2011-04-01 18:25:49 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright ( C ) 2004 \ / ) \ / *
* Visual Computing Lab / \ / | *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved . *
* *
* This program is free software ; you can redistribute it and / or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation ; either version 2 of the License , or *
* ( at your option ) any later version . *
* *
* This program is distributed in the hope that it will be useful , *
* but WITHOUT ANY WARRANTY ; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the *
* GNU General Public License ( http : //www.gnu.org/licenses/gpl.txt) *
* for more details . *
* *
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/****************************************************************************
The sampling Class has a set of static functions , that you can call to sample the surface of a mesh .
Each function is templated on the mesh and on a Sampler object s .
Each function calls many time the sample object with the sampling point as parameter .
Sampler Classes and Sampling algorithms are independent .
Sampler classes exploits the sample that are generated with various algorithms .
For example , you can compute Hausdorff distance ( that is a sampler ) using various
sampling strategies ( montecarlo , stratified etc ) .
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
# ifndef __VCGLIB_POINT_SAMPLING
# define __VCGLIB_POINT_SAMPLING
# include <vcg/math/random_generator.h>
2011-04-01 19:06:03 +02:00
# include <vcg/complex/algorithms/closest.h>
2011-04-01 18:25:49 +02:00
# include <vcg/space/index/spatial_hashing.h>
2011-04-01 19:06:03 +02:00
# include <vcg/complex/algorithms/stat.h>
# include <vcg/complex/algorithms/update/topology.h>
# include <vcg/complex/algorithms/update/normal.h>
# include <vcg/complex/algorithms/update/flag.h>
2011-04-01 18:25:49 +02:00
# include <vcg/space/box2.h>
# include <vcg/space/segment2.h>
namespace vcg
{
namespace tri
{
/// Trivial Sampler, an example sampler object that show the required interface used by the sampling class.
/// Most of the sampling classes call the AddFace method with the face containing the sample and its barycentric coord.
/// Beside being an example of how to write a sampler it provides a simple way to use the various sampling classes.
// For example if you just want to get a vector with positions over the surface You have just to write
//
// vector<Point3f> myVec;
// TrivialSampler<MyMesh> ts(myVec)
// SurfaceSampling<MyMesh, TrivialSampler<MyMesh> >::Montecarlo(M, ts, SampleNum);
//
//
template < class MeshType >
class TrivialSampler
{
public :
typedef typename MeshType : : CoordType CoordType ;
typedef typename MeshType : : VertexType VertexType ;
typedef typename MeshType : : FaceType FaceType ;
TrivialSampler ( )
{
sampleVec = new std : : vector < CoordType > ( ) ;
vectorOwner = true ;
} ;
TrivialSampler ( std : : vector < CoordType > & Vec )
{
sampleVec = & Vec ;
sampleVec - > clear ( ) ;
vectorOwner = false ;
} ;
~ TrivialSampler ( )
{
if ( vectorOwner ) delete sampleVec ;
}
private :
std : : vector < CoordType > * sampleVec ;
bool vectorOwner ;
public :
void AddVert ( const VertexType & p )
{
sampleVec - > push_back ( p . cP ( ) ) ;
}
void AddFace ( const FaceType & f , const CoordType & p )
{
sampleVec - > push_back ( f . P ( 0 ) * p [ 0 ] + f . P ( 1 ) * p [ 1 ] + f . P ( 2 ) * p [ 2 ] ) ;
}
void AddTextureSample ( const FaceType & , const CoordType & , const Point2i & , float )
{
// Retrieve the color of the sample from the face f using the barycentric coord p
// and write that color in a texture image at position <tp[0], texHeight-tp[1]>
// if edgeDist is > 0 then the corrisponding point is affecting face color even if outside the face area (in texture space)
}
} ; // end class TrivialSampler
template < class MetroMesh , class VertexSampler >
class SurfaceSampling
{
typedef typename MetroMesh : : CoordType CoordType ;
typedef typename MetroMesh : : ScalarType ScalarType ;
typedef typename MetroMesh : : VertexType VertexType ;
typedef typename MetroMesh : : VertexPointer VertexPointer ;
typedef typename MetroMesh : : VertexIterator VertexIterator ;
typedef typename MetroMesh : : FacePointer FacePointer ;
typedef typename MetroMesh : : FaceIterator FaceIterator ;
typedef typename MetroMesh : : FaceType FaceType ;
typedef typename MetroMesh : : FaceContainer FaceContainer ;
typedef typename vcg : : SpatialHashTable < FaceType , ScalarType > MeshSHT ;
typedef typename vcg : : SpatialHashTable < FaceType , ScalarType > : : CellIterator MeshSHTIterator ;
typedef typename vcg : : SpatialHashTable < VertexType , ScalarType > MontecarloSHT ;
typedef typename vcg : : SpatialHashTable < VertexType , ScalarType > : : CellIterator MontecarloSHTIterator ;
typedef typename vcg : : SpatialHashTable < VertexType , ScalarType > SampleSHT ;
typedef typename vcg : : SpatialHashTable < VertexType , ScalarType > : : CellIterator SampleSHTIterator ;
public :
static math : : MarsenneTwisterRNG & SamplingRandomGenerator ( )
{
static math : : MarsenneTwisterRNG rnd ;
return rnd ;
}
// Returns an integer random number in the [0,i-1] interval using the improve Marsenne-Twister method.
static unsigned int RandomInt ( unsigned int i )
{
return ( SamplingRandomGenerator ( ) . generate ( 0 ) % i ) ;
}
// Returns a random number in the [0,1) real interval using the improved Marsenne-Twister method.
static double RandomDouble01 ( )
{
return SamplingRandomGenerator ( ) . generate01 ( ) ;
}
// Returns a random number in the [0,1] real interval using the improved Marsenne-Twister.
static double RandomDouble01closed ( )
{
return SamplingRandomGenerator ( ) . generate01closed ( ) ;
}
# define FAK_LEN 1024
static double LnFac ( int n ) {
// Tabled log factorial function. gives natural logarithm of n!
// define constants
static const double // coefficients in Stirling approximation
C0 = 0.918938533204672722 , // ln(sqrt(2*pi))
C1 = 1. / 12. ,
C3 = - 1. / 360. ;
// C5 = 1./1260., // use r^5 term if FAK_LEN < 50
// C7 = -1./1680.; // use r^7 term if FAK_LEN < 20
// static variables
static double fac_table [ FAK_LEN ] ; // table of ln(n!):
static bool initialized = false ; // remember if fac_table has been initialized
if ( n < FAK_LEN ) {
if ( n < = 1 ) {
if ( n < 0 ) assert ( 0 ) ; //("Parameter negative in LnFac function");
return 0 ;
}
if ( ! initialized ) { // first time. Must initialize table
// make table of ln(n!)
double sum = fac_table [ 0 ] = 0. ;
for ( int i = 1 ; i < FAK_LEN ; i + + ) {
sum + = log ( double ( i ) ) ;
fac_table [ i ] = sum ;
}
initialized = true ;
}
return fac_table [ n ] ;
}
// not found in table. use Stirling approximation
double n1 , r ;
n1 = n ; r = 1. / n1 ;
return ( n1 + 0.5 ) * log ( n1 ) - n1 + C0 + r * ( C1 + r * r * C3 ) ;
}
static int PoissonRatioUniforms ( double L ) {
/*
This subfunction generates a integer with the poisson
distribution using the ratio - of - uniforms rejection method ( PRUAt ) .
This approach is STABLE even for large L ( e . g . it does not suffer from the overflow limit of the classical Knuth implementation )
Execution time does not depend on L , except that it matters whether
is within the range where ln ( n ! ) is tabulated .
Reference :
E . Stadlober
" The ratio of uniforms approach for generating discrete random variates " .
Journal of Computational and Applied Mathematics ,
vol . 31 , no . 1 , 1990 , pp . 181 - 189.
Partially adapted / inspired from some subfunctions of the Agner Fog stocc library ( www . agner . org / random )
Same licensing scheme .
