vcglib/vcg/simplex/face/base.h

1359 lines
32 KiB
C
Raw Normal View History

2004-02-13 01:44:53 +01:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
2004-04-27 16:15:23 +02:00
Revision 1.5 2004/04/05 11:51:22 cignoni
wrong define FACE_N instead of FACE_FN
2004-04-05 13:51:22 +02:00
Revision 1.4 2004/03/29 08:37:09 cignoni
missing include
2004-03-29 10:37:09 +02:00
Revision 1.3 2004/03/10 00:52:38 cignoni
Moved geometric stuff to the space/triangle class
Revision 1.2 2004/03/03 16:08:38 cignoni
First working version
2004-03-03 17:08:38 +01:00
Revision 1.1 2004/02/13 00:44:45 cignoni
First commit...
2004-02-13 01:44:53 +01:00
****************************************************************************/
#ifndef FACE_TYPE
2004-03-03 17:08:38 +01:00
#pragma error message("\nYou should never directly include this file\_n")
2004-02-13 01:44:53 +01:00
#else
2004-05-04 04:46:23 +02:00
#include <vcg/math/base.h>
2004-03-03 17:08:38 +01:00
#include <vcg/space/box3.h>
2004-03-29 10:37:09 +02:00
#include <vcg/space/tcoord2.h>
#include <vcg/space/triangle3.h>
2004-05-04 04:46:23 +02:00
#include <vcg/space/plane3.h>
#include <vcg/simplex/face/topology.h>
2004-02-13 01:44:53 +01:00
namespace vcg {
2004-03-03 17:08:38 +01:00
/**
\ingroup face
@name Face
2004-02-13 01:44:53 +01:00
Class Face.
This is the base class for definition of a face of the mesh.
@param FVTYPE (Templete Parameter) Specifies the vertex class type.
*/
2004-03-03 17:08:38 +01:00
template <class FVTYPE, class TCTYPE = TCoord2<float,1> > class FACE_TYPE
2004-02-13 01:44:53 +01:00
{
public:
/// The base type of the face
2004-03-03 17:08:38 +01:00
typedef FACE_TYPE BaseFaceType;
2004-02-13 01:44:53 +01:00
/// The vertex type
2004-03-03 17:08:38 +01:00
typedef FVTYPE VertexType;
/// The type of the scalar field of the vertex coordinate
typedef typename VertexType::ScalarType ScalarType;
/// The type of the the vertex coordinate
typedef Point3< ScalarType > CoordType;
typedef Point3< ScalarType > NormalType;
2004-03-03 17:08:38 +01:00
typedef typename FVTYPE::FaceType FaceFromVertType;
2004-02-13 01:44:53 +01:00
/// The bounding box type
2004-03-03 17:08:38 +01:00
typedef Box3<ScalarType> BoxType;
/// Default Empty Costructor
inline FACE_TYPE(){}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
/// This are the _flags of face, the default value is 0
int _flags;
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
/***********************************************/
/** @name Vertex Pointer
blah
blah
**/
//@{
2004-02-13 01:44:53 +01:00
protected:
/// Vector of vertex pointer incident in the face
2004-03-03 17:08:38 +01:00
VertexType *v[3];
public:
/** Return the pointer to the j-th vertex of the face.
@param j Index of the face vertex.
*/
inline FVTYPE * & V( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j >= 0);
assert(j < 3);
return v[j];
}
inline const FVTYPE * const & V( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j];
}
inline const FVTYPE * const & cV( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j];
}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
// Shortcut per accedere ai punti delle facce
inline CoordType & P( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->P();
}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
inline const CoordType & P( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->cP();
}
inline const CoordType & cP( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
return v[j]->cP();
}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
/** Return the pointer to the ((j+1)%3)-th vertex of the face.
@param j Index of the face vertex.
