the volume of the tetrahedron
|
||
|
const ScalarType & Volume(){
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
return _volume;
|
||
|
#else
|
||
|
return (( V(2)->cP()-V(0)->cP())^(V(1)->cP()-V(0)->cP() ))*(V(3)->cP()-V(0)->cP())/6.0;
|
||
|
#endif
|
||
|
}
|
||
|
///return aspect ratio of the tetrahedron
|
||
|
ScalarType AspectRatio(){
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
return _aspect_ratio;
|
||
|
#else
|
||
|
return ComputeAspectRatio();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
///set if exist local value of aspect ratio
|
||
|
ScalarType ComputeAspectRatio(){
|
||
|
|
||
|
//Tetra3<ScalarType> T=Tetra3<ScalarType>();
|
||
|
//T.P0(0)=V(0)->cP();
|
||
|
//T.P1(0)=V(1)->cP();
|
||
|
//T.P2(0)=V(2)->cP();
|
||
|
//T.P3(0)=V(3)->cP();
|
||
|
|
||
|
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
_aspect_ratio= ( (Tetra3<ScalarType>* ) this) -> ComputeAspectRatio();
|
||
|
return(_aspect_ratio);
|
||
|
#else
|
||
|
return (( (Tetra3<ScalarType> *) this) -> ComputeAspectRatio());
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
CoordType Barycenter() const
|
||
|
{
|
||
|
return (V(0)->cP()+V(1)->cP()+V(2)->cP()+V(3)->cP())/ScalarType(4.0);
|
||
|
}
|
||
|
|
||
|
Sphere3<ScalarType> SmallestEnclosingSphere()const
|
||
|
{
|
||
|
return SmallestEnclosing::SphereOfTetra(*this);
|
||
|
}
|
||
|
|
||
|
//@}
|
||
|
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @name Color
|
||
|
**/
|
||
|
//@{
|
||
|
#ifdef __VCGLIB_TETRA_TC
|
||
|
Color4b c;
|
||
|
#endif
|
||
|
|
||
|
Color4b & C(){
|
||
|
#ifdef __VCGLIB_TETRA_TC
|
||
|
return _c;
|
||
|
#else
|
||
|
assert(0);
|
||
|
return (*new Color4b());
|
||
|
#endif
|
||
|
}
|
||
|
//@}
|
||
|
|
||
|
|
||
|
/***********************************************/
|
||
|
/** @name Reflection Functions
|
||
|
Static functions that give information about the current tetra type.
|
||
|
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data supported by the current tetra type.
|
||
|
**/
|
||
|
//@{
|
||
|
|
||
|
static bool HasTetraNormal() {
|
||
|
#ifdef __VCGLIB_TETRA_TN
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
static bool HasTetraMark() {
|
||
|
#ifdef __VCGLIB_TETRA_TM
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
static bool HasTetraQuality() {
|
||
|
#ifdef __VCGLIB_TETRA_TQ
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static bool HasTetraColor() {
|
||
|
#ifdef __VCGLIB_TETRA_TC
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static bool HasTTAdjacency() {
|
||
|
#if (defined(__VCGLIB_TETRA_AT) || defined(__VCGLIB_TETRA_SAT))
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
static bool HasVTAdjacency() {
|
||
|
#if (defined(__VCGLIB_TETRA_AV) || defined(__VCGLIB_TETRA_SAT))
|
||
|
return true;
|
||
|
#else
|
||
|
return false;
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
//@}
|
||
|
};//end class
|
||
|
|
||
|
}//end namespace
|
||
|
#endif
|