*/
// constants
const double SHAT1 = 2.943035529371538573 ; // 8/e
const double SHAT2 = 0.8989161620588987408 ; // 3-sqrt(12/e)
double u ; // uniform random
double lf ; // ln(f(x))
double x ; // real sample
int k ; // integer sample
double pois_a = L + 0.5 ; // hat center
int mode = ( int ) L ; // mode
double pois_g = log ( L ) ;
double pois_f0 = mode * pois_g - LnFac ( mode ) ; // value at mode
double pois_h = sqrt ( SHAT1 * ( L + 0.5 ) ) + SHAT2 ; // hat width
double pois_bound = ( int ) ( pois_a + 6.0 * pois_h ) ; // safety-bound
while ( 1 ) {
u = RandomDouble01 ( ) ;
if ( u = = 0 ) continue ; // avoid division by 0
x = pois_a + pois_h * ( RandomDouble01 ( ) - 0.5 ) / u ;
if ( x < 0 | | x > = pois_bound ) continue ; // reject if outside valid range
k = ( int ) ( x ) ;
lf = k * pois_g - LnFac ( k ) - pois_f0 ;
if ( lf > = u * ( 4.0 - u ) - 3.0 ) break ; // quick acceptance
if ( u * ( u - lf ) > 1.0 ) continue ; // quick rejection
if ( 2.0 * log ( u ) < = lf ) break ; // final acceptance
}
return k ;
}
/**
algorithm poisson random number ( Knuth ) :
init :
Let L ← e ^ − λ , k ← 0 and p ← 1.
do :
k ← k + 1.
Generate uniform random number u in [ 0 , 1 ] and let p ← p × u .
while p > L .
return k − 1.
*/
static int Poisson ( double lambda )
{
if ( lambda > 50 ) return PoissonRatioUniforms ( lambda ) ;
double L = exp ( - lambda ) ;
int k = 0 ;
double p = 1.0 ;
do
{
k = k + 1 ;
p = p * RandomDouble01 ( ) ;
} while ( p > L ) ;
return k - 1 ;
}
static void AllVertex ( MetroMesh & m , VertexSampler & ps )
{
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
{
if ( ! ( * vi ) . IsD ( ) )
{
ps . AddVert ( * vi ) ;
}
}
}
/// Sample the vertices in a weighted way. Each vertex has a probability of being chosen
/// that is proportional to its quality.
/// It assumes that you are asking a number of vertices smaller than nv;
/// Algorithm:
/// 1) normalize quality so that sum q == 1;
/// 2) shuffle vertices.
/// 3) for each vertices choose it if rand > thr;
static void VertexWeighted ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
ScalarType qSum = 0 ;
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) )
qSum + = ( * vi ) . Q ( ) ;
ScalarType samplePerUnit = sampleNum / qSum ;
ScalarType floatSampleNum = 0 ;
std : : vector < VertexPointer > vertVec ;
FillAndShuffleVertexPointerVector ( m , vertVec ) ;
std : : vector < bool > vertUsed ( m . vn , false ) ;
int i = 0 ; int cnt = 0 ;
while ( cnt < sampleNum )
{
if ( vertUsed [ i ] )
{
floatSampleNum + = vertVec [ i ] - > Q ( ) * samplePerUnit ;
int vertSampleNum = ( int ) floatSampleNum ;
floatSampleNum - = ( float ) vertSampleNum ;
// for every sample p_i in T...
if ( vertSampleNum > 1 )
{
ps . AddVert ( * vertVec [ i ] ) ;
cnt + + ;
vertUsed [ i ] = true ;
}
}
i = ( i + 1 ) % m . vn ;
}
}
/// Sample the vertices in a uniform way. Each vertex has a probability of being chosen
/// that is proportional to the area it represent.
static void VertexAreaUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) )
( * vi ) . Q ( ) = 0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
{
ScalarType areaThird = DoubleArea ( * fi ) / 6.0 ;
2011-04-08 16:28:00 +02:00
( * fi ) . V ( 0 ) - > Q ( ) + = areaThird ;
( * fi ) . V ( 1 ) - > Q ( ) + = areaThird ;
( * fi ) . V ( 2 ) - > Q ( ) + = areaThird ;
2011-04-01 18:25:49 +02:00
}
VertexWeighted ( m , ps , sampleNum ) ;
}
static void FillAndShuffleFacePointerVector ( MetroMesh & m , std : : vector < FacePointer > & faceVec )
{
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) ) faceVec . push_back ( & * fi ) ;
assert ( ( int ) faceVec . size ( ) = = m . fn ) ;
unsigned int ( * p_myrandom ) ( unsigned int ) = RandomInt ;
std : : random_shuffle ( faceVec . begin ( ) , faceVec . end ( ) , p_myrandom ) ;
}
static void FillAndShuffleVertexPointerVector ( MetroMesh & m , std : : vector < VertexPointer > & vertVec )
{
VertexIterator vi ;
for ( vi = m . vert . begin ( ) ; vi ! = m . vert . end ( ) ; + + vi )
if ( ! ( * vi ) . IsD ( ) ) vertVec . push_back ( & * vi ) ;
assert ( ( int ) vertVec . size ( ) = = m . vn ) ;
unsigned int ( * p_myrandom ) ( unsigned int ) = RandomInt ;
std : : random_shuffle ( vertVec . begin ( ) , vertVec . end ( ) , p_myrandom ) ;
}
/// Sample the vertices in a uniform way. Each vertex has the same probabiltiy of being chosen.
static void VertexUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
if ( sampleNum > = m . vn ) {
AllVertex ( m , ps ) ;
return ;
}
std : : vector < VertexPointer > vertVec ;
FillAndShuffleVertexPointerVector ( m , vertVec ) ;
for ( int i = 0 ; i < sampleNum ; + + i )
ps . AddVert ( * vertVec [ i ] ) ;
}
static void FaceUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
if ( sampleNum > = m . fn ) {
AllFace ( m , ps ) ;
return ;
}
std : : vector < FacePointer > faceVec ;
FillAndShuffleFacePointerVector ( m , faceVec ) ;
for ( int i = 0 ; i < sampleNum ; + + i )
ps . AddFace ( * faceVec [ i ] , Barycenter ( * faceVec [ i ] ) ) ;
}
static void AllFace ( MetroMesh & m , VertexSampler & ps )
{
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
{
ps . AddFace ( * fi , Barycenter ( * fi ) ) ;
}
}
static void AllEdge ( MetroMesh & m , VertexSampler & ps )
{
// Edge sampling.
typedef typename UpdateTopology < MetroMesh > : : PEdge SimpleEdge ;
std : : vector < SimpleEdge > Edges ;
typename std : : vector < SimpleEdge > : : iterator ei ;
UpdateTopology < MetroMesh > : : FillUniqueEdgeVector ( m , Edges ) ;
for ( ei = Edges . begin ( ) ; ei ! = Edges . end ( ) ; + + ei )
{
Point3f interp ( 0 , 0 , 0 ) ;
interp [ ( * ei ) . z ] = .5 ;
interp [ ( ( * ei ) . z + 1 ) % 3 ] = .5 ;
ps . AddFace ( * ( * ei ) . f , interp ) ;
}
}
// Regular Uniform Edge sampling
// Each edge is subdivided in a number of pieces proprtional to its lenght
// Sample are choosen without touching the vertices.