*/
inline FVTYPE * & V0( const int j ) { return V(j);}
inline FVTYPE * & V1( const int j ) { return V((j+1)%3);}
inline FVTYPE * & V2( const int j ) { return V((j+2)%3);}
inline const FVTYPE * const & V0( const int j ) const { return V(j);}
inline const FVTYPE * const & V1( const int j ) const { return V((j+1)%3);}
inline const FVTYPE * const & V2( const int j ) const { return V((j+2)%3);}
inline const FVTYPE * const & cV0( const int j ) const { return cV(j);}
inline const FVTYPE * const & cV1( const int j ) const { return cV((j+1)%3);}
inline const FVTYPE * const & cV2( const int j ) const { return cV((j+2)%3);}
/// Shortcut per accedere ai punti delle facce
2004-03-03 17:08:38 +01:00
inline CoordType & P0( const int j ) { return V(j)->P();}
inline CoordType & P1( const int j ) { return V((j+1)%3)->P();}
inline CoordType & P2( const int j ) { return V((j+2)%3)->P();}
inline const CoordType & P0( const int j ) const { return V(j)->P();}
inline const CoordType & P1( const int j ) const { return V((j+1)%3)->P();}
inline const CoordType & P2( const int j ) const { return V((j+2)%3)->P();}
inline const CoordType & cP0( const int j ) const { return cV(j)->P();}
inline const CoordType & cP1( const int j ) const { return cV((j+1)%3)->P();}
inline const CoordType & cP2( const int j ) const { return cV((j+2)%3)->P();}
inline FVTYPE * & UberV( const int j )
{
assert(j>=0);
assert(j<3);
return v[j];
}
inline const FVTYPE * const & UberV( const int j ) const
{
assert(j>=0);
assert(j<3);
return v[j];
}
//@}
/***********************************************/
/** @name Normal
blah
blah
**/
//@{
#ifdef __VCGLIB_FACE_FN
/// This vector indicates the normal of the face (defines if FACE_N is defined)
2004-02-13 01:44:53 +01:00
protected:
2004-03-03 17:08:38 +01:00
CoordType _n;
public:
2004-02-13 01:44:53 +01:00
#endif
2004-03-03 17:08:38 +01:00
2004-04-05 13:51:22 +02:00
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
2004-03-03 17:08:38 +01:00
inline CoordType & N()
{
2004-04-05 13:51:22 +02:00
#ifdef __VCGLIB_FACE_FN
2004-03-03 17:08:38 +01:00
return _n;
#else
assert(0);
return *(CoordType *)0;
#endif
}
2004-04-05 13:51:22 +02:00
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
2004-03-03 17:08:38 +01:00
inline const CoordType & N() const
{
2004-04-05 13:51:22 +02:00
#ifdef __VCGLIB_FACE_FN
2004-03-03 17:08:38 +01:00
return _n;
#else
return *(CoordType *)0;
2004-03-03 17:08:38 +01:00
#endif
}
2004-04-05 13:51:22 +02:00
/// Return the reference of the normal to the face (if __VCGLIB_FACE_FN is defined).
2004-03-03 17:08:38 +01:00
inline const CoordType cN() const
{
2004-04-05 13:51:22 +02:00
#ifdef __VCGLIB_FACE_FN
return _n;
#else
return *(CoordType *)0;
#endif
2004-03-03 17:08:38 +01:00
}
/// Calculate the normal to the face, the value is store in the field _n of the face
void ComputeNormal()
{
2004-04-05 13:51:22 +02:00
#ifdef __VCGLIB_FACE_FN
_n = vcg::Normal(*this);
2004-03-03 17:08:38 +01:00
#else
assert(0);
#endif
}
void ComputeNormalizedNormal()
{
2004-04-05 13:51:22 +02:00
#ifdef __VCGLIB_FACE_FN
2004-03-03 17:08:38 +01:00
_n = vcg::NormalizedNormal(V(0)->cP(), V(1)->cP(), V(2)->cP());
#else
assert(0);
#endif
}
/// Return the value of the face normal as it correspond to the current geometry.
/// it is always computed and never stored.
const CoordType Normal() const
2004-03-03 17:08:38 +01:00
{
return vcg::Normal(*this);
2004-03-03 17:08:38 +01:00
}
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_WN
/// This vector indicates per wedge normal
CoordType _wn[3];
#endif
2004-02-13 01:44:53 +01:00
public:
2004-03-03 17:08:38 +01:00
CoordType & WN(const int i)
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_WN
return _wn[i];
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(CoordType *)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
const CoordType & WN(const int i) const
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_WN
return _wn[i];
2004-02-13 01:44:53 +01:00
#else
2004-03-03 17:08:38 +01:00
return CoordType();
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
/***********************************************/
/** @name Quality
blah
blah
**/
//@{
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FQ
protected:
float _q;
2004-02-13 01:44:53 +01:00
#endif
public:
2004-03-03 17:08:38 +01:00
float & Q()
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FQ
return _q;
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(float*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
const float & Q() const
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FQ
return _q;
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(float*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
/***********************************************/
/** @name Texture
blah
blah
**/
//@{
2004-02-13 01:44:53 +01:00
// Per Wedge Texture Coords
protected:
#ifdef __VCGLIB_FACE_WT
2004-03-03 17:08:38 +01:00
TCTYPE _wt[3];
2004-02-13 01:44:53 +01:00
#endif
public:
TCTYPE & WT(const int i)
{
#ifdef __VCGLIB_FACE_WT
2004-03-03 17:08:38 +01:00
return _wt[i];
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(TCTYPE*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
const TCTYPE & WT(const int i) const
{
#ifdef __VCGLIB_FACE_WT
2004-03-03 17:08:38 +01:00
return _wt[i];
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(TCTYPE*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
/***********************************************/
/** @name Colors
blah
blah
**/
//@{
