495 lines
14 KiB
C
495 lines
14 KiB
C
|
/****************************************************************************
|
||
|
* VCGLib o o *
|
||
|
* Visual and Computer Graphics Library o o *
|
||
|
* _ O _ *
|
||
|
* Copyright(C) 2004 \/)\/ *
|
||
|
* Visual Computing Lab /\/| *
|
||
|
* ISTI - Italian National Research Council | *
|
||
|
* \ *
|
||
|
* All rights reserved. *
|
||
|
* *
|
||
|
* This program is free software; you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation; either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
|
* for more details. *
|
||
|
* *
|
||
|
****************************************************************************/
|
||
|
|
||
|
/****************************************************************************
|
||
|
History
|
||
|
|
||
|
$Log: point_matching.h,v $
|
||
|
|
||
|
****************************************************************************/
|
||
|
|
||
|
#include <vcg/math/matrix33.h>
|
||
|
#include <vcg/math/lin_algebra.h>
|
||
|
namespace vcg
|
||
|
{
|
||
|
template<class ScalarType>
|
||
|
class PointMatching
|
||
|
{
|
||
|
public:
|
||
|
typedef Point3<ScalarType> Point3x;
|
||
|
typedef Matrix33<ScalarType> Matrix33x;
|
||
|
typedef Matrix44<ScalarType> Matrix44x;
|
||
|
typedef Quaternion<ScalarType> Quaternionx;
|
||
|
|
||
|
|
||
|
|
||
|
static bool ComputeRigidMatchMatrix( Matrix44x &res,
|
||
|
std::vector<Point3x> &Pfix, // vertici corrispondenti su fix (rossi)
|
||
|
std::vector<Point3x> &Pmov) // normali scelti su mov (verdi)
|
||
|
{
|
||
|
Quaternionx qtmp;
|
||
|
Point3x tr;
|
||
|
return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr);
|
||
|
}
|
||
|
|
||
|
static bool ComputeRigidMatchMatrix(std::vector<ScalarType> weights,
|
||
|
Matrix44x &res,
|
||
|
std::vector<Point3x> &Pfix, // vertici corrispondenti su fix (rossi)
|
||
|
std::vector<Point3x> &Pmov) // normali scelti su mov (verdi)
|
||
|
{
|
||
|
Quaterniond qtmp;
|
||
|
Point3d tr;
|
||
|
return ComputeRigidMatchMatrix(res,Pfix,Pmov,qtmp,tr);
|
||
|
}
|
||
|
|
||
|
|
||
|
/*
|
||
|
Calcola la matrice di rototraslazione
|
||
|
che porta i punti Pmov su Pfix
|
||
|
|
||
|
Basata sul paper
|
||
|
|
||
|
Besl, McKay
|
||
|
A method for registration o f 3d Shapes
|
||
|
IEEE TPAMI Vol 14, No 2 1992
|
||
|
|
||
|
|
||
|
Esempio d'uso
|
||
|
const int np=1000;
|
||
|
std::vector<Point3x> pfix(np),pmov(np);
|
||
|
|
||
|
Matrix44x Rot,Trn,RotRes;
|
||
|
Rot.Rotate(30,Point3x(1,0,1));
|
||
|
Trn.Translate(0,0,100);
|
||
|
Rot=Trn*Rot;
|
||
|
|
||
|
for(int i=0;i<np;++i){
|
||
|
pfix[i]=Point3x(-150+rand()%1000,-150+rand()%1000,0);
|
||
|
pmov[i]=Rot.Apply(pfix[i]);
|
||
|
}
|
||
|
|
||
|
ComputeRigidMatchMatrix(RotRes,pfix,pmov);
|
||
|
|
||
|
RotRes.Invert();
|
||
|
assert( RotRes==Rot);
|
||
|
assert( RotRes.Apply(pmov[i]) == pfix[i] );
|
||
|
|
||
|
*/
|
||
|
static
|
||
|
bool ComputeWeightedRigidMatchMatrix(Matrix44x &res,
|
||
|
std::vector<Point3x> &Pfix,
|
||
|
std::vector<Point3x> &Pmov,
|
||
|
std::vector<double> weights,
|
||
|
Quaternionx &q,
|
||
|
Point3x &tr
|
||
|
)
|
||
|
{
|
||
|
|
||
|
Matrix33x tmp;
|
||
|
Matrix33x ccm;
|
||
|
Point3x bfix,bmov; // baricenter of src e trg
|
||
|
ccm.WeightedCrossCovariance(weights,Pmov,Pfix,bmov,bfix);
|
||
|
Matrix33x cyc; // the cyclic components of the cross covariance matrix.