static void EdgeUniform ( MetroMesh & m , VertexSampler & ps , int sampleNum , bool sampleFauxEdge = true )
{
typedef typename UpdateTopology < MetroMesh > : : PEdge SimpleEdge ;
std : : vector < SimpleEdge > Edges ;
UpdateTopology < MetroMesh > : : FillUniqueEdgeVector ( m , Edges , sampleFauxEdge ) ;
// First loop compute total edge lenght;
float edgeSum = 0 ;
typename std : : vector < SimpleEdge > : : iterator ei ;
for ( ei = Edges . begin ( ) ; ei ! = Edges . end ( ) ; + + ei )
edgeSum + = Distance ( ( * ei ) . v [ 0 ] - > P ( ) , ( * ei ) . v [ 1 ] - > P ( ) ) ;
//qDebug("Edges %i edge sum %f",Edges.size(),edgeSum);
float sampleLen = edgeSum / sampleNum ;
//qDebug("EdgesSamples %i Sampling Len %f",sampleNum,sampleLen);
float rest = 0 ;
for ( ei = Edges . begin ( ) ; ei ! = Edges . end ( ) ; + + ei )
{
float len = Distance ( ( * ei ) . v [ 0 ] - > P ( ) , ( * ei ) . v [ 1 ] - > P ( ) ) ;
float samplePerEdge = floor ( ( len + rest ) / sampleLen ) ;
rest = ( len + rest ) - samplePerEdge * sampleLen ;
float step = 1.0 / ( samplePerEdge + 1 ) ;
for ( int i = 0 ; i < samplePerEdge ; + + i )
{
Point3f interp ( 0 , 0 , 0 ) ;
interp [ ( * ei ) . z ] = step * ( i + 1 ) ;
interp [ ( ( * ei ) . z + 1 ) % 3 ] = 1.0 - step * ( i + 1 ) ;
ps . AddFace ( * ( * ei ) . f , interp ) ;
}
}
}
// Generate the barycentric coords of a random point over a single face,
// with a uniform distribution over the triangle.
// It uses the parallelogram folding trick.
static CoordType RandomBaricentric ( )
{
CoordType interp ;
interp [ 1 ] = RandomDouble01 ( ) ;
interp [ 2 ] = RandomDouble01 ( ) ;
if ( interp [ 1 ] + interp [ 2 ] > 1.0 )
{
interp [ 1 ] = 1.0 - interp [ 1 ] ;
interp [ 2 ] = 1.0 - interp [ 2 ] ;
}
assert ( interp [ 1 ] + interp [ 2 ] < = 1.0 ) ;
interp [ 0 ] = 1.0 - ( interp [ 1 ] + interp [ 2 ] ) ;
return interp ;
}
static void StratifiedMontecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
// Montecarlo sampling.
double floatSampleNum = 0.0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum + = 0.5 * DoubleArea ( * fi ) * samplePerAreaUnit ;
int faceSampleNum = ( int ) floatSampleNum ;
// for every sample p_i in T...
for ( int i = 0 ; i < faceSampleNum ; i + + )
ps . AddFace ( * fi , RandomBaricentric ( ) ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
/**
This function compute montecarlo distribution with an approximate number of samples exploiting the poisson distribution approximation of the binomial distribution .
For a given triangle t of area a_t , in a Mesh of area A ,
if we take n_s sample over the mesh , the number of samples that falls in t
follows the poisson distribution of P ( lambda ) with lambda = n_s * ( a_t / A ) .
To approximate the Binomial we use a Poisson distribution with parameter \ lambda = np can be used as an approximation to B ( n , p ) ( it works if n is sufficiently large and p is sufficiently small ) .
*/
static void MontecarloPoisson ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
float areaT = DoubleArea ( * fi ) * 0.5f ;
int faceSampleNum = Poisson ( areaT * samplePerAreaUnit ) ;
// for every sample p_i in T...
for ( int i = 0 ; i < faceSampleNum ; i + + )
ps . AddFace ( * fi , RandomBaricentric ( ) ) ;
// SampleNum -= (double) faceSampleNum;
}
}
/**
This function computes a montecarlo distribution with an EXACT number of samples .
it works by generating a sequence of consecutive segments proportional to the triangle areas
and actually shooting sample over this line
*/
static void Montecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
typedef std : : pair < ScalarType , FacePointer > IntervalType ;
std : : vector < IntervalType > intervals ( m . fn + 1 ) ;
FaceIterator fi ;
int i = 0 ;
intervals [ i ] = std : : make_pair ( 0 , FacePointer ( 0 ) ) ;
// First loop: build a sequence of consecutive segments proportional to the triangle areas.
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
intervals [ i + 1 ] = std : : make_pair ( intervals [ i ] . first + 0.5 * DoubleArea ( * fi ) , & * fi ) ;
+ + i ;
}
ScalarType meshArea = intervals . back ( ) . first ;
for ( i = 0 ; i < sampleNum ; + + i )
{
ScalarType val = meshArea * RandomDouble01 ( ) ;
// lower_bound returns the furthermost iterator i in [first, last) such that, for every iterator j in [first, i), *j < value.
// E.g. An iterator pointing to the first element "not less than" val, or end() if every element is less than val.
typename std : : vector < IntervalType > : : iterator it = lower_bound ( intervals . begin ( ) , intervals . end ( ) , std : : make_pair ( val , FacePointer ( 0 ) ) ) ;
assert ( it ! = intervals . end ( ) ) ;
assert ( it ! = intervals . begin ( ) ) ;
assert ( ( * ( it - 1 ) ) . first < val ) ;
assert ( ( * ( it ) ) . first > = val ) ;
ps . AddFace ( * ( * it ) . second , RandomBaricentric ( ) ) ;
}
}
static ScalarType WeightedArea ( FaceType f )
{
ScalarType averageQ = ( f . V ( 0 ) - > Q ( ) + f . V ( 1 ) - > Q ( ) + f . V ( 2 ) - > Q ( ) ) / 3.0 ;
return DoubleArea ( f ) * averageQ / 2.0 ;
}
/// Compute a sampling of the surface that is weighted by the quality
/// the area of each face is multiplied by the average of the quality of the vertices.
/// So the a face with a zero quality on all its vertices is never sampled and a face with average quality 2 get twice the samples of a face with the same area but with an average quality of 1;
static void WeightedMontecarlo ( MetroMesh & m , VertexSampler & ps , int sampleNum )
{
assert ( tri : : HasPerVertexQuality ( m ) ) ;
ScalarType weightedArea = 0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; + + fi )
if ( ! ( * fi ) . IsD ( ) )
weightedArea + = WeightedArea ( * fi ) ;
ScalarType samplePerAreaUnit = sampleNum / weightedArea ;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
// Montecarlo sampling.
double floatSampleNum = 0.0 ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! ( * fi ) . IsD ( ) )
{
// compute # samples in the current face (taking into account of the remainders)
floatSampleNum + = WeightedArea ( * fi ) * samplePerAreaUnit ;
int faceSampleNum = ( int ) floatSampleNum ;
// for every sample p_i in T...
for ( int i = 0 ; i < faceSampleNum ; i + + )
ps . AddFace ( * fi , RandomBaricentric ( ) ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivision ( int sampleNum , const CoordType & v0 , const CoordType & v1 , const CoordType & v2 , VertexSampler & ps , FacePointer fp , bool randSample )
{
// recursive face subdivision.
if ( sampleNum = = 1 )
{
// ground case.
CoordType SamplePoint ;
if ( randSample )
{
CoordType rb = RandomBaricentric ( ) ;
SamplePoint = v0 * rb [ 0 ] + v1 * rb [ 1 ] + v2 * rb [ 2 ] ;
}
else SamplePoint = ( ( v0 + v1 + v2 ) * ( 1.0f / 3.0f ) ) ;
ps . AddFace ( * fp , SamplePoint ) ;
return 1 ;
}
int s0 = sampleNum / 2 ;
int s1 = sampleNum - s0 ;
assert ( s0 > 0 ) ;
assert ( s1 > 0 ) ;
ScalarType w0 = ScalarType ( s1 ) / ScalarType ( sampleNum ) ;
ScalarType w1 = 1.0 - w0 ;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance ( v0 , v1 ) ;
ScalarType maxd12 = SquaredDistance ( v1 , v2 ) ;
ScalarType maxd20 = SquaredDistance ( v2 , v0 ) ;
int res ;
if ( maxd01 > maxd12 )
if ( maxd01 > maxd20 ) res = 0 ;
else res = 2 ;
else
if ( maxd12 > maxd20 ) res = 1 ;
else res = 2 ;
int faceSampleNum = 0 ;
// break the input triangle along the midpoint of the longest edge.