2004-02-13 01:44:53 +01:00
protected:
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FC
Color4b _c;
2004-02-13 01:44:53 +01:00
#endif
public:
2004-03-03 17:08:38 +01:00
Color4b & C()
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FC
return _c;
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(Color4b*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
const Color4b C() const
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_FC
return _c;
2004-02-13 01:44:53 +01:00
#else
2004-03-03 17:08:38 +01:00
return Color4b(Color4b::White);
2004-02-13 01:44:53 +01:00
#endif
}
protected:
#ifdef __VCGLIB_FACE_WC
2004-03-03 17:08:38 +01:00
Color4b _wc[3];
2004-02-13 01:44:53 +01:00
#endif
public:
2004-03-03 17:08:38 +01:00
Color4b & WC(const int i)
2004-02-13 01:44:53 +01:00
{
#ifdef __VCGLIB_FACE_WC
2004-03-03 17:08:38 +01:00
return _wc[i];
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(Color4b*)(&_flags);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
const Color4b WC(const int i) const
2004-02-13 01:44:53 +01:00
{
#ifdef __VCGLIB_FACE_WC
2004-03-03 17:08:38 +01:00
return _wc[i];
2004-02-13 01:44:53 +01:00
#else
assert(0);
2004-03-03 17:08:38 +01:00
return Color4b(Color4b::White);
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
/***********************************************/
/** @name Adjacency
blah
blah
**/
//@{
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
#if (defined(__VCGLIB_FACE_FA) && defined(__VCGLIB_FACE_SA))
2004-02-13 01:44:53 +01:00
#error Error: You cannot specify face-to-face and shared topology together
#endif
2004-03-03 17:08:38 +01:00
#if (defined(__VCGLIB_FACE_VA) && defined(__VCGLIB_FACE_SA))
2004-02-13 01:44:53 +01:00
#error Error: You cannot specify vertex-face and shared topology together
#endif
2004-03-03 17:08:38 +01:00
protected:
#if defined(__VCGLIB_FACE_FA)
/// Vector of face pointer, it's used to indicate the adjacency relations (defines if FACE_A is defined)
2004-02-13 01:44:53 +01:00
FACE_TYPE *ff[3]; // Facce adiacenti
/// Index of the face in the arrival face
char zf[4];
#endif
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_VA
2004-02-13 01:44:53 +01:00
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
FACE_TYPE *fv[3];
char zv[3];
#endif
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_SA
2004-02-13 01:44:53 +01:00
///Vettore di puntatori a faccia, utilizzato per indicare le adiacenze vertice faccia
FACE_TYPE *fs[3];
char zs[3];
#endif
public:
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
inline FACE_TYPE * & F( const int j )
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return ff[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0);
static FACE_TYPE *dum=0;
return dum;
#endif
}
inline const FACE_TYPE * const & F( const int j ) const
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return ff[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0);
return (FACE_TYPE *)this;
#endif
}
inline FACE_TYPE * & F1( const int j ) { return F((j+1)%3);}
inline FACE_TYPE * & F2( const int j ) { return F((j+2)%3);}
inline const FACE_TYPE * const& F1( const int j ) const { return F((j+1)%3);}
inline const FACE_TYPE * const& F2( const int j ) const { return F((j+2)%3);}
/** Return the pointer to the j-th adjacent face.
@param j Index of the edge.
*/
2004-03-03 17:08:38 +01:00
inline FACE_TYPE * & UberF( const int j )
2004-02-13 01:44:53 +01:00
{
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return ff[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
2004-03-03 17:08:38 +01:00
return *((FACE_TYPE **)(_flags));
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
inline const FACE_TYPE * const & UberF( const int j ) const
2004-02-13 01:44:53 +01:00
{
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return ff[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0); // if you stop here you are probably trying to use FF topology in a face without it
2004-03-03 17:08:38 +01:00
return *((FACE_TYPE **)(_flags));
2004-02-13 01:44:53 +01:00
#endif
}
inline FACE_TYPE * & Fv( const int j )
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#ifdef __VCGLIB_FACE_VA
2004-02-13 01:44:53 +01:00
return fv[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0); // you are probably trying to use VF topology in a vertex without it
2004-03-03 17:08:38 +01:00
return *((FACE_TYPE **)(_flags));
2004-02-13 01:44:53 +01:00
#endif
}
inline const FACE_TYPE * const & Fv( const int j ) const
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#ifdef __VCGLIB_FACE_VA
2004-02-13 01:44:53 +01:00
return fv[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return fs[j];
#else
assert(0);
return (FACE_TYPE *)this;
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
inline char & Z( const int j )
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return zf[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return zs[j];
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(char *)&_flags; // tanto per farlo compilare...
2004-02-13 01:44:53 +01:00
#endif
}
inline const char & Z( const int j ) const
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
2004-02-13 01:44:53 +01:00
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return zf[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return zs[j];
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(char *)&_flags;
2004-02-13 01:44:53 +01:00
#endif
}
/** Return the index that the face have in the j-th adjacent face.
@param j Index of the edge.