|
||
|
|
||
|
cyc=ccm;
|
||
|
tmp=ccm;
|
||
|
tmp.Trasp();
|
||
|
cyc-=tmp;
|
||
|
|
||
|
Matrix44x QQ;
|
||
|
QQ.Zero();
|
||
|
Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);
|
||
|
|
||
|
Matrix33x RM;
|
||
|
RM.Zero();
|
||
|
RM[0][0]=-ccm.Trace();
|
||
|
RM[1][1]=-ccm.Trace();
|
||
|
RM[2][2]=-ccm.Trace();
|
||
|
RM+=ccm;
|
||
|
ccm.Trasp();
|
||
|
RM+=ccm;
|
||
|
|
||
|
QQ[0][0] = ccm.Trace();
|
||
|
QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
|
||
|
QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2];
|
||
|
|
||
|
int i,j;
|
||
|
for(i=0;i<3;i++)
|
||
|
for(j=0;j<3;j++)
|
||
|
QQ[i+1][j+1]=RM[i][j];
|
||
|
|
||
|
// printf(" Quaternion Matrix\n");
|
||
|
// print(QQ);
|
||
|
Point4d d;
|
||
|
Matrix44x v;
|
||
|
int nrot;
|
||
|
QQ.Jacobi(d,v,nrot);
|
||
|
// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
|
||
|
// print(v);
|
||
|
// Now search the maximum eigenvalue
|
||
|
double maxv=0;
|
||
|
int maxind=-1;
|
||
|
for(i=0;i<4;i++)
|
||
|
if(maxv<fabs(d[i])) {
|
||
|
q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
|
||
|
maxind=i;
|
||
|
maxv=d[i];
|
||
|
}
|
||
|
// The corresponding eigenvector define the searched rotation,
|
||
|
Matrix44x Rot;
|
||
|
q.RotMatrix(Rot);
|
||
|
// the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
|
||
|
tr= (bfix - Rot.Apply(bmov));
|
||
|
//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
|
||
|
Matrix44x Trn;
|
||
|
Trn.Translate(tr);
|
||
|
|
||
|
res=Rot*Trn;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static
|
||
|
bool ComputeRigidMatchMatrix(Matrix44x &res,
|
||
|
std::vector<Point3x> &Pfix,
|
||
|
std::vector<Point3x> &Pmov,
|
||
|
Quaternionx &q,
|
||
|
Point3x &tr)
|
||
|
{
|
||
|
|
||
|
Matrix33x tmp;
|
||
|
Matrix33x ccm;
|
||
|
Point3x bfix,bmov; // baricenter of src e trg
|
||
|
ccm.CrossCovariance(Pmov,Pfix,bmov,bfix);
|
||
|
Matrix33x cyc; // the cyclic components of the cross covariance matrix.