CoordType pp ;
switch ( res )
{
case 0 : pp = v0 * w0 + v1 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , pp , v2 , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
break ;
case 1 : pp = v1 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , v0 , pp , v2 , ps , fp , randSample ) ;
break ;
case 2 : pp = v0 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
break ;
}
return faceSampleNum ;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivision ( MetroMesh & m , VertexSampler & ps , int sampleNum , bool randSample )
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
std : : vector < FacePointer > faceVec ;
FillAndShuffleFacePointerVector ( m , faceVec ) ;
vcg : : tri : : UpdateNormals < MetroMesh > : : PerFaceNormalized ( m ) ;
double floatSampleNum = 0.0 ;
int faceSampleNum ;
// Subdivision sampling.
typename std : : vector < FacePointer > : : iterator fi ;
for ( fi = faceVec . begin ( ) ; fi ! = faceVec . end ( ) ; fi + + )
{
const CoordType b0 ( 1.0 , 0.0 , 0.0 ) ;
const CoordType b1 ( 0.0 , 1.0 , 0.0 ) ;
const CoordType b2 ( 0.0 , 0.0 , 1.0 ) ;
// compute # samples in the current face.
floatSampleNum + = 0.5 * DoubleArea ( * * fi ) * samplePerAreaUnit ;
faceSampleNum = ( int ) floatSampleNum ;
if ( faceSampleNum > 0 )
faceSampleNum = SingleFaceSubdivision ( faceSampleNum , b0 , b1 , b2 , ps , * fi , randSample ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
//---------
// Subdivision sampling of a single face.
// return number of added samples
static int SingleFaceSubdivisionOld ( int sampleNum , const CoordType & v0 , const CoordType & v1 , const CoordType & v2 , VertexSampler & ps , FacePointer fp , bool randSample )
{
// recursive face subdivision.
if ( sampleNum = = 1 )
{
// ground case.
CoordType SamplePoint ;
if ( randSample )
{
CoordType rb = RandomBaricentric ( ) ;
SamplePoint = v0 * rb [ 0 ] + v1 * rb [ 1 ] + v2 * rb [ 2 ] ;
}
else SamplePoint = ( ( v0 + v1 + v2 ) * ( 1.0f / 3.0f ) ) ;
CoordType SampleBary ;
2011-04-05 23:53:12 +02:00
InterpolationParameters ( * fp , SamplePoint , SampleBary ) ;
2011-04-01 18:25:49 +02:00
ps . AddFace ( * fp , SampleBary ) ;
return 1 ;
}
int s0 = sampleNum / 2 ;
int s1 = sampleNum - s0 ;
assert ( s0 > 0 ) ;
assert ( s1 > 0 ) ;
ScalarType w0 = ScalarType ( s1 ) / ScalarType ( sampleNum ) ;
ScalarType w1 = 1.0 - w0 ;
// compute the longest edge.
ScalarType maxd01 = SquaredDistance ( v0 , v1 ) ;
ScalarType maxd12 = SquaredDistance ( v1 , v2 ) ;
ScalarType maxd20 = SquaredDistance ( v2 , v0 ) ;
int res ;
if ( maxd01 > maxd12 )
if ( maxd01 > maxd20 ) res = 0 ;
else res = 2 ;
else
if ( maxd12 > maxd20 ) res = 1 ;
else res = 2 ;
int faceSampleNum = 0 ;
// break the input triangle along the midpoint of the longest edge.
CoordType pp ;
switch ( res )
{
case 0 : pp = v0 * w0 + v1 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , pp , v2 , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
break ;
case 1 : pp = v1 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , v0 , pp , v2 , ps , fp , randSample ) ;
break ;
case 2 : pp = v0 * w0 + v2 * w1 ;
faceSampleNum + = SingleFaceSubdivision ( s0 , v0 , v1 , pp , ps , fp , randSample ) ;
faceSampleNum + = SingleFaceSubdivision ( s1 , pp , v1 , v2 , ps , fp , randSample ) ;
break ;
}
return faceSampleNum ;
}
/// Compute a sampling of the surface where the points are regularly scattered over the face surface using a recursive longest-edge subdivision rule.
static void FaceSubdivisionOld ( MetroMesh & m , VertexSampler & ps , int sampleNum , bool randSample )
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
//qDebug("samplePerAreaUnit %f",samplePerAreaUnit);
std : : vector < FacePointer > faceVec ;
FillAndShuffleFacePointerVector ( m , faceVec ) ;
tri : : UpdateNormals < MetroMesh > : : PerFaceNormalized ( m ) ;
double floatSampleNum = 0.0 ;
int faceSampleNum ;
// Subdivision sampling.
typename std : : vector < FacePointer > : : iterator fi ;
for ( fi = faceVec . begin ( ) ; fi ! = faceVec . end ( ) ; fi + + )
{
// compute # samples in the current face.
floatSampleNum + = 0.5 * DoubleArea ( * * fi ) * samplePerAreaUnit ;
faceSampleNum = ( int ) floatSampleNum ;
if ( faceSampleNum > 0 )
faceSampleNum = SingleFaceSubdivision ( faceSampleNum , ( * * fi ) . V ( 0 ) - > cP ( ) , ( * * fi ) . V ( 1 ) - > cP ( ) , ( * * fi ) . V ( 2 ) - > cP ( ) , ps , * fi , randSample ) ;
floatSampleNum - = ( double ) faceSampleNum ;
}
}
//---------
// Similar Triangles sampling.
// Skip vertex and edges
// Sample per edges includes vertexes, so here we should expect n_samples_per_edge >=4
static int SingleFaceSimilar ( FacePointer fp , VertexSampler & ps , int n_samples_per_edge )
{
int n_samples = 0 ;
int i , j ;
float segmentNum = n_samples_per_edge - 1 ;
float segmentLen = 1.0 / segmentNum ;
// face sampling.
for ( i = 1 ; i < n_samples_per_edge - 1 ; i + + )
for ( j = 1 ; j < n_samples_per_edge - 1 - i ; j + + )
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType sampleBary ( i * segmentLen , j * segmentLen , 1.0 - ( i * segmentLen + j * segmentLen ) ) ;
n_samples + + ;
ps . AddFace ( * fp , sampleBary ) ;
}
return n_samples ;
}
static int SingleFaceSimilarDual ( FacePointer fp , VertexSampler & ps , int n_samples_per_edge , bool randomFlag )
{
int n_samples = 0 ;
float i , j ;
float segmentNum = n_samples_per_edge - 1 ;
float segmentLen = 1.0 / segmentNum ;
// face sampling.
for ( i = 0 ; i < n_samples_per_edge - 1 ; i + + )
for ( j = 0 ; j < n_samples_per_edge - 1 - i ; j + + )
{
//AddSample( v0 + (V1*(double)i + V2*(double)j) );
CoordType V0 ( ( i + 0 ) * segmentLen , ( j + 0 ) * segmentLen , 1.0 - ( ( i + 0 ) * segmentLen + ( j + 0 ) * segmentLen ) ) ;
CoordType V1 ( ( i + 1 ) * segmentLen , ( j + 0 ) * segmentLen , 1.0 - ( ( i + 1 ) * segmentLen + ( j + 0 ) * segmentLen ) ) ;
CoordType V2 ( ( i + 0 ) * segmentLen , ( j + 1 ) * segmentLen , 1.0 - ( ( i + 0 ) * segmentLen + ( j + 1 ) * segmentLen ) ) ;
n_samples + + ;
if ( randomFlag ) {
CoordType rb = RandomBaricentric ( ) ;
ps . AddFace ( * fp , V0 * rb [ 0 ] + V1 * rb [ 1 ] + V2 * rb [ 2 ] ) ;
} else ps . AddFace ( * fp , ( V0 + V1 + V2 ) / 3.0 ) ;
if ( j < n_samples_per_edge - i - 2 )
{
CoordType V3 ( ( i + 1 ) * segmentLen , ( j + 1 ) * segmentLen , 1.0 - ( ( i + 1 ) * segmentLen + ( j + 1 ) * segmentLen ) ) ;
n_samples + + ;
if ( randomFlag ) {
CoordType rb = RandomBaricentric ( ) ;
ps . AddFace ( * fp , V3 * rb [ 0 ] + V1 * rb [ 1 ] + V2 * rb [ 2 ] ) ;
} else ps . AddFace ( * fp , ( V3 + V1 + V2 ) / 3.0 ) ;
}
}
return n_samples ;
}
// Similar sampling
// Each triangle is subdivided into similar triangles following a generalization of the classical 1-to-4 splitting rule of triangles.