*/
2004-03-03 17:08:38 +01:00
inline char & UberZ( const int j )
2004-02-13 01:44:53 +01:00
{
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return zf[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return zs[j];
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(char *)&_flags;
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
inline const char & UberZ( const int j ) const
2004-02-13 01:44:53 +01:00
{
assert(j>=0);
2004-03-03 17:08:38 +01:00
assert(j<3);
#if defined(__VCGLIB_FACE_FA)
2004-02-13 01:44:53 +01:00
return zf[j];
2004-03-03 17:08:38 +01:00
#elif defined(__VCGLIB_FACE_SA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
inline char & Zv( const int j )
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_VA
return zv[j];
#elif defined(__VCGLIB_FACE_SA)
2004-02-13 01:44:53 +01:00
return zs[j];
#else
assert(0);
2004-03-03 17:08:38 +01:00
return *(char *)&_flags;
#endif
}
inline const char & Zv( const int j ) const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert(j>=0);
assert(j<3);
#ifdef __VCGLIB_FACE_VA
return zv[j];
#elif defined(__VCGLIB_FACE_SA)
return zs[j];
#else
assert(0);
return *(char *)&_flags;
#endif
}
//@}
/***********************************************/
/** @name Mark
blah
blah
**/
//@{
#ifdef __VCGLIB_FACE_FM
/// Incremental mark (defines if FACE_I is defined)
int imark;
inline int & IMark()
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
assert( (_flags & NOTWRITE) == 0 );
return imark;
}
inline const int & IMark() const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return imark;
}
#endif // Mark
/// Initialize the imark system of the face
inline void InitIMark()
{
2004-05-04 04:46:23 +02:00
#ifdef __VCGLIB_FACE_FM
2004-03-03 17:08:38 +01:00
imark = 0;
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
/***********************************************/
/** @name Flags
blah
blah
**/
//@{
enum {
// This bit indicate that the face is deleted from the mesh
DELETED = 0x00000001, // cancellato
// This bit indicate that the face of the mesh is not readable
NOTREAD = 0x00000002, // non leggibile (ma forse modificabile)
// This bit indicate that the face is not modifiable
NOTWRITE = 0x00000004, // non modificabile (ma forse leggibile)
// This bit indicate that the face is modified
SELECTED = 0x00000020, // Selection _flags
// Border _flags, it is assumed that BORDERi = BORDER0<<i
BORDER0 = 0x00000040,
BORDER1 = 0x00000080,
BORDER2 = 0x00000100,
// Face Orientation Flags, used efficiently compute point face distance
NORMX = 0x00000200,
NORMY = 0x00000400,
NORMZ = 0x00000800,
// Crease _flags, it is assumed that FEATUREi = FEATURE0<<i
FEATURE0 = 0x00008000,
FEATURE1 = 0x00010000,
FEATURE2 = 0x00020000,
// First user bit
USER0 = 0x00040000
};
public:
static int &LastBitFlag()
{
static int b =USER0;
return b;
}
static inline int NewBitFlag()
{
LastBitFlag()=LastBitFlag()<<1;
return LastBitFlag();
}
static inline bool DeleteBitFlag(int bitval)
{
if(LastBitFlag()==bitval) {
LastBitFlag()= LastBitFlag()>>1;
return true;
}
assert(0);
return false;
}
void ClearFlags() {_flags=0;}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
/// Return the _flags.
inline int & Flags ()
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
2004-02-13 01:44:53 +01:00
}
2004-03-03 17:08:38 +01:00
inline const int & Flags () const
{
assert( (_flags & DELETED) == 0 );
assert( (_flags & NOTREAD) == 0 );
return _flags;
2004-02-13 01:44:53 +01:00
}
2004-03-03 17:08:38 +01:00
/// Ritorna il _flags senza effettuare alcun controllo sui relativi bit
inline int & UberFlags()
{
return _flags;
2004-02-13 01:44:53 +01:00
}
2004-03-03 17:08:38 +01:00
inline const int UberFlags() const
{
return _flags;
2004-02-13 01:44:53 +01:00
}
/// This function checks if the face is deleted
2004-03-03 17:08:38 +01:00
bool IsD() const {return (_flags & DELETED) != 0;}
2004-02-13 01:44:53 +01:00
/// This function mark the face as deleted
2004-03-03 17:08:38 +01:00
void SetD() {_flags |=DELETED;}
2004-02-13 01:44:53 +01:00
/// This function mark the face as not deleted
2004-03-03 17:08:38 +01:00
void ClearD() {_flags &= (~DELETED);}
2004-02-13 01:44:53 +01:00
/// This function checks if the face is deleted
bool IsDeleted() const {return IsD();}
/// This function checks if the face is readable
2004-03-03 17:08:38 +01:00
bool IsR() const {return (_flags & NOTREAD) == 0;}
2004-02-13 01:44:53 +01:00
/// This function marks the face as readable
2004-03-03 17:08:38 +01:00
void SetR() {_flags &= (~NOTREAD);}
2004-02-13 01:44:53 +01:00
/// This function marks the face as not readable
2004-03-03 17:08:38 +01:00
void ClearR() {_flags |=NOTREAD;}
2004-02-13 01:44:53 +01:00
/// This function checks if the face is readable
2004-03-03 17:08:38 +01:00
bool IsW() const {return (_flags & NOTWRITE)== 0;}
2004-02-13 01:44:53 +01:00
