vcglib/vcg/complex/algorithms/parametrization/distorsion.h

187 lines
6.1 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_PARAM_DISTORSION
#define VCG_PARAM_DISTORSION
#include <vcg/complex/algorithms/parametrization/uv_utils.h>
namespace vcg {
namespace tri{
template <class MeshType>
class Distorsion
{
typedef typename MeshType::FaceType FaceType;
typedef typename MeshType::VertexType VertexType;
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::ScalarType ScalarType;
static ScalarType Area3D(FaceType *f)
{
CoordType vp0=f->P(0);
CoordType vp1=f->P(1);
CoordType vp2=f->P(2);
ScalarType Area3D=((vp2-vp0)^(vp1-vp0)).Norm()/2.0;
return Area3D;
}
static ScalarType UVArea(const FaceType *f)
{
vcg::Point2<ScalarType> uv0=f->V(0)->T().P();
vcg::Point2<ScalarType> uv1=f->V(1)->T().P();
vcg::Point2<ScalarType> uv2=f->V(2)->T().P();
ScalarType AreaUV=((uv1-uv0)^(uv2-uv0))/2.0;
return AreaUV;
}
static ScalarType EdgeLenght3D(FaceType *f,int e)
{
assert((e>=0)&&(e<3));
ScalarType lenght=(f->P0(e)-f->P1(e)).Norm();
return (lenght);
}
static ScalarType EdgeLenghtUV(FaceType *f,int e)
{
assert((e>=0)&&(e<3));
vcg::Point2<ScalarType> uv0=f->V(e)->T().P();
vcg::Point2<ScalarType> uv1=f->V((e+1)%3)->T().P();
ScalarType UVlenght=(uv0-uv1).Norm();
return (UVlenght);
}
static ScalarType Angle3D(FaceType *f,int e)
{
assert((e>=0)&&(e<3));
CoordType p0=f->P((e+2)%3);
CoordType p1=f->P(e);
CoordType p2=f->P((e+1)%3);
typedef typename CoordType::ScalarType ScalarType;
CoordType dir0=p2-p1;
CoordType dir1=p0-p1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
static ScalarType AngleUV(FaceType *f,int e)
{
vcg::Point2<ScalarType> uv0=f->V((e+2)%3)->T().P();
vcg::Point2<ScalarType> uv1=f->V(e)->T().P();
vcg::Point2<ScalarType> uv2=f->V((e+1)%3)->T().P();
vcg::Point2<ScalarType> dir0=uv2-uv1;
vcg::Point2<ScalarType> dir1=uv0-uv1;
dir0.Normalize();
dir1.Normalize();
ScalarType angle=dir0*dir1;
return angle;
}
public:
///return the variance of angle, normalized
///in absolute value
static ScalarType AngleDistorsion(FaceType *f,int e)
{
ScalarType Angle_3D=Angle3D(f,e);
ScalarType Angle_UV=AngleUV(f,e);
ScalarType diff=fabs(Angle_3D-Angle_UV)/Angle_3D;
return diff;
}
///return the global scaling factor from 3D to UV
static ScalarType ScalingFactor(MeshType &m,
ScalarType &AreaScale,
ScalarType &EdgeScale)
{
ScalarType SumArea3D=0;
ScalarType SumArea2D=0;
ScalarType SumEdge3D=0;
ScalarType SumEdge2D=0;
for (int i=0;i<m.face.size();i++)
{
SumArea3D+=Area3D(&m.face[i]);
SumArea2D+=AreaUV(&m.face[i]);
for (j=0;j<3;j++)
{
SumEdge3D+=EdgeLenght3D(&m.face[i],j);
SumEdge2D+=EdgeLenghtUV(&m.face[i],j);
}
}
AreaScale=SumArea3D/SumArea2D;
EdgeScale=SumEdge3D/SumEdge2D;
}
///return the variance of edge lenght, normalized
///in absolute value, the scalar EdgeScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType EdgeDistorsion(FaceType *f,int e,
ScalarType EdgeScaleVal)
{
ScalarType edgeUV=EdgeLenghtUV(f,e)*EdgeScaleVal;
ScalarType edge3D=EdgeLenght3D(f,e);
ScalarType diff=fabs(edge3D-edgeUV)/edge3D;
return diff;
}
///return the variance of area, normalized
///in absolute value, the scalar AreaScaleVal may be calculated
///by using the ScalingFactor function
static ScalarType AreaDistorsion(FaceType *f,
ScalarType AreaScaleVal)
{
ScalarType areaUV=AreaUV(f)*AreaScaleVal;
ScalarType area3D=EdgeLenght3D(f,e);
ScalarType diff=fabs(edge3D-edgeUV)/edge3D;
return diff;
}
///return the number of folded faces
static bool Folded(const FaceType *f)
{
ScalarType areaUV=UVArea(f);
/*if (areaUV<0)
printf("area %5.5f \n",areaUV);*/
return (areaUV<0);
}
static int Folded(const MeshType &m)
{
int folded=0;
for (int i=0;i<m.face.size();i++)
{
if (m.face[i].IsD())continue;
if(Folded(&m.face[i]))folded++;
}
return folded;
}
static bool GloballyUnFolded(const MeshType &m)
{
int num=Folded(m);
return (num>(m.fn)/2);
}
};
}
}
#endif