// According to the level of subdivision <k> you get 1, 4 , 9, 16 , <k^2> triangles.
// Depending on the kind of the sampling strategies we can have two different approach to choosing the sample points.
// 1) you have already sampled both edges and vertices
// 2) you are not going to take samples on edges and vertices.
//
// In the first case you have to consider only internal vertices of the subdivided triangles (to avoid multiple sampling of edges and vertices).
// Therefore the number of internal points is ((k-3)*(k-2))/2. where k is the number of points on an edge (vertex included)
// E.g. for k=4 you get 3 segments on each edges and the original triangle is subdivided
// into 9 smaller triangles and you get (1*2)/2 == 1 only a single internal point.
// So if you want N samples in a triangle you have to solve k^2 -5k +6 - 2N = 0
// from which you get:
//
// 5 + sqrt( 1 + 8N )
// k = -------------------
// 2
//
// In the second case if you are not interested to skip the sampling on edges and vertices you have to consider as sample number the number of triangles.
// So if you want N samples in a triangle, the number <k> of points on an edge (vertex included) should be simply:
// k = 1 + sqrt(N)
// examples:
// N = 4 -> k = 3
// N = 9 -> k = 4
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
static void FaceSimilar ( MetroMesh & m , VertexSampler & ps , int sampleNum , bool dualFlag , bool randomFlag )
{
ScalarType area = Stat < MetroMesh > : : ComputeMeshArea ( m ) ;
ScalarType samplePerAreaUnit = sampleNum / area ;
// Similar Triangles sampling.
int n_samples_per_edge ;
double n_samples_decimal = 0.0 ;
FaceIterator fi ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
{
// compute # samples in the current face.
n_samples_decimal + = 0.5 * DoubleArea ( * fi ) * samplePerAreaUnit ;
int n_samples = ( int ) n_samples_decimal ;
if ( n_samples > 0 )
{
// face sampling.
if ( dualFlag )
{
n_samples_per_edge = ( int ) ( ( sqrt ( 1.0 + 8.0 * ( double ) n_samples ) + 5.0 ) / 2.0 ) ; // original for non dual case
n_samples = SingleFaceSimilar ( & * fi , ps , n_samples_per_edge ) ;
} else {
n_samples_per_edge = ( int ) ( sqrt ( ( double ) n_samples ) + 1.0 ) ;
n_samples = SingleFaceSimilarDual ( & * fi , ps , n_samples_per_edge , randomFlag ) ;
}
}
n_samples_decimal - = ( double ) n_samples ;
}
}
// Rasterization fuction
// Take a triangle
// T deve essere una classe funzionale che ha l'operatore ()
// con due parametri x,y di tipo S esempio:
// class Foo { public void operator()(int x, int y ) { ??? } };
// This function does rasterization with a safety buffer area, thus accounting some points actually outside triangle area
// The safety area samples are generated according to face flag BORDER which should be true for texture space border edges
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge).
static void SingleFaceRaster ( typename MetroMesh : : FaceType & f , VertexSampler & ps ,
const Point2 < typename MetroMesh : : ScalarType > & v0 ,
const Point2 < typename MetroMesh : : ScalarType > & v1 ,
const Point2 < typename MetroMesh : : ScalarType > & v2 ,
bool correctSafePointsBaryCoords = true )
{
typedef typename MetroMesh : : ScalarType S ;
// Calcolo bounding box
Box2i bbox ;
Box2 < S > bboxf ;
bboxf . Add ( v0 ) ;
bboxf . Add ( v1 ) ;
bboxf . Add ( v2 ) ;
bbox . min [ 0 ] = floor ( bboxf . min [ 0 ] ) ;
bbox . min [ 1 ] = floor ( bboxf . min [ 1 ] ) ;
bbox . max [ 0 ] = ceil ( bboxf . max [ 0 ] ) ;
bbox . max [ 1 ] = ceil ( bboxf . max [ 1 ] ) ;
// Calcolo versori degli spigoli
Point2 < S > d10 = v1 - v0 ;
Point2 < S > d21 = v2 - v1 ;
Point2 < S > d02 = v0 - v2 ;
// Preparazione prodotti scalari
S b0 = ( bbox . min [ 0 ] - v0 [ 0 ] ) * d10 [ 1 ] - ( bbox . min [ 1 ] - v0 [ 1 ] ) * d10 [ 0 ] ;
S b1 = ( bbox . min [ 0 ] - v1 [ 0 ] ) * d21 [ 1 ] - ( bbox . min [ 1 ] - v1 [ 1 ] ) * d21 [ 0 ] ;
S b2 = ( bbox . min [ 0 ] - v2 [ 0 ] ) * d02 [ 1 ] - ( bbox . min [ 1 ] - v2 [ 1 ] ) * d02 [ 0 ] ;
// Preparazione degli steps
S db0 = d10 [ 1 ] ;
S db1 = d21 [ 1 ] ;
S db2 = d02 [ 1 ] ;
// Preparazione segni
S dn0 = - d10 [ 0 ] ;
S dn1 = - d21 [ 0 ] ;
S dn2 = - d02 [ 0 ] ;
//Calculating orientation
bool flipped = ! ( d02 * vcg : : Point2 < S > ( - d10 [ 1 ] , d10 [ 0 ] ) > = 0 ) ;
// Calculating border edges
Segment2 < S > borderEdges [ 3 ] ;
S edgeLength [ 3 ] ;
unsigned char edgeMask = 0 ;
if ( f . IsB ( 0 ) ) {
borderEdges [ 0 ] = Segment2 < S > ( v0 , v1 ) ;
edgeLength [ 0 ] = borderEdges [ 0 ] . Length ( ) ;
edgeMask | = 1 ;
}
if ( f . IsB ( 1 ) ) {
borderEdges [ 1 ] = Segment2 < S > ( v1 , v2 ) ;
edgeLength [ 1 ] = borderEdges [ 1 ] . Length ( ) ;
edgeMask | = 2 ;
}
if ( f . IsB ( 2 ) ) {
borderEdges [ 2 ] = Segment2 < S > ( v2 , v0 ) ;
edgeLength [ 2 ] = borderEdges [ 2 ] . Length ( ) ;
edgeMask | = 4 ;
}
// Rasterizzazione
double de = v0 [ 0 ] * v1 [ 1 ] - v0 [ 0 ] * v2 [ 1 ] - v1 [ 0 ] * v0 [ 1 ] + v1 [ 0 ] * v2 [ 1 ] - v2 [ 0 ] * v1 [ 1 ] + v2 [ 0 ] * v0 [ 1 ] ;