/// This function marks the vertex as not writable
2004-03-03 17:08:38 +01:00
void SetW() {_flags &=(~NOTWRITE);}
2004-02-13 01:44:53 +01:00
/// This function marks the face as not writable
2004-03-03 17:08:38 +01:00
void ClearW() {_flags |=NOTWRITE;}
2004-02-13 01:44:53 +01:00
/// This funcion checks whether the face is both readable and modifiable
2004-03-03 17:08:38 +01:00
bool IsRW() const {return (_flags & (NOTREAD | NOTWRITE)) == 0;}
2004-02-13 01:44:53 +01:00
/// This function checks if the face is selected
2004-03-03 17:08:38 +01:00
bool IsS() const {return (_flags & SELECTED) != 0;}
2004-02-13 01:44:53 +01:00
/// This function select the face
2004-03-03 17:08:38 +01:00
void SetS() {_flags |=SELECTED;}
2004-02-13 01:44:53 +01:00
/// This funcion execute the inverse operation of SetS()
2004-03-03 17:08:38 +01:00
void ClearS() {_flags &= (~SELECTED);}
2004-02-13 01:44:53 +01:00
/// This function checks if the face is selected
2004-03-03 17:08:38 +01:00
bool IsB(int i) const {return (_flags & (BORDER0<<i)) != 0;}
2004-02-13 01:44:53 +01:00
/// This function select the face
2004-03-03 17:08:38 +01:00
void SetB(int i) {_flags |=(BORDER0<<i);}
2004-02-13 01:44:53 +01:00
/// This funcion execute the inverse operation of SetS()
2004-03-03 17:08:38 +01:00
void ClearB(int i) {_flags &= (~(BORDER0<<i));}
2004-02-13 01:44:53 +01:00
/// This function checks if the face is Crease on side i
2004-03-03 17:08:38 +01:00
bool IsFF(int i) const {return (_flags & (FEATURE0<<i)) != 0;}
2004-02-13 01:44:53 +01:00
/// This function select the face flag
2004-03-03 17:08:38 +01:00
void SetFF(int i) {_flags |=(FEATURE0<<i);}
2004-02-13 01:44:53 +01:00
/// This funcion execute the inverse operation of Set()
2004-03-03 17:08:38 +01:00
void ClearFF(int i) {_flags &= (~(FEATURE0<<i));}
2004-02-13 01:44:53 +01:00
/// This function checks if the given user bit is true
2004-03-03 17:08:38 +01:00
bool IsUserBit(int userBit){return (_flags & userBit) != 0;}
2004-02-13 01:44:53 +01:00
/// This function set the given user bit
2004-03-03 17:08:38 +01:00
void SetUserBit(int userBit){_flags |=userBit;}
2004-02-13 01:44:53 +01:00
/// This function clear the given user bit
2004-03-03 17:08:38 +01:00
void ClearUserBit(int userBit){_flags &= (~userBit);}
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
//@}
2004-02-13 01:44:53 +01:00
/*#*******************
2004-03-03 17:08:38 +01:00
* Bounding box *
2004-02-13 01:44:53 +01:00
**********************/
2004-03-03 17:08:38 +01:00
void GetBBox( BoxType & bb )
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
bb.Set( v[0]->P() );
bb.Add( v[1]->P() );
bb.Add( v[2]->P() );
}
/***********************************************/
/** @name Reflection Functions
Static functions that give information about the current vertex type.
Reflection is a mechanism making it possible to investigate yourself. Reflection is used to investigate format of objects at runtime, invoke methods and access fields of these objects. Here we provide static const functions that are resolved at compile time and they give information about the data (normal, color etc.) supported by the current vertex type.
**/
//@{
static bool HasFaceNormal() {
#ifdef __VCGLIB_FACE_FN
return true;
2004-02-13 01:44:53 +01:00
#else
2004-03-03 17:08:38 +01:00
return false;
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
static bool HasFaceQuality() {
#ifdef __VCGLIB_FACE_FQ
return true;
2004-02-13 01:44:53 +01:00
#else
2004-03-03 17:08:38 +01:00
return false;
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
static bool HasFaceColor() {
#ifdef __VCGLIB_FACE_FC
return true;
2004-02-13 01:44:53 +01:00
#else
2004-03-03 17:08:38 +01:00
return false;
#endif
}
static bool HasFFAdjacency() {
#if (defined(__VCGLIB_FACE_FA) || defined(__VCGLIB_FACE_SA))
2004-03-03 17:08:38 +01:00
return true;
#else
return false;
#endif
}
static bool HasVFAdjacency() {
#if (defined(__VCGLIB_FACE_VA) || defined(__VCGLIB_FACE_SA))
2004-03-03 17:08:38 +01:00
return true;
#else
return false;
#endif
}
static bool HasSharedAdjacency() {
#if defined(__VCGLIB_FACE_SA)
return true;
#else
return false;
#endif
}
static bool HasFaceMark() {
#ifdef __VCGLIB_FACE_FC
return true;
#else
return false;
#endif
}
static bool HasWedgeColor() {
#ifdef __VCGLIB_FACE_WC
return true;
#else
return false;
#endif
}
static bool HasWedgeTexture() {
#ifdef __VCGLIB_FACE_WT
return true;
#else
return false;
#endif
}
static bool HasWedgeNormal() {
#ifdef __VCGLIB_FACE_WN
return true;
#else
return false;
2004-02-13 01:44:53 +01:00
#endif
}
2004-03-03 17:08:38 +01:00
//@}
/// operator to compare two faces
inline bool operator == ( const FACE_TYPE & f ) const {
for(int i=0; i<3; ++i)
if( (V(i) != f.V(0)) && (V(i) != f.V(1)) && (V(i) != f.V(2)) )
return false;
return true;
}
2004-02-13 01:44:53 +01:00
/** Calcola i coefficienti della combinazione convessa.