|
||
|
|
||
|
cyc=ccm;
|
||
|
tmp=ccm;
|
||
|
tmp.Transpose();
|
||
|
cyc-=tmp;
|
||
|
|
||
|
Matrix44x QQ;
|
||
|
QQ.SetZero();
|
||
|
Point3x D(cyc[1][2],cyc[2][0],cyc[0][1]);
|
||
|
|
||
|
Matrix33x RM;
|
||
|
RM.SetZero();
|
||
|
RM[0][0]=-ccm.Trace();
|
||
|
RM[1][1]=-ccm.Trace();
|
||
|
RM[2][2]=-ccm.Trace();
|
||
|
RM+=ccm;
|
||
|
ccm.Transpose();
|
||
|
RM+=ccm;
|
||
|
|
||
|
QQ[0][0] = ccm.Trace();
|
||
|
QQ[0][1] = D[0]; QQ[0][2] = D[1]; QQ[0][3] = D[2];
|
||
|
QQ[1][0] = D[0]; QQ[2][0] = D[1]; QQ[3][0] = D[2];
|
||
|
|
||
|
int i,j;
|
||
|
for(i=0;i<3;i++)
|
||
|
for(j=0;j<3;j++)
|
||
|
QQ[i+1][j+1]=RM[i][j];
|
||
|
|
||
|
// printf(" Quaternion Matrix\n");
|
||
|
// print(QQ);
|
||
|
Point4d d;
|
||
|
Matrix44x v;
|
||
|
int nrot;
|
||
|
//QQ.Jacobi(d,v,nrot);
|
||
|
Jacobi(QQ,d,v,nrot);
|
||
|
// printf("Done %i iterations\n %f %f %f %f\n",nrot,d[0],d[1],d[2],d[3]);
|
||
|
// print(v);
|
||
|
// Now search the maximum eigenvalue
|
||
|
double maxv=0;
|
||
|
int maxind=-1;
|
||
|
for(i=0;i<4;i++)
|
||
|
if(maxv<fabs(d[i])) {
|
||
|
q=Quaternionx(v[0][i],v[1][i],v[2][i],v[3][i]);
|
||
|
maxind=i;
|
||
|
maxv=d[i];
|
||
|
}
|
||
|
// The corresponding eigenvector define the searched rotation,
|
||
|
Matrix44x Rot;
|
||
|
q.ToMatrix(Rot);
|
||
|
Transpose(Rot);
|
||
|
// the translation (last row) is simply the difference between the transformed src barycenter and the trg baricenter
|
||
|
tr= (bfix - Rot*bmov);
|
||
|
//res[3][0]=tr[0];res[3][1]=tr[1];res[3][2]=tr[2];
|
||
|
Matrix44x Trn;
|
||
|
Trn.SetTranslate(tr);
|
||
|
|
||
|
res=Rot*Trn;
|
||
|
res=Trn*Rot;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione
|
||
|
// che li fa corrispondere
|
||
|
static bool ComputeMatchMatrix( Matrix44x &res,
|
||
|
std::vector<Point3x> &Ps, // vertici corrispondenti su src (rossi)
|
||
|
std::vector<Point3x> &Ns, // normali corrispondenti su src (rossi)
|
||
|
std::vector<Point3x> &Pt) // vertici scelti su trg (verdi)
|
||
|
// vector<Point3x> &Nt) // normali scelti su trg (verdi)
|
||
|
{
|
||
|
int sz=Ps.size();
|
||
|
assert(0);
|
||
|
// Da qui in poi non compila che ha bisogno dei minimiquadrati
|
||
|
#if 0
|
||
|
|
||
|
Matrix<double> A(sz,12);
|
||
|
Vector<double> b(sz);
|
||
|
Vector<double> x(12);
|
||
|
|
||
|
//inizializzo il vettore per minimi quadrati
|
||
|
// la matrice di trasf che calcolo con LeastSquares cerca avvicinare il piu'
|
||
|
// possibile le coppie di punti che trovo ho scelto
|
||
|
// Le coppie di punti sono gia' trasformate secondo la matrice <In> quindi come scelta iniziale