for ( int x = bbox . min [ 0 ] - 1 ; x < = bbox . max [ 0 ] + 1 ; + + x )
{
bool in = false ;
S n [ 3 ] = { b0 - db0 - dn0 , b1 - db1 - dn1 , b2 - db2 - dn2 } ;
for ( int y = bbox . min [ 1 ] - 1 ; y < = bbox . max [ 1 ] + 1 ; + + y )
{
if ( ( n [ 0 ] > = 0 & & n [ 1 ] > = 0 & & n [ 2 ] > = 0 ) | | ( n [ 0 ] < = 0 & & n [ 1 ] < = 0 & & n [ 2 ] < = 0 ) )
{
typename MetroMesh : : CoordType baryCoord ;
baryCoord [ 0 ] = double ( - y * v1 [ 0 ] + v2 [ 0 ] * y + v1 [ 1 ] * x - v2 [ 0 ] * v1 [ 1 ] + v1 [ 0 ] * v2 [ 1 ] - x * v2 [ 1 ] ) / de ;
baryCoord [ 1 ] = - double ( x * v0 [ 1 ] - x * v2 [ 1 ] - v0 [ 0 ] * y + v0 [ 0 ] * v2 [ 1 ] - v2 [ 0 ] * v0 [ 1 ] + v2 [ 0 ] * y ) / de ;
baryCoord [ 2 ] = 1 - baryCoord [ 0 ] - baryCoord [ 1 ] ;
ps . AddTextureSample ( f , baryCoord , Point2i ( x , y ) , 0 ) ;
in = true ;
} else {
// Check whether a pixel outside (on a border edge side) triangle affects color inside it
Point2 < S > px ( x , y ) ;
Point2 < S > closePoint ;
int closeEdge = - 1 ;
S minDst = FLT_MAX ;
// find the closest point (on some edge) that lies on the 2x2 squared neighborhood of the considered point
for ( int i = 0 ; i < 3 ; + + i )
{
if ( edgeMask & ( 1 < < i ) )
{
Point2 < S > close ;
S dst ;
if ( ( ( ! flipped ) & & ( n [ i ] < 0 ) ) | |
( flipped & & ( n [ i ] > 0 ) ) )
{
dst = ( ( close = ClosestPoint ( borderEdges [ i ] , px ) ) - px ) . Norm ( ) ;
if ( dst < minDst & &
close . X ( ) > px . X ( ) - 1 & & close . X ( ) < px . X ( ) + 1 & &
close . Y ( ) > px . Y ( ) - 1 & & close . Y ( ) < px . Y ( ) + 1 )
{
minDst = dst ;
closePoint = close ;
closeEdge = i ;
}
}
}
}
if ( closeEdge > = 0 )
{
typename MetroMesh : : CoordType baryCoord ;
if ( correctSafePointsBaryCoords )
{
// Add x,y sample with closePoint barycentric coords (on edge)
baryCoord [ closeEdge ] = ( closePoint - borderEdges [ closeEdge ] . P ( 1 ) ) . Norm ( ) / edgeLength [ closeEdge ] ;
baryCoord [ ( closeEdge + 1 ) % 3 ] = 1 - baryCoord [ closeEdge ] ;
baryCoord [ ( closeEdge + 2 ) % 3 ] = 0 ;
} else {
// Add x,y sample with his own barycentric coords (off edge)
baryCoord [ 0 ] = double ( - y * v1 [ 0 ] + v2 [ 0 ] * y + v1 [ 1 ] * x - v2 [ 0 ] * v1 [ 1 ] + v1 [ 0 ] * v2 [ 1 ] - x * v2 [ 1 ] ) / de ;
baryCoord [ 1 ] = - double ( x * v0 [ 1 ] - x * v2 [ 1 ] - v0 [ 0 ] * y + v0 [ 0 ] * v2 [ 1 ] - v2 [ 0 ] * v0 [ 1 ] + v2 [ 0 ] * y ) / de ;
baryCoord [ 2 ] = 1 - baryCoord [ 0 ] - baryCoord [ 1 ] ;
}
ps . AddTextureSample ( f , baryCoord , Point2i ( x , y ) , minDst ) ;
in = true ;
}
}
n [ 0 ] + = dn0 ;
n [ 1 ] + = dn1 ;
n [ 2 ] + = dn2 ;
}
b0 + = db0 ;
b1 + = db1 ;
b2 + = db2 ;
}
}
// Generate a random point in volume defined by a box with uniform distribution
static CoordType RandomBox ( vcg : : Box3 < ScalarType > box )
{
CoordType p = box . min ;
p [ 0 ] + = box . Dim ( ) [ 0 ] * RandomDouble01 ( ) ;
p [ 1 ] + = box . Dim ( ) [ 1 ] * RandomDouble01 ( ) ;
p [ 2 ] + = box . Dim ( ) [ 2 ] * RandomDouble01 ( ) ;
return p ;
}
// generate Poisson-disk sample using a set of pre-generated samples (with the Montecarlo algorithm)
// It always return a point.
static VertexPointer getPrecomputedMontecarloSample ( Point3i & cell , MontecarloSHT & samplepool )
{
MontecarloSHTIterator cellBegin ;
MontecarloSHTIterator cellEnd ;
samplepool . Grid ( cell , cellBegin , cellEnd ) ;
return * cellBegin ;
}
// check the radius constrain
static bool checkPoissonDisk ( MetroMesh & vmesh , SampleSHT & sht , const Point3 < ScalarType > & p , ScalarType radius )
{
// get the samples closest to the given one
std : : vector < VertexType * > closests ;
2011-10-05 17:04:40 +02:00
typedef VertTmark < MetroMesh > MarkerVert ;
static MarkerVert mv ;
2011-04-01 18:25:49 +02:00
Box3f bb ( p - Point3f ( radius , radius , radius ) , p + Point3f ( radius , radius , radius ) ) ;
int nsamples = GridGetInBox ( sht , mv , bb , closests ) ;
2011-10-05 17:04:40 +02:00
ScalarType r2 = radius * radius ;
2011-04-01 18:25:49 +02:00
for ( int i = 0 ; i < closests . size ( ) ; + + i )
if ( SquaredDistance ( p , closests [ i ] - > cP ( ) ) < r2 )
return false ;
return true ;
}
struct PoissonDiskParam
{
PoissonDiskParam ( )
{
adaptiveRadiusFlag = false ;
radiusVariance = 1 ;
MAXLEVELS = 5 ;
invertQuality = false ;
preGenFlag = false ;
preGenMesh = NULL ;
2011-10-05 17:04:40 +02:00
geodesicDistanceFlag = false ;
2011-04-01 18:25:49 +02:00
}
2011-10-05 17:04:40 +02:00
bool geodesicDistanceFlag ;
2011-04-01 18:25:49 +02:00
bool adaptiveRadiusFlag ;
float radiusVariance ;
bool invertQuality ;
bool preGenFlag ; // when generating a poisson distribution, you can initialize the set pof omputed points with ALL the vertices of another mesh. Usefull for building progressive refinements.
MetroMesh * preGenMesh ;
int MAXLEVELS ;
} ;
static ScalarType ComputePoissonDiskRadius ( MetroMesh & origMesh , int sampleNum )
{
ScalarType meshArea = Stat < MetroMesh > : : ComputeMeshArea ( origMesh ) ;
// Manage approximately the PointCloud Case, use the half a area of the bbox.