@param bq Punto appartenente alla faccia
@param a Valore di ritorno per il vertice V(0)
@param b Valore di ritorno per il vertice V(1)
2004-03-03 17:08:38 +01:00
@param _c Valore di ritorno per il vertice V(2)
2004-02-13 01:44:53 +01:00
@return true se bq appartiene alla faccia, false altrimenti
*/
2004-03-03 17:08:38 +01:00
bool InterpolationParameters(const CoordType & bq, ScalarType &a, ScalarType &b, ScalarType &_c ) const
{
const ScalarType EPSILON = ScalarType(0.000001);
2004-02-13 01:44:53 +01:00
2004-05-04 04:46:23 +02:00
#define x1 (cV(0)->P()[0])
#define y1 (cV(0)->P()[1])
#define z1 (cV(0)->P()[2])
#define x2 (cV(1)->P()[0])
#define y2 (cV(1)->P()[1])
#define z2 (cV(1)->P()[2])
#define x3 (cV(2)->P()[0])
#define y3 (cV(2)->P()[1])
#define z3 (cV(2)->P()[2])
#define px (bq[0])
#define py (bq[1])
#define pz (bq[2])
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
ScalarType t1 = px*y2;
ScalarType t2 = px*y3;
ScalarType t3 = py*x2;
ScalarType t4 = py*x3;
ScalarType t5 = x2*y3;
ScalarType t6 = x3*y2;
ScalarType t8 = x1*y2;
ScalarType t9 = x1*y3;
ScalarType t10 = y1*x2;
ScalarType t11 = y1*x3;
ScalarType t13 = t8-t9-t10+t11+t5-t6;
2004-02-13 01:44:53 +01:00
if(fabs(t13)>=EPSILON)
{
2004-03-03 17:08:38 +01:00
ScalarType t15 = px*y1;
ScalarType t16 = py*x1;
2004-02-13 01:44:53 +01:00
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
2004-03-03 17:08:38 +01:00
_c = (t15-t1-t16+t3+t8-t10)/t13;
2004-02-13 01:44:53 +01:00
return true;
}
t1 = px*z2;
t2 = px*z3;
t3 = pz*x2;
t4 = pz*x3;
t5 = x2*z3;
t6 = x3*z2;
t8 = x1*z2;
t9 = x1*z3;
t10 = z1*x2;
t11 = z1*x3;
t13 = t8-t9-t10+t11+t5-t6;
if(fabs(t13)>=EPSILON)
{
2004-03-03 17:08:38 +01:00
ScalarType t15 = px*z1;
ScalarType t16 = pz*x1;
2004-02-13 01:44:53 +01:00
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
2004-03-03 17:08:38 +01:00
_c = (t15-t1-t16+t3+t8-t10)/t13;
2004-02-13 01:44:53 +01:00
return true;
}
t1 = pz*y2; t2 = pz*y3;
t3 = py*z2; t4 = py*z3;
t5 = z2*y3; t6 = z3*y2;
t8 = z1*y2; t9 = z1*y3;
t10 = y1*z2; t11 = y1*z3;
t13 = t8-t9-t10+t11+t5-t6;
if(fabs(t13)>=EPSILON)
{
2004-03-03 17:08:38 +01:00
ScalarType t15 = pz*y1;
ScalarType t16 = py*z1;
2004-02-13 01:44:53 +01:00
a = (t1 -t2-t3 +t4+t5-t6 )/t13;
b = -(t15-t2-t16+t4+t9-t11)/t13;
2004-03-03 17:08:38 +01:00
_c = (t15-t1-t16+t3+t8-t10)/t13;
2004-02-13 01:44:53 +01:00
return true;
}
#undef x1
#undef y1
#undef z1
#undef x2
#undef y2
#undef z2
#undef x3
#undef y3
#undef z3
#undef px
#undef py
#undef pz
return false;
}
/// Return the DOUBLE of the area of the face
2004-03-03 17:08:38 +01:00
ScalarType Area() const
2004-02-13 01:44:53 +01:00
{
return Norm( (V(1)->P() - V(0)->P()) ^ (V(2)->P() - V(0)->P()) );
}
2004-03-03 17:08:38 +01:00
CoordType Barycenter() const
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
return (V(0)->P()+V(1)->P()+V(2)->P())/ScalarType(3.0);
2004-02-13 01:44:53 +01:00
}
2004-03-03 17:08:38 +01:00
ScalarType Perimeter() const
2004-02-13 01:44:53 +01:00
{
return Distance(V(0)->P(),V(1)->P())+
Distance(V(1)->P(),V(2)->P())+
Distance(V(2)->P(),V(0)->P());
}
2004-03-03 17:08:38 +01:00
/// Return the _q of the face, the return value is in [0,sqrt(3)/2] = [0 - 0.866.. ]
ScalarType QualityFace( ) const
2004-02-13 01:44:53 +01:00
{
