vcglib/vcg/simplex/tetrahedron/base.h

327 lines
13 KiB
C
Raw Normal View History

2004-04-15 10:54:20 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.1 2007/05/09 10:31:53 ganovelli
added
2004-04-20 14:42:51 +02:00
2004-04-15 10:54:20 +02:00
****************************************************************************/
#ifndef __VCG_TETRA_PLUS
#define __VCG_TETRA_PLUS
2004-04-15 10:54:20 +02:00
#include <vcg/space/point3.h>
#include <vcg/space/texcoord2.h>
#include <vcg/space/color4.h>
#include <vcg/simplex/tetrahedron/component.h>
2004-04-15 10:54:20 +02:00
namespace vcg {
/*------------------------------------------------------------------*/
/*
The base class of all the recusive definition chain. It is just a container of the typenames of the various simplexes.
These typenames must be known form all the derived classes.
*/
2004-04-15 10:54:20 +02:00
template <class BVT, class BET, class BFT, class BTT>
class TetraTypeHolder{
public:
typedef BVT VertexType;
2004-04-15 10:54:20 +02:00
typedef typename VertexType::CoordType CoordType;
typedef typename VertexType::ScalarType ScalarType;
typedef BET EdgeType;
typedef BFT FaceType;
typedef BTT TetraType;
typedef BVT *VertPointer;
typedef BET *EdgePointer;
typedef BFT *FacePointer;
typedef BTT *TetraPointer;
static void Name(std::vector<std::string> & name){}
// prot
2004-04-15 10:54:20 +02:00
};
/* The base class form which we start to add our components.
it has the empty definition for all the standard members (coords, color flags)
Note:
in order to avoid both virtual classes and ambiguous definitions all
the subsequent overrides must be done in a sequence of derivation.
In other words we cannot derive and add in a single derivation step
(with multiple ancestor), both the real (non-empty) normal and color but
we have to build the type a step a time (deriving from a single ancestor at a time).
*/
template <class BVT, class BET=DumET, class BFT=DumFT, class BTT=DumTT>
class TetraBase: public tetra::EmptyVertexRef<
tetra::EmptyAdj<
TetraTypeHolder <BVT, BET, BFT, BTT> > > {
};
// Metaprogramming Core
template <class BVT, class BET, class BFT,class BTT,
template <typename> class A>
class TetraArity1: public A<TetraBase<BVT,BET,BFT,BTT> > {};
template <class BVT, class BET, typename BFT, class BTT,
template <typename> class A, template <typename> class B>
class TetraArity2: public B<TetraArity1<BVT,BET,BFT,BTT, A> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C >
class TetraArity3: public C<TetraArity2<BVT,BET,BFT,BTT, A, B> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D>
class TetraArity4: public D<TetraArity3<BVT,BET,BFT,BTT, A, B, C> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E >
class TetraArity5: public E<TetraArity4<BVT,BET,BFT,BTT, A, B, C, D> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E, template <typename> class F >
class TetraArity6: public F<TetraArity5<BVT,BET,BFT,BTT, A, B, C, D, E> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E, template <typename> class F,
template <typename> class G >
class TetraArity7: public G<TetraArity6<BVT,BET,BFT,BTT, A, B, C, D, E, F> > {};
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E, template <typename> class F,
template <typename> class G, template <typename> class H >
class TetraArity8: public H<TetraArity7<BVT,BET,BFT,BTT, A, B, C, D, E, F, G> > {};
/* The Real Big Face class;
The class __FaceArityMax__ is the one that is the Last to be derived,
and therefore is the only one to know the real members
(after the many overrides) so all the functions with common behaviour
using the members defined in the various Empty/nonEmpty component classes
MUST be defined here.
I.e. IsD() that uses the overridden Flags() member must be defined here.
*/
template <class BVT, class BET, typename BFT,class BTT,
template <typename> class A, template <typename> class B,
template <typename> class C, template <typename> class D,
template <typename> class E, template <typename> class F,
template <typename> class G, template <typename> class H,
template <typename> class I >
class TetraArityMax: public I<TetraArity8<BVT,BET,BFT,BTT, A, B, C, D, E, F, G, H> > {
// ----- Flags stuff -----
2004-04-15 10:54:20 +02:00
public:
inline int & UberFlags ()
{
return this->Flags();
}
inline const int UberFlags() const
2004-04-15 10:54:20 +02:00
{
return this->Flags();
2004-04-15 10:54:20 +02:00
}
enum {
DELETED = 0x00000001, // Face is deleted from the mesh
NOTREAD = 0x00000002, // Face of the mesh is not readable
NOTWRITE = 0x00000004, // Face of the mesh is not writable
VISITED = 0x00000010, // Face has been visited. Usualy this is a per-algorithm used bit.