// TODO: If you had the radius a much better approximation could be done.
if ( meshArea = = 0 )
{
meshArea = ( origMesh . bbox . DimX ( ) * origMesh . bbox . DimY ( ) +
origMesh . bbox . DimX ( ) * origMesh . bbox . DimZ ( ) +
origMesh . bbox . DimY ( ) * origMesh . bbox . DimZ ( ) ) ;
}
ScalarType diskRadius = sqrt ( meshArea / ( 0.7 * M_PI * sampleNum ) ) ; // 0.7 is a density factor
return diskRadius ;
}
static int ComputePoissonSampleNum ( MetroMesh & origMesh , ScalarType diskRadius )
{
ScalarType meshArea = Stat < MetroMesh > : : ComputeMeshArea ( origMesh ) ;
int sampleNum = meshArea / ( diskRadius * diskRadius * M_PI * 0.7 ) ; // 0.7 is a density factor
return sampleNum ;
}
static void ComputePoissonSampleRadii ( MetroMesh & sampleMesh , ScalarType diskRadius , ScalarType radiusVariance , bool invert )
{
VertexIterator vi ;
std : : pair < float , float > minmax = tri : : Stat < MetroMesh > : : ComputePerVertexQualityMinMax ( sampleMesh ) ;
float minRad = diskRadius / radiusVariance ;
float maxRad = diskRadius * radiusVariance ;
float deltaQ = minmax . second - minmax . first ;
float deltaRad = maxRad - minRad ;
for ( vi = sampleMesh . vert . begin ( ) ; vi ! = sampleMesh . vert . end ( ) ; vi + + )
{
( * vi ) . Q ( ) = minRad + deltaRad * ( ( invert ? minmax . second - ( * vi ) . Q ( ) : ( * vi ) . Q ( ) - minmax . first ) / deltaQ ) ;
}
}
// Trivial approach that puts all the samples in a UG and removes all the ones that surely do not fit the
static void PoissonDiskPruning ( MetroMesh & origMesh , VertexSampler & ps , MetroMesh & montecarloMesh , ScalarType diskRadius , const struct PoissonDiskParam pp = PoissonDiskParam ( ) )
{
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHT ;
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
ScalarType cellsize = 2.0f * diskRadius / sqrt ( 3.0 ) ;
// inflating
origMesh . bbox . Offset ( cellsize ) ;
int sizeX = std : : max ( 1.0f , origMesh . bbox . DimX ( ) / cellsize ) ;
int sizeY = std : : max ( 1.0f , origMesh . bbox . DimY ( ) / cellsize ) ;
int sizeZ = std : : max ( 1.0f , origMesh . bbox . DimZ ( ) / cellsize ) ;
Point3i gridsize ( sizeX , sizeY , sizeZ ) ;
# ifdef QT_VERSION
qDebug ( " PDS: radius %f Grid:(%i %i %i) " , diskRadius , sizeX , sizeY , sizeZ ) ;
QTime tt ; tt . start ( ) ;
# endif
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
if ( pp . adaptiveRadiusFlag )
ComputePoissonSampleRadii ( montecarloMesh , diskRadius , pp . radiusVariance , pp . invertQuality ) ;
montecarloSHT . InitEmpty ( origMesh . bbox , gridsize ) ;
for ( VertexIterator vi = montecarloMesh . vert . begin ( ) ; vi ! = montecarloMesh . vert . end ( ) ; vi + + )
montecarloSHT . Add ( & ( * vi ) ) ;
montecarloSHT . UpdateAllocatedCells ( ) ;
unsigned int ( * p_myrandom ) ( unsigned int ) = RandomInt ;
std : : random_shuffle ( montecarloSHT . AllocatedCells . begin ( ) , montecarloSHT . AllocatedCells . end ( ) , p_myrandom ) ;
# ifdef QT_VERSION
qDebug ( " PDS: Completed creation of activeCells, %i cells (%i msec) " , ( int ) montecarloSHT . AllocatedCells . size ( ) , tt . restart ( ) ) ;
# endif
int removedCnt = 0 ;
if ( pp . preGenFlag )
{
// Initial pass for pruning the Hashed grid with the an eventual pre initialized set of samples
for ( VertexIterator vi = pp . preGenMesh - > vert . begin ( ) ; vi ! = pp . preGenMesh - > vert . end ( ) ; + + vi )
{
ps . AddVert ( * vi ) ;
removedCnt + = montecarloSHT . RemoveInSphere ( vi - > cP ( ) , diskRadius ) ;
}
montecarloSHT . UpdateAllocatedCells ( ) ;
# ifdef QT_VERSION
qDebug ( " Removed %i samples in %i " , removedCnt , tt . restart ( ) ) ;
# endif
}
2011-10-05 17:04:40 +02:00
vertex : : ApproximateGeodesicDistanceFunctor < VertexType > GDF ;
2011-04-01 18:25:49 +02:00
while ( ! montecarloSHT . AllocatedCells . empty ( ) )
{
removedCnt = 0 ;
for ( size_t i = 0 ; i < montecarloSHT . AllocatedCells . size ( ) ; i + + )
{
if ( montecarloSHT . EmptyCell ( montecarloSHT . AllocatedCells [ i ] ) ) continue ;
VertexPointer sp = getPrecomputedMontecarloSample ( montecarloSHT . AllocatedCells [ i ] , montecarloSHT ) ;
ps . AddVert ( * sp ) ;
ScalarType sampleRadius = diskRadius ;
if ( pp . adaptiveRadiusFlag ) sampleRadius = sp - > Q ( ) ;
2011-10-05 17:04:40 +02:00
if ( pp . geodesicDistanceFlag ) removedCnt + = montecarloSHT . RemoveInSphereNormal ( sp - > cP ( ) , sp - > cN ( ) , GDF , sampleRadius ) ;
else removedCnt + = montecarloSHT . RemoveInSphere ( sp - > cP ( ) , sampleRadius ) ;
2011-04-01 18:25:49 +02:00
}
# ifdef QT_VERSION
qDebug ( " Removed %i samples in %i " , removedCnt , tt . restart ( ) ) ;
# endif
montecarloSHT . UpdateAllocatedCells ( ) ;
}
}
/** Compute a Poisson-disk sampling of the surface.
* The radius of the disk is computed according to the estimated sampling density .
*
* This algorithm is an adaptation of the algorithm of White et al . :
*
* " Poisson Disk Point Set by Hierarchical Dart Throwing "
* K . B . White , D . Cline , P . K . Egbert ,
* IEEE Symposium on Interactive Ray Tracing , 2007 ,
* 10 - 12 Sept . 2007 , pp . 129 - 132.
*/
static void PoissonDisk ( MetroMesh & origMesh , VertexSampler & ps , MetroMesh & montecarloMesh , ScalarType diskRadius , const struct PoissonDiskParam pp = PoissonDiskParam ( ) )
{
// spatial index of montecarlo samples - used to choose a new sample to insert
MontecarloSHT montecarloSHTVec [ 5 ] ;
// initialize spatial hash table for searching
// radius is the radius of empty disk centered over the samples (e.g. twice of the empty space disk)
// This radius implies that when we pick a sample in a cell all that cell will not be touched again.
ScalarType cellsize = 2.0f * diskRadius / sqrt ( 3.0 ) ;
// inflating
origMesh . bbox . Offset ( cellsize ) ;
int sizeX = std : : max ( 1.0f , origMesh . bbox . DimX ( ) / cellsize ) ;
int sizeY = std : : max ( 1.0f , origMesh . bbox . DimY ( ) / cellsize ) ;
int sizeZ = std : : max ( 1.0f , origMesh . bbox . DimZ ( ) / cellsize ) ;
Point3i gridsize ( sizeX , sizeY , sizeZ ) ;
# ifdef QT_VERSION
qDebug ( " PDS: radius %f Grid:(%i %i %i) " , diskRadius , sizeX , sizeY , sizeZ ) ;
QTime tt ; tt . start ( ) ;
# endif
// spatial hash table of the generated samples - used to check the radius constrain
SampleSHT checkSHT ;
checkSHT . InitEmpty ( origMesh . bbox , gridsize ) ;
// sampling algorithm
// ------------------
//
// - generate millions of samples using montecarlo algorithm
// - extract a cell (C) from the active cell list (with probability proportional to cell's volume)
// - generate a sample inside C by choosing one of the contained pre-generated samples
// - if the sample violates the radius constrain discard it, and add the cell to the cells-to-subdivide list
// - iterate until the active cell list is empty or a pre-defined number of subdivisions is reached
//
int level = 0 ;
// initialize spatial hash to index pre-generated samples
montecarloSHTVec [ 0 ] . InitEmpty ( origMesh . bbox , gridsize ) ;
// create active cell list
for ( VertexIterator vi = montecarloMesh . vert . begin ( ) ; vi ! = montecarloMesh . vert . end ( ) ; vi + + )
montecarloSHTVec [ 0 ] . Add ( & ( * vi ) ) ;
montecarloSHTVec [ 0 ] . UpdateAllocatedCells ( ) ;
// if we are doing variable density sampling we have to prepare the random samples quality with the correct expected radii.