|
||
|
// per il metodo minimiquadrati scelgo l'identica (e.g. se ho allineato a mano perfettamente e
|
||
|
// le due mesh sono perfettamente uguali DEVE restituire l'identica)
|
||
|
|
||
|
res.SetIdentity();
|
||
|
int i,j,k;
|
||
|
for(i=0; i<=2; ++i)
|
||
|
for(j=0; j<=3; ++j)
|
||
|
x[i*4+j] = res[i][j];
|
||
|
|
||
|
|
||
|
//costruzione della matrice
|
||
|
for(i=0;i<sz;++i)
|
||
|
{
|
||
|
for(j=0;j<3;++j)
|
||
|
for(k=0;k<4;++k)
|
||
|
if(k<3)
|
||
|
{
|
||
|
A[i][k+j*4] = Ns[i][j]*Pt[i][k];
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
A[i][k+j*4] = Ns[i][j];
|
||
|
}
|
||
|
b[i] = Ps[i]*Ns[i];
|
||
|
}
|
||
|
const int maxiter = 4096;
|
||
|
int iter;
|
||
|
LSquareGC(x,A,b,1e-16,maxiter,iter);
|
||
|
|
||
|
TRACE("LSQ Solution");
|
||
|
for(int ind=0; ind<12; ++ind) {
|
||
|
if((ind%4)==0) TRACE("\n");
|
||
|
TRACE("%8.5lf ", x[ind]);
|
||
|
} TRACE("\n");
|
||
|
|
||
|
if(iter==maxiter)
|
||
|
{
|
||
|
TRACE("I minimi quadrati non convergono!!\n");
|
||
|
return false;
|
||
|
}
|
||
|
else { TRACE("Convergenza in %d passi\n",iter); }
|
||
|
|
||
|
//Devo riapplicare la matrice di trasformazione globale a
|
||
|
//trg inserendo il risultato nel vettore trgvert contenente
|
||
|
//copia dei suoi vertici
|
||
|
Matrix44x tmp;
|
||
|
for(i=0; i<=2; ++i)
|
||
|
for(j=0; j<=3; ++j)
|
||
|
res[j][i] = x[i*4+j];
|
||
|
res[0][3] = 0.0;
|
||
|
res[1][3] = 0.0;
|
||
|
res[2][3] = 0.0;
|
||
|
res[3][3] = 1.0;
|
||
|
/*
|
||
|
res.Transpose();
|
||
|
Point3x scv,shv,rtv,trv;
|
||
|
res.Decompose(scv,shv,rtv,trv);
|
||
|
vcg::print(res);
|
||
|
printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
|
||
|
printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
|
||
|
printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
|
||
|
printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
|
||
|
|
||
|
printf("----\n"); res.Decompose(scv,shv,rtv,trv);
|
||
|
vcg::print(res);
|
||
|
printf("Scale %f %f %f\n",scv[0],scv[1],scv[2]);
|
||
|
printf("Shear %f %f %f\n",shv[0],shv[1],shv[2]);
|
||
|
printf("Rotat %f %f %f\n",rtv[0],rtv[1],rtv[2]);
|
||
|
printf("Trans %f %f %f\n",trv[0],trv[1],trv[2]);
|
||
|
|
||
|
res.Transpose();
|
||
|
*/
|
||
|
#endif
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
****** Questa parte per compilare ha bisogno di leastsquares e matrici generiche
|
||
|
****** Da controllare meglio
|
||
|
|
||
|
|
||
|
static void CreatePairMatrix( Matrix<double> & A2, const Point3x & p, const Point3x & n, double d )
