2011-03-11 17:14:54 +01:00
|
|
|
#ifndef GCACHE_CACHE_H
|
|
|
|
#define GCACHE_CACHE_H
|
|
|
|
|
|
|
|
#include <limits.h>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include <QThread>
|
|
|
|
#include "provider.h"
|
|
|
|
|
|
|
|
/* this cache system enforce the rule that the items in a cache are always in all the cache below */
|
|
|
|
/* two mechanism to remove tokens from the cache:
|
|
|
|
1) set token count to something low
|
|
|
|
2) set maximum number of tokens in the provider
|
|
|
|
*/
|
|
|
|
|
|
|
|
/** Cache virtual base class. You are required to implement the pure virtual functions get, drop and size.
|
|
|
|
*/
|
|
|
|
|
|
|
|
template <typename Token>
|
|
|
|
class Cache: public Provider<Token> {
|
|
|
|
|
|
|
|
public:
|
|
|
|
bool final; //true if this is the last cache (the one we use the data from)
|
|
|
|
bool quit; //graceful exit
|
|
|
|
bool waiting;
|
|
|
|
///data is fetched from here
|
|
|
|
Provider<Token> *input;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
///max space available
|
|
|
|
quint64 s_max;
|
|
|
|
///current space used
|
|
|
|
quint64 s_curr;
|
|
|
|
|
|
|
|
public:
|
|
|
|
Cache(quint64 _capacity = INT_MAX):
|
|
|
|
final(false), quit(false), waiting(false), input(NULL), s_max(_capacity), s_curr(0) {}
|
|
|
|
virtual ~Cache() {}
|
|
|
|
|
|
|
|
void setInputCache(Provider<Token> *p) { input = p; }
|
|
|
|
quint64 capacity() { return s_max; }
|
|
|
|
quint64 size() { return s_curr; }
|
|
|
|
void setCapacity(quint64 c) { s_max = c; }
|
|
|
|
///return true if the cache is waiting for priority to change
|
2011-03-14 12:35:43 +01:00
|
|
|
bool isWaiting() { return input->check_queue.isWaiting(); }
|
2011-03-11 17:14:54 +01:00
|
|
|
|
|
|
|
///empty the cache. Make sure no resource is locked before calling this.
|
|
|
|
void flush() {
|
|
|
|
std::vector<Token *> tokens;
|
|
|
|
{
|
|
|
|
QMutexLocker locker(&(this->heap_lock));
|
|
|
|
for(int i = 0; i < this->heap.size(); i++) {
|
|
|
|
Token *token = &(this->heap[i]);
|
|
|
|
tokens.push_back(token);
|
|
|
|
s_curr -= drop(token);
|
|
|
|
assert(!(token->count >= Token::LOCKED));
|
|
|
|
if(final)
|
|
|
|
token->count.testAndSetOrdered(Token::READY, Token::CACHE);
|
|
|
|
}
|
|
|
|
this->heap.clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
assert(s_curr == 0);
|
|
|
|
|
|
|
|
{
|
|
|
|
QMutexLocker locker(&(input->heap_lock));
|
|
|
|
for(unsigned int i = 0; i < tokens.size(); i++) {
|
|
|
|
input->heap.push(tokens[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
///ensure there no locked item
|
|
|
|
template <class FUNCTOR> void flush(FUNCTOR functor) {
|
|
|
|
std::vector<Token *> tokens;
|
|
|
|
{
|
|
|
|
int count = 0;
|
|
|
|
QMutexLocker locker(&(this->heap_lock));
|
|
|
|
for(int k = 0; k < this->heap.size(); k++) {
|
|
|
|
Token *token = &this->heap[k];
|
|
|
|
if(functor(token)) { //drop it
|
|
|
|
tokens.push_back(token);
|
|
|
|
s_curr -= drop(token);
|
|
|
|
assert(!token->count >= Token::LOCKED);
|
|
|
|
if(final)
|
|
|
|
token->count.testAndSetOrdered(Token::READY, Token::CACHE);
|
|
|
|
} else
|
|
|
|
this->heap.at(count++) = token;
|
|
|
|
}
|
|
|
|
this->heap.resize(count);
|
|
|
|
this->heap_dirty = true;
|
|
|
|
}
|
|
|
|
{
|
|
|
|
QMutexLocker locker(&(input->heap_lock));
|
|
|
|
for(unsigned int i = 0; i < tokens.size(); i++) {
|
|
|
|
input->heap.push(tokens[i]);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
///return the space used in the cache by the loaded resource
|
|
|
|
virtual int size(Token *token) = 0;
|
|
|
|
///returns amount of space used in cache -1 for failed transfer
|
|
|
|
virtual int get(Token *token) = 0;
|
|
|
|
///return amount removed
|
|
|
|
virtual int drop(Token *token) = 0;
|
|
|
|
|
|
|
|
///called in as first thing in run()
|
|
|
|
virtual void begin() {}
|
|
|
|
///called in as last thing in run()
|
|
|
|
virtual void end() {}
|
|
|
|
|
|
|
|
///[should be protected]
|
|
|
|
void run() {
|
|
|
|
assert(input);
|
|
|
|
/* basic operation of the cache:
|
|
|
|
1) transfer first element of input_cache if
|
|
|