if ( pp . adaptiveRadiusFlag )
ComputePoissonSampleRadii ( montecarloMesh , diskRadius , pp . radiusVariance , pp . invertQuality ) ;
do
{
MontecarloSHT & montecarloSHT = montecarloSHTVec [ level ] ;
if ( level > 0 )
{ // initialize spatial hash with the remaining points
montecarloSHT . InitEmpty ( origMesh . bbox , gridsize ) ;
// create active cell list
for ( typename MontecarloSHT : : HashIterator hi = montecarloSHTVec [ level - 1 ] . hash_table . begin ( ) ; hi ! = montecarloSHTVec [ level - 1 ] . hash_table . end ( ) ; hi + + )
montecarloSHT . Add ( ( * hi ) . second ) ;
montecarloSHT . UpdateAllocatedCells ( ) ;
}
// shuffle active cells
unsigned int ( * p_myrandom ) ( unsigned int ) = RandomInt ;
std : : random_shuffle ( montecarloSHT . AllocatedCells . begin ( ) , montecarloSHT . AllocatedCells . end ( ) , p_myrandom ) ;
# ifdef QT_VERSION
qDebug ( " PDS: Init of Hashing grid %i cells and %i samples (%i msec) " , montecarloSHT . AllocatedCells . size ( ) , montecarloSHT . hash_table . size ( ) , tt . restart ( ) ) ;
# endif
// generate a sample inside C by choosing one of the contained pre-generated samples
//////////////////////////////////////////////////////////////////////////////////////////
int removedCnt = montecarloSHT . hash_table . size ( ) ;
int addedCnt = checkSHT . hash_table . size ( ) ;
for ( int i = 0 ; i < montecarloSHT . AllocatedCells . size ( ) ; i + + )
{
for ( int j = 0 ; j < 4 ; j + + )
{
if ( montecarloSHT . EmptyCell ( montecarloSHT . AllocatedCells [ i ] ) ) continue ;
// generate a sample chosen from the pre-generated one
typename MontecarloSHT : : HashIterator hi = montecarloSHT . hash_table . find ( montecarloSHT . AllocatedCells [ i ] ) ;
if ( hi = = montecarloSHT . hash_table . end ( ) ) { break ; }
VertexPointer sp = ( * hi ) . second ;
// vr spans between 3.0*r and r / 4.0 according to vertex quality
ScalarType sampleRadius = diskRadius ;
if ( pp . adaptiveRadiusFlag ) sampleRadius = sp - > Q ( ) ;
if ( checkPoissonDisk ( * ps . m , checkSHT , sp - > cP ( ) , sampleRadius ) )
{
ps . AddVert ( * sp ) ;
montecarloSHT . RemoveCell ( sp ) ;
checkSHT . Add ( sp ) ;
break ;
}
else
montecarloSHT . RemovePunctual ( sp ) ;
}
}
addedCnt = checkSHT . hash_table . size ( ) - addedCnt ;
removedCnt = removedCnt - montecarloSHT . hash_table . size ( ) ;
// proceed to the next level of subdivision
// increase grid resolution
gridsize * = 2 ;
//
# ifdef QT_VERSION
qDebug ( " PDS: Pruning %i added %i and removed %i samples (%i msec) " , level , addedCnt , removedCnt , tt . restart ( ) ) ;
# endif
level + + ;
} while ( level < 5 ) ;
}
//template <class MetroMesh>
//void Sampling<MetroMesh>::SimilarFaceSampling()
// This function also generates samples outside faces if those affects faces in texture space.
// Use correctSafePointsBaryCoords = true to map safety texels to closest point barycentric coords (on edge)
// otherwise obtained samples will map to barycentric coord actually outside face
//
// If you don't need to get those extra points clear faces Border Flags
// vcg::tri::UpdateFlags<Mesh>::FaceClearB(m);
//
// Else make sure to update border flags from texture space FFadj
// vcg::tri::UpdateTopology<Mesh>::FaceFaceFromTexCoord(m);
// vcg::tri::UpdateFlags<Mesh>::FaceBorderFromFF(m);
static void Texture ( MetroMesh & m , VertexSampler & ps , int textureWidth , int textureHeight , bool correctSafePointsBaryCoords = true )
{
FaceIterator fi ;
printf ( " Similar Triangles face sampling \n " ) ;
for ( fi = m . face . begin ( ) ; fi ! = m . face . end ( ) ; fi + + )
if ( ! fi - > IsD ( ) )
{
Point2f ti [ 3 ] ;
for ( int i = 0 ; i < 3 ; + + i )
ti [ i ] = Point2f ( ( * fi ) . WT ( i ) . U ( ) * textureWidth - 0.5 , ( * fi ) . WT ( i ) . V ( ) * textureHeight - 0.5 ) ;
// - 0.5 constants are used to obtain correct texture mapping
SingleFaceRaster ( * fi , ps , ti [ 0 ] , ti [ 1 ] , ti [ 2 ] , correctSafePointsBaryCoords ) ;
}
}
typedef GridStaticPtr < FaceType , ScalarType > TriMeshGrid ;
class RRParam
{
public :
float offset ;
float minDiag ;
tri : : FaceTmark < MetroMesh > markerFunctor ;
TriMeshGrid gM ;
} ;
static void RegularRecursiveOffset ( MetroMesh & m , std : : vector < Point3f > & pvec , ScalarType offset , float minDiag )
{
Box3 < ScalarType > bb = m . bbox ;
bb . Offset ( offset * 2.0 ) ;
RRParam rrp ;
rrp . markerFunctor . SetMesh ( & m ) ;
rrp . gM . Set ( m . face . begin ( ) , m . face . end ( ) , bb ) ;
rrp . offset = offset ;
rrp . minDiag = minDiag ;
SubdivideAndSample ( m , pvec , bb , rrp , bb . Diag ( ) ) ;
}
static void SubdivideAndSample ( MetroMesh & m , std : : vector < Point3f > & pvec , const Box3 < ScalarType > bb , RRParam & rrp , float curDiag )
{
Point3f startPt = bb . Center ( ) ;
ScalarType dist ;
// Compute mesh point nearest to bb center
FaceType * nearestF = 0 ;
float dist_upper_bound = curDiag + rrp . offset ;
Point3f closestPt ;
vcg : : face : : PointDistanceBaseFunctor < ScalarType > PDistFunct ;
dist = dist_upper_bound ;
nearestF = rrp . gM . GetClosest ( PDistFunct , rrp . markerFunctor , startPt , dist_upper_bound , dist , closestPt ) ;
curDiag / = 2 ;
if ( dist < dist_upper_bound )
{
if ( curDiag / 3 < rrp . minDiag ) //store points only for the last level of recursion (?)
{
if ( rrp . offset = = 0 )
pvec . push_back ( closestPt ) ;
else
{
if ( dist > rrp . offset ) // points below the offset threshold cannot be displaced at the right offset distance, we can only make points nearer.
{
Point3f delta = startPt - closestPt ;
pvec . push_back ( closestPt + delta * ( rrp . offset / dist ) ) ;
}
}
}
if ( curDiag < rrp . minDiag ) return ;
Point3f hs = ( bb . max - bb . min ) / 2 ;
for ( int i = 0 ; i < 2 ; i + + )
for ( int j = 0 ; j < 2 ; j + + )
for ( int k = 0 ; k < 2 ; k + + )
SubdivideAndSample ( m , pvec ,
Box3f ( Point3f ( bb . min [ 0 ] + i * hs [ 0 ] , bb . min [ 1 ] + j * hs [ 1 ] , bb . min [ 2 ] + k * hs [ 2 ] ) ,
Point3f ( startPt [ 0 ] + i * hs [ 0 ] , startPt [ 1 ] + j * hs [ 1 ] , startPt [ 2 ] + k * hs [ 2 ] ) ) , rrp , curDiag ) ;
}
}
} ; // end class
} // end namespace tri
} // end namespace vcg
# endif