return Quality(V(0)->P(), V(1)->P(), V(2)->P());
/*
2004-03-03 17:08:38 +01:00
CoordType d10 = V(1)->P() - V(0)->P();
CoordType d20 = V(2)->P() - V(0)->P();
CoordType d12 = V(1)->P() - V(2)->P();
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
CoordType x = d10^d20;
2004-02-13 01:44:53 +01:00
2004-03-03 17:08:38 +01:00
ScalarType a = Norm( x ); // doppio dell' Area
ScalarType b;
2004-02-13 01:44:53 +01:00
b = Norm2( d10 );
2004-03-03 17:08:38 +01:00
ScalarType t = b;
2004-02-13 01:44:53 +01:00
t = Norm2( d20 ); if( b<t ) b = t;
t = Norm2( d12 ); if( b<t ) b = t;
assert(b!=0.0);
return a/b;*/
}
// Funzione di supporto
2004-03-03 17:08:38 +01:00
inline void Nexts( BaseFaceType *&f,int &z )
2004-02-13 01:44:53 +01:00
{
int t;
t = z;
z = (*f).Z(z);
f = (*f).F(t);
}
/** This function change the orientation of the face. Inverting the index of two vertex
@param z Index of the edge
*/
void Swap ( const int z )
{
int i;
2004-03-03 17:08:38 +01:00
BaseFaceType *tmp, *prec;
2004-02-13 01:44:53 +01:00
int t, precz;
swap ( V((z )%3),V((z+1)%3));
if( OBJ_TYPE & (OBJ_TYPE_A|OBJ_TYPE_S ) )
{
swap ( F((z+1)%3),F((z+2)%3));
swap ( Z((z+1)%3),Z((z+2)%3));
for(i = 1; i < 3; i++)
{
tmp = this;
t = (z+i)%3;
do {
prec = tmp;
precz = t;
Nexts(tmp,t);
}
while (tmp != this);
(*prec).Z(precz) = (z+i)%3;
}
}
}
2004-03-03 17:08:38 +01:00
// Sezione dist e ray
#ifdef __VCGLIB_FACE_RT
CoordType edge[3];
Plane3<ScalarType> plane;
2004-02-13 01:44:53 +01:00
#endif
2004-03-03 17:08:38 +01:00
void ComputeRT()
2004-02-13 01:44:53 +01:00
{
2004-03-03 17:08:38 +01:00
#ifdef __VCGLIB_FACE_RT
2004-02-13 01:44:53 +01:00
// Primo calcolo degli edges
edge[0] = V(1)->P(); edge[0] -= V(0)->P();
edge[1] = V(2)->P(); edge[1] -= V(1)->P();
edge[2] = V(0)->P(); edge[2] -= V(2)->P();
// Calcolo di plane
2004-05-04 04:46:23 +02:00
plane.SetDirection(edge[0]^edge[1]);
plane.SetOffset(plane.Direction() * V(0)->P());
2004-02-13 01:44:53 +01:00
plane.Normalize();
// Calcolo migliore proiezione
2004-05-04 04:46:23 +02:00
ScalarType nx = math::Abs(plane.Direction()[0]);
ScalarType ny = math::Abs(plane.Direction()[1]);
ScalarType nz = math::Abs(plane.Direction()[2]);
2004-03-03 17:08:38 +01:00
ScalarType d;
2004-05-04 04:46:23 +02:00
if(nx>ny && nx>nz) { _flags |= NORMX; d = 1/plane.Direction()[0]; }
else if(ny>nz) { _flags |= NORMY; d = 1/plane.Direction()[1]; }
else { _flags |= NORMZ; d = 1/plane.Direction()[2]; }
2004-02-13 01:44:53 +01:00
// Scalatura spigoli
edge[0] *= d;
edge[1] *= d;
edge[2] *= d;
#endif
2004-03-03 17:08:38 +01:00
}
2004-05-04 04:46:23 +02:00
/*
Point face distance
trova il punto <p> sulla faccia piu' vicino a <q>, con possibilit<EFBFBD> di
rejection veloce su se la distanza trovata <EFBFBD> maggiore di <rejdist>
Commenti del 12/11/02
Funziona solo se la faccia e di quelle di tipo E (con edge e piano per faccia gia' calcolati)
algoritmo:
1) si calcola la proiezione <p> di q sul piano della faccia
2) se la distanza punto piano e' > rejdist ritorna
3) si lavora sul piano migliore e si cerca di capire se il punto sta dentro il triangolo:
a) prodotto vettore tra edge triangolo (v[i+1]-v[i]) e (p-v[i])
b) se il risultato e' negativo (gira in senso orario) allora il punto
sta fuori da quella parte e si fa la distanza punto segmento.