|
cache has room OR first element in input as higher priority of last element
|
|
|
|
2) make room until eliminating an element would leave space. */
|
|
|
|
begin();
|
|
|
|
while(!this->quit) {
|
2011-03-14 12:35:43 +01:00
|
|
|
input->check_queue.enter(true); //wait for cache below to load something or priorities to change
|
2011-03-11 17:14:54 +01:00
|
|
|
|
|
|
|
if(this->quit) break;
|
|
|
|
|
|
|
|
if(unload() || load())
|
|
|
|
input->check_queue.open(); //we signal ourselves to check again
|
|
|
|
}
|
|
|
|
flush();
|
|
|
|
this->quit = false; //in case someone wants to restart;
|
|
|
|
end();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
///should be protected
|
|
|
|
bool unload() {
|
|
|
|
Token *remove = NULL;
|
|
|
|
//make room int the cache checking that:
|
|
|
|
//1 we need to make room (capacity < current)
|
|
|
|
if(size() > capacity()) {
|
|
|
|
|
|
|
|
QMutexLocker locker(&(this->heap_lock));
|
|
|
|
|
|
|
|
//2 we have some element not in the upper caches (heap.size() > 0
|
|
|
|
if(this->heap.size()) {
|
|
|
|
Token &last = this->heap.min();
|
|
|
|
int itemsize = size(&last);
|
|
|
|
|
|
|
|
//3 after removing the item, we are still full (avoids bouncing items)
|
|
|
|
if(size() - itemsize > capacity()) {
|
|
|
|
|
|
|
|
//4 item to remove is not locked. (only in last cache. you can't lock object otherwise)
|
|
|
|
if(!final) { //not final we can drop when we want
|
|
|
|
remove = this->heap.popMin();
|
|
|
|
} else {
|
|
|
|
last.count.testAndSetOrdered(Token::READY, Token::CACHE);
|
|
|
|
if(last.count <= Token::CACHE) { //was not locked and now can't be locked, remove it.
|
|
|
|
remove = this->heap.popMin();
|
|
|
|
} else { //last item is locked need to reorder stack
|
|
|
|
remove = this->heap.popMin();
|
|
|
|
this->heap.push(remove);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(remove) {
|
|
|
|
int size = drop(remove);
|
|
|
|
assert(size >= 0);
|
|
|
|
s_curr -= size;
|
|
|
|
|
|
|
|
{
|
|
|
|
QMutexLocker input_locker(&(input->heap_lock));
|
|
|
|
input->heap.push(remove);
|
|
|
|
}
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
///should be protected
|
|
|
|
bool load() {
|
|
|
|
Token *insert = NULL;
|
|
|
|
Token *last = NULL; //we want to lock only one heap at once to avoid deadlocks.
|
|
|
|
|
|
|
|
/* check wether we have room (curr < capacity) or heap is empty.
|
|
|
|
empty heap is bad: we cannot drop anything to make room, and cache above has nothing to get.
|
|
|
|
this should not happen if we set correct cache sizes, but if it happens.... */
|
|
|
|
{
|
|
|
|
QMutexLocker locker(&(this->heap_lock));
|
|
|
|
this->rebuild();
|
|
|
|
if(size() > capacity() && this->heap.size() > 0) {
|
|
|
|
last = &(this->heap.min()); //no room, set last so we might check for a swap.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
QMutexLocker input_locker(&(input->heap_lock));
|
|
|
|
input->rebuild(); //if dirty rebuild
|
|
|
|
if(input->heap.size()) { //we need something in input to tranfer.
|
|
|
|
Token &first = input->heap.max();
|
|
|
|
if(first.count > Token::REMOVE &&
|
|
|
|
(!last || last->priority < first.priority)) { //if !last we already decided we want a transfer., otherwise check for a swap
|
|
|
|
insert = input->heap.popMax(); //remove item from heap, while we transfer it.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if(insert) { //we want to fetch something
|
|
|
|
|
|
|
|
int size = get(insert);
|
|
|
|
|
|
|
|
if(size >= 0) { //success
|
|
|
|
s_curr += size;
|
|
|
|
{
|
|
|
|
QMutexLocker locker(&(this->heap_lock));
|
|
|
|
if(final)
|
|
|
|
insert->count.ref(); //now lock is 0 and can be locked
|
|
|
|
|
|
|
|
this->heap.push(insert);
|
|
|
|
}
|
|
|
|
this->check_queue.open(); //we should signal the parent cache that we have a new item
|
|
|
|
return true;
|
|
|
|
|
|
|
|
} else { //failed transfer put it back, we will keep trying to transfer it...
|
|
|
|
QMutexLocker input_locker(&(input->heap_lock));
|
|
|
|
input->heap.push(insert);
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // GCACHE_H
|