|
||
|
{
|
||
|
double t1 = p[0]*p[0];
|
||
|
double t2 = n[0]*n[0];
|
||
|
double t4 = t1*n[0];
|
||
|
double t5 = t4*n[1];
|
||
|
double t6 = t4*n[2];
|
||
|
double t7 = p[0]*t2;
|
||
|
double t8 = t7*p[1];
|
||
|
double t9 = p[0]*n[0];
|
||
|
double t10 = p[1]*n[1];
|
||
|
double t11 = t9*t10;
|
||
|
double t12 = p[1]*n[2];
|
||
|
double t13 = t9*t12;
|
||
|
double t14 = t7*p[2];
|
||
|
double t15 = p[2]*n[1];
|
||
|
double t16 = t9*t15;
|
||
|
double t17 = p[2]*n[2];
|
||
|
double t18 = t9*t17;
|
||
|
double t19 = t9*n[1];
|
||
|
double t20 = t9*n[2];
|
||
|
double t21 = t9*d;
|
||
|
double t22 = n[1]*n[1];
|
||
|
double t25 = t1*n[1]*n[2];
|
||
|
double t26 = p[0]*t22;
|
||
|
double t27 = t26*p[1];
|
||
|
double t28 = p[0]*n[1];
|
||
|
double t29 = t28*t12;
|
||
|
double t30 = t26*p[2];
|
||
|
double t31 = t28*t17;
|
||
|
double t32 = t28*n[2];
|
||
|
double t33 = t28*d;
|
||
|
double t34 = n[2]*n[2];
|
||
|
|
||
|
double t36 = p[0]*t34;
|
||
|
double t41 = p[1]*p[1]; double t43 = t41*n[0];
|
||
|
double t46 = p[1]*t2; double t48 = p[1]*n[0];
|
||
|
double t49 = t48*t15; double t50 = t48*t17;
|
||
|
double t51 = t48*n[1]; double t52 = t48*n[2];
|
||
|
double t57 = p[1]*t22; double t59 = t10*t17;
|
||
|
double t60 = t10*n[2]; double t63 = p[1]*t34;
|
||
|
double t66 = p[2]*p[2]; double t68 = t66*n[0];
|
||
|
double t72 = p[2]*n[0]; double t73 = t72*n[1];
|
||
|
double t74 = t72*n[2]; double t80 = t15*n[2];
|
||
|
|
||
|
A2[0][0] = t1*t2; A2[0][1] = t5; A2[0][2] = t6;
|
||
|
A2[0][3] = t8; A2[0][4] = t11; A2[0][5] = t13;
|
||
|
A2[0][6] = t14; A2[0][7] = t16; A2[0][8] = t18;
|
||
|
A2[0][9] = t7; A2[0][10] = t19; A2[0][11] = t20;
|
||
|
A2[0][12] = -t21;
|
||
|
|
||
|
A2[1][1] = t1*t22; A2[1][2] = t25; A2[1][3] = t11;
|
||
|
A2[1][4] = t27; A2[1][5] = t29; A2[1][6] = t16;
|
||
|
A2[1][7] = t30; A2[1][8] = t31; A2[1][9] = t19;
|
||
|
A2[1][10] = t26; A2[1][11] = t32; A2[1][12] = -t33;
|
||
|
|
||
|
A2[2][2] = t1*t34; A2[2][3] = t13; A2[2][4] = t29;
|
||
|
A2[2][5] = t36*p[1]; A2[2][6] = t18; A2[2][7] = t31;
|
||
|
A2[2][8] = t36*p[2]; A2[2][9] = t20; A2[2][10] = t32;
|
||
|
A2[2][11] = t36; A2[2][12] = -p[0]*n[2]*d;
|
||
|
|
||
|
A2[3][3] = t41*t2; A2[3][4] = t43*n[1]; A2[3][5] = t43*n[2];
|
||
|
A2[3][6] = t46*p[2]; A2[3][7] = t49; A2[3][8] = t50;
|
||
|
A2[3][9] = t46; A2[3][10] = t51; A2[3][11] = t52;
|
||
|
A2[3][12] = -t48*d;
|
||
|
|
||
|
A2[4][4] = t41*t22; A2[4][5] = t41*n[1]*n[2]; A2[4][6] = t49;
|
||
|
A2[4][7] = t57*p[2]; A2[4][8] = t59; A2[4][9] = t51;
|
||
|