c) se il risultato sempre positivo allora sta dentro il triangolo
4) e si restituisce la distanza punto /piano gia` calcolata
Note sulla robustezza:
il calcolo del prodotto vettore e` la cosa piu` delicata:
possibili fallimenti quando a^b ~= 0
1) doveva essere <= 0 e viene positivo (q era fuori o sulla linea dell'edge)
allora capita che si faccia la distanza punto piano anziche` la distanza punto seg
2) doveva essere > 0 e viene <=0 (q era dentro il triangolo)
*/
bool Dist( const Point3<ScalarType> & q, ScalarType & dist, Point3<ScalarType> & p )
{
#ifdef __VCGLIB_FACE_RT
//const ScalarType EPSILON = ScalarType( 0.000001);
const ScalarType EPSILON = 0.00000001;
ScalarType b,b0,b1,b2;
// Calcolo distanza punto piano
ScalarType d = Distance( plane, q );
if( d>dist || d<-dist ) // Risultato peggiore: niente di fatto
return false;
// Calcolo del punto sul piano
// NOTA: aggiunto un '-d' in fondo Paolo C.
Point3<ScalarType> t = plane.Direction();
t[0] *= -d;
t[1] *= -d;
t[2] *= -d;
p = q; p += t;
#define PP(i) (v[i]->cP())
#define E(i) (edge[i])
switch( _flags & (NORMX|NORMY|NORMZ) )
{
case NORMX:
b0 = E(1)[1]*(p[2] - PP(1)[2]) - E(1)[2]*(p[1] - PP(1)[1]);
if(b0<=0)
{
b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = E(2)[1]*(p[2] - PP(2)[2]) - E(2)[2]*(p[1] - PP(2)[1]);
if(b1<=0)
{
b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = E(0)[1]*(p[2] - PP(0)[2]) - E(0)[2]*(p[1] - PP(0)[1]);
if(b2<=0)
{
b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
// sono tutti e tre > 0 quindi dovrebbe essere dentro;
// per sicurezza se il piu' piccolo dei tre e' < epsilon (scalato rispetto all'area della faccia
// per renderlo dimension independent.) allora si usa ancora la distanza punto
// segmento che e' piu robusta della punto piano, e si fa dalla parte a cui siamo piu'
// vicini (come prodotto vettore)
// Nota: si potrebbe rendere un pochino piu' veloce sostituendo Area()
// con il prodotto vettore dei due edge in 2d lungo il piano migliore.
if( (b=min(b0,min(b1,b2))) < EPSILON*Area())
{
ScalarType bt;
if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p);
else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p);
else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p);
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case NORMY:
b0 = E(1)[2]*(p[0] - PP(1)[0]) - E(1)[0]*(p[2] - PP(1)[2]);
if(b0<=0)
{
b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = E(2)[2]*(p[0] - PP(2)[0]) - E(2)[0]*(p[2] - PP(2)[2]);
if(b1<=0)
{
b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = E(0)[2]*(p[0] - PP(0)[0]) - E(0)[0]*(p[2] - PP(0)[2]);
if(b2<=0)
{
b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=min(b0,min(b1,b2))) < EPSILON*Area())
{
ScalarType bt;
if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p);
else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p);
else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p);
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
case NORMZ:
b0 = E(1)[0]*(p[1] - PP(1)[1]) - E(1)[1]*(p[0] - PP(1)[0]);
if(b0<=0)
{
b0 = PSDist(q,V(1)->cP(),V(2)->cP(),p);
if(dist>b0) { dist = b0; return true; }
else return false;
}
b1 = E(2)[0]*(p[1] - PP(2)[1]) - E(2)[1]*(p[0] - PP(2)[0]);
if(b1<=0)
{
b1 = PSDist(q,V(2)->cP(),V(0)->cP(),p);
if(dist>b1) { dist = b1; return true; }
else return false;
}
b2 = E(0)[0]*(p[1] - PP(0)[1]) - E(0)[1]*(p[0] - PP(0)[0]);
if(b2<=0)
{
b2 = PSDist(q,V(0)->cP(),V(1)->cP(),p);
if(dist>b2) { dist = b2; return true; }
else return false;
}
if( (b=min(b0,min(b1,b2))) < EPSILON*Area())
{
ScalarType bt;
if(b==b0) bt = PSDist(q,V(1)->cP(),V(2)->cP(),p);
else if(b==b1) bt = PSDist(q,V(2)->cP(),V(0)->cP(),p);
else if(b==b2) bt = PSDist(q,V(0)->cP(),V(1)->cP(),p);
//printf("Warning area:%g %g %g %g thr:%g bt:%g\n",Area(), b0,b1,b2,EPSILON*Area(),bt);
if(dist>bt) { dist = bt; return true; }
else return false;
}
break;
}
#undef E
#undef PP
dist = ScalarType(fabs(d));
//dist = Distance(p,q);
#endif
return true;
}
2004-02-13 01:44:53 +01:00
/// return the index [0..2] of a vertex in a face
inline int VertexIndex( const FVTYPE * w ) const
{
if( v[0]==w ) return 0;
else if( v[1]==w ) return 1;
else if( v[2]==w ) return 2;
else return -1;
}
}; //end Class
} // end namespace
#endif