SELECTED = 0x00000020, // Face is selected. Algorithms should try to work only on selected face (if explicitly requested)
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
BORDER2 = 0x00000100,
BORDER3 = 0x00000200,
// Crease _flags, it is assumed that FEATUREi = FEATURE0<<i
// First user bit
USER0 = 0x00004000
};
2004-04-15 10:54:20 +02:00
/// checks if the Face is deleted
bool IsD() const {return (this->Flags() & DELETED) != 0;}
/// checks if the Face is readable
bool IsR() const {return (this->Flags() & NOTREAD) == 0;}
/// checks if the Face is modifiable
bool IsW() const {return (this->Flags() & NOTWRITE)== 0;}
/// This funcion checks whether the Face is both readable and modifiable
bool IsRW() const {return (this->Flags() & (NOTREAD | NOTWRITE)) == 0;}
/// checks if the Face is Modified
bool IsS() const {return (this->Flags() & SELECTED) != 0;}
/// checks if the Face is Modified
bool IsV() const {return (this->Flags() & VISITED) != 0;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void SetFlags(int flagp) {this->Flags()=flagp;}
/** Set the flag value
@param flagp Valore da inserire nel flag
*/
void ClearFlags() {this->Flags()=0;}
/// deletes the Face from the mesh
void SetD() {this->Flags() |=DELETED;}
/// un-delete a Face
void ClearD() {this->Flags() &=(~DELETED);}
/// marks the Face as readable
void SetR() {this->Flags() &=(~NOTREAD);}
/// marks the Face as not readable
void ClearR() {this->Flags() |=NOTREAD;}
/// marks the Face as writable
void SetW() {this->Flags() &=(~NOTWRITE);}
/// marks the Face as notwritable
void ClearW() {this->Flags() |=NOTWRITE;}
/// select the Face
void SetS() {this->Flags() |=SELECTED;}
/// Un-select a Face
void ClearS() {this->Flags() &= ~SELECTED;}
/// select the Face
void SetV() {this->Flags() |=VISITED;}
/// Un-select a Face
void ClearV() {this->Flags() &= ~VISITED;}
/// This function checks if the face is selected
bool IsB(int i) const {return (this->Flags() & (BORDER0<<i)) != 0;}
/// This function select the face
void SetB(int i) {this->Flags() |=(BORDER0<<i);}
/// This funcion execute the inverse operation of SetS()
void ClearB(int i) {this->Flags() &= (~(BORDER0<<i));}
/// Return the first bit that is not still used
2004-04-15 10:54:20 +02:00
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
/// allocate a bit among the flags that can be used by user.
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
// de-allocate a bit among the flags that can be used by user.
static inline bool DeleteBitFlag(int bitval)
2004-04-15 10:54:20 +02:00
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
/// This function checks if the given user bit is true
bool IsUserBit(int userBit){return (this->Flags() & userBit) != 0;}
/// This function set the given user bit
void SetUserBit(int userBit){this->Flags() |=userBit;}
/// This function clear the given user bit
void ClearUserBit(int userBit){this->Flags() &= (~userBit);}
template<class BoxType>
void GetBBox( BoxType & bb ) const
{
bb.Set(this->P(0));
bb.Add(this->P(1));
bb.Add(this->P(2));
2004-05-20 15:04:23 +02:00
}
2004-04-15 10:54:20 +02:00
2004-04-20 14:42:51 +02:00
};
2004-04-20 14:42:51 +02:00
template < typename T=int>
class TetraDefaultDeriver : public T {};
/*
These are the three main classes that are used by the library user to define its own Facees.
The user MUST specify the names of all the type involved in a generic complex.
so for example when defining a Face of a trimesh you must know the name of the type of the edge and of the face.
Typical usage example:
A Face with coords, flags and normal for use in a standard trimesh:
class MyFaceNf : public FaceSimp2< VertProto, EdgeProto, MyFaceNf, face::Flag, face::Normal3f > {};
A Face with coords, and normal for use in a tetrahedral mesh AND in a standard trimesh:
class TetraFace : public FaceSimp3< VertProto, EdgeProto, TetraFace, TetraProto, face::Coord3d, face::Normal3f > {};
A summary of the components that can be added to a face (see components.h for details):
VertexRef
Mark //Incremental mark (int)
VTAdj //Topology vertex face adjacency
(pointers to next face in the ring of the vertex
TTAdj //topology: face face adj
pointers to adjacent faces
*/
2004-04-15 10:54:20 +02:00
template <class BVT, class BET, class BFT, class BTT,
template <typename> class A = TetraDefaultDeriver, template <typename> class B = TetraDefaultDeriver,
template <typename> class C = TetraDefaultDeriver, template <typename> class D = TetraDefaultDeriver,
template <typename> class E = TetraDefaultDeriver, template <typename> class F = TetraDefaultDeriver,
template <typename> class G = TetraDefaultDeriver, template <typename> class H = TetraDefaultDeriver,
template <typename> class I = TetraDefaultDeriver >
class TetraSimp3: public TetraArityMax<BVT,BET,BFT,BTT, A, B, C, D, E, F, G, H, I> {};
class DumTT;
template <class BVT, class BET, class BFT,
template <typename> class A = TetraDefaultDeriver, template <typename> class B = TetraDefaultDeriver,
template <typename> class C = TetraDefaultDeriver, template <typename> class D = TetraDefaultDeriver,
template <typename> class E = TetraDefaultDeriver, template <typename> class F = TetraDefaultDeriver,
template <typename> class G = TetraDefaultDeriver, template <typename> class H = TetraDefaultDeriver,
template <typename> class I = TetraDefaultDeriver >
class TetraSimp2: public TetraArityMax<BVT,BET,BFT,DumTT, A, B, C, D, E, F, G, H, I> {};
2004-04-15 10:54:20 +02:00
}// end namespace
2004-05-06 17:29:42 +02:00
#endif
2004-04-15 10:54:20 +02:00