A2[4][10] = t57; A2[4][11] = t60; A2[4][12] = -t10*d;
|
||
|
|
||
|
A2[5][5] = t41*t34; A2[5][6] = t50; A2[5][7] = t59;
|
||
|
A2[5][8] = t63*p[2]; A2[5][9] = t52; A2[5][10] = t60;
|
||
|
A2[5][11] = t63; A2[5][12] = -t12*d;
|
||
|
|
||
|
A2[6][6] = t66*t2; A2[6][7] = t68*n[1]; A2[6][8] = t68*n[2];
|
||
|
A2[6][9] = p[2]*t2; A2[6][10] = t73; A2[6][11] = t74;
|
||
|
A2[6][12] = -t72*d;
|
||
|
|
||
|
A2[7][7] = t66*t22; A2[7][8] = t66*n[1]*n[2]; A2[7][9] = t73;
|
||
|
A2[7][10] = p[2]*t22; A2[7][11] = t80; A2[7][12] = -t15*d;
|
||
|
|
||
|
A2[8][8] = t66*t34; A2[8][9] = t74; A2[8][10] = t80;
|
||
|
A2[8][11] = p[2]*t34; A2[8][12] = -t17*d;
|
||
|
|
||
|
A2[9][9] = t2; A2[9][10] = n[0]*n[1];
|
||
|
A2[9][11] = n[0]*n[2]; A2[9][12] = -n[0]*d;
|
||
|
|
||
|
A2[10][10] = t22; A2[10][11] = n[1]*n[2]; A2[10][12] = -n[1]*d;
|
||
|
A2[11][11] = t34; A2[11][12] = -n[2]*d;
|
||
|
A2[12][12] = d*d;
|
||
|
}
|
||
|
|
||
|
// Dati due insiemi di punti e normali corrispondenti calcola la migliore trasformazione
|
||
|
// che li fa corrispondere
|
||
|
static bool ComputeMatchMatrix2( Matrix44x &res,
|
||
|
std::vector<Point3x> &Ps, // vertici corrispondenti su src (rossi)
|
||
|
std::vector<Point3x> &Ns, // normali corrispondenti su src (rossi)
|
||
|
std::vector<Point3x> &Pt) // vertici scelti su trg (verdi)
|
||
|
//vector<Point3x> &Nt) // normali scelti su trg (verdi)
|
||
|
{
|
||
|
const int N = 13;
|
||
|
int i,j,k;
|
||
|
|
||
|
Matrixd AT(N,N);
|
||
|
Matrixd TT(N,N);
|
||
|
// Azzeramento matrice totale (solo tri-superiore)
|
||
|
for(i=0;i<N;++i)
|
||
|
for(j=i;j<N;++j)
|
||
|
AT[i][j] = 0;
|
||
|
// Calcolo matrici locali e somma
|
||
|
for(k=0;k<Ps.size();++k)
|
||
|
{
|
||
|
CreatePairMatrix(TT,Pt[k],Ns[k],Ps[k]*Ns[k]);
|
||
|
for(i=0;i<N;++i)
|
||
|
for(j=i;j<N;++j)
|
||
|
AT[i][j] += TT[i][j];
|
||
|
}
|
||
|
|
||
|
for(i=0;i<N;++i)
|
||
|
for(j=0;j<i;++j)
|
||
|
AT[i][j] = AT[j][i];
|
||
|
|
||
|
std::vector<double> q;
|
||
|
double error;
|
||
|
affine_ls2(AT,q,error);
|
||
|
//printf("error: %g \n",error);
|
||
|
res[0][0] = q[0];
|
||
|
res[0][1] = q[1];
|
||
|
res[0][2] = q[2];
|
||
|
res[0][3] = 0;
|
||
|
res[1][0] = q[3];
|
||
|
res[1][1] = q[4];
|
||
|
res[1][2] = q[5];
|
||
|
res[1][3] = 0;
|
||
|
res[2][0] = q[6];
|
||
|
res[2][1] = q[7];
|
||
|
res[2][2] = q[8];
|
||
|
res[2][3] = 0;
|
||
|
res[3][0] = q[9];
|
||
|
res[3][1] = q[10];
|
||
|
res[3][2] = q[11];
|
||
|
res[3][3] = q[12];
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
*/
|
||
|
};
|
||
|
} // end namespace
|