vcglib/vcg/complex/tetramesh/modify/edge_collapse.h

889 lines
24 KiB
C
Raw Normal View History

2004-06-15 18:00:21 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
****************************************************************************/
#ifndef __VCG_TETRA_EDGE_COLLAPSE
#define __VCG_TETRA_EDGE_COLLAPSE
#include <vcg/space/tetra3.h>
#include <vcg/complex/tetramesh/update/topology.h>
#include <vcg/complex/tetramesh/update/normal.h>
namespace vcg{
namespace tetra{
/** \addtogroup tetramesh */
/*@{*/
/// This Class is used for the edge collapse
template <class TETRA_MESH_TYPE>
class EdgeCollapse
{
public:
/// The tetrahedral mesh type
typedef typename TETRA_MESH_TYPE TetraMeshType;
/// The tetrahedron type
typedef typename TetraMeshType::TetraType TetraType;
/// The vertex type
typedef typename TetraType::VertexType VertexType;
/// The vertex iterator type
typedef typename TetraMeshType::VertexIterator VertexIterator;
/// The tetra iterator type
typedef typename TetraMeshType::TetraIterator TetraIterator;
/// The coordinate type
typedef typename TetraType::VertexType::CoordType CoordType;
/// The scalar type
typedef typename TetraMeshType::VertexType::ScalarType ScalarType;
///the container of tetrahedron type
typedef typename TetraMeshType::TetraContainer TetraContainer;
///the container of vertex type
typedef typename TetraMeshType::VertexContainer VertexContainer;
/// The HEdgePos type
typedef Pos<TetraType> PosType;
/// The HEdgePos Loop type
typedef PosLoop<TetraType> PosLType;
/// The topology updater type
typedef vcg::tetra::UpdateTetraTopology<VertexContainer,TetraContainer> Topology;
///the normal updater type
typedef vcg::tetra::UpdateNormals<TetraMeshType> UpdateNormals;
/// Default Constructor
EdgeCollapse()
{
};
~EdgeCollapse()
{
};
private:
vector<TetraType*> To_Del;
Topology _Topo;
UpdateNormals _UN;
2004-06-18 13:49:47 +02:00
//typedef pair <VertexType*,VertexType*> VertPair;
2004-06-15 18:00:21 +02:00
typedef pair <int,int> FacePair;
///select the 2 faces that does not share the edge
FacePair _FindNoEdgeFace(TetraType *t,int edge)
{
//as first I find the 2 faces on the opposite sides of the egde
int fa0=Tetra::FofE(edge,0);
int fa1=Tetra::FofE(edge,1);
//then find the faces that remain
int fa2=(fa0+1)%4;
while ((fa2==fa0)||(fa2==fa1))
{
fa2=(fa2+1)%4;
}
int fa3=(fa2+1)%4;
while ((fa3==fa0)||(fa3==fa1)||(fa3==fa2))
{
fa3=(fa3+1)%4;
}
return FacePair(fa2,fa3);
}
///Calculate the volume on the vertex resulting after collapse...
ScalarType _VolumeSimulateCollapse(PosType Pos,ScalarType alfa)
{
VertexType *Vrem=(Pos.T()->V(Tetra::VofE(Pos.E(),0)));
VertexType *Vdel=(Pos.T()->V(Tetra::VofE(Pos.E(),1)));
if (Vrem!=Pos.T()->V(Pos.V()))
swap<VertexType*>(Vdel,Vrem);
ScalarType vol=0;
CoordType oldpos = Vrem->P();
CoordType newpos=((Vrem->P()*alfa)+(Vdel->P()*(1.f-alfa)));
//move vertex that remain in the new position
Vrem->P() = newpos;
vector< TetraType *>::iterator ti=_Sets.no_E.begin();
while (ti!=_Sets.no_E.end())
{
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=(*ti)->V(0)->cP();
T.P1(0)=(*ti)->V(1)->cP();
T.P2(0)=(*ti)->V(2)->cP();
T.P3(0)=(*ti)->V(3)->cP();
vol+=T.ComputeVolume();
ti++;
}
Vrem->P()=oldpos;
return vol;
}
///return the sum of volumes of the union of stars on vertices
ScalarType _VolumeUnion()
{
vector< TetraType *>::iterator ti=_Sets.v0_U_v1.begin();
ScalarType vol=0;
while (ti!=_Sets.v0_U_v1.end())
{
vol+=(*ti)->Volume();
ti++;
}
return vol;
}
#ifdef _DEBUG
void _AssertingVolume(TetraType *t)
{
assert(t->ComputeVolume() >0);
}
#endif
2004-06-18 13:49:47 +02:00
///collpse de edge specified by pos (the first vertex on edge remain)
2004-06-15 18:00:21 +02:00
void _Collapse(PosType p,ScalarType alfa)
{
VertexType *Vrem=(p.T()->V(Tetra::VofE(p.E(),0)));
VertexType *Vdel=(p.T()->V(Tetra::VofE(p.E(),1)));
Vrem->P()=(Vrem->P()*alfa)+(Vdel->P()*(1.f-alfa));
PosLType pos(p.T(),p.F(),p.E(),p.V());
pos.Reset();
To_Del.reserve(40);
To_Del.clear();
while (!pos.LoopEnd())
{
//get the two faces that doesn't share the edge
FacePair fp=_FindNoEdgeFace(pos.T(),pos.E());
int fa0=fp.first;
int fa1=fp.second;
//now set the T-T topology on that faces
TetraType *tleft=pos.T()->TTp(fa0);
TetraType *tright=pos.T()->TTp(fa1);
int ileft=pos.T()->TTi(fa0);
int iright=pos.T()->TTi(fa1);
//in this case I cannot do the collapse
assert (!((pos.T()==tleft)&&(pos.T()==tright)));
//case no one is extern face
if ((!pos.T()->IsBorderF(fa0))&&(!pos.T()->IsBorderF(fa1)))
//connect the 2 tetrahedrons
2004-06-18 13:49:47 +02:00
_Topo._AttachTTTopology(tleft,ileft,tright,iright);
2004-06-15 18:00:21 +02:00
else
//case f2 is an extern face
if (pos.T()->IsBorderF(fa0))
{
tright->TTp(iright)=tright;
tright->TTi(iright)=iright;
}
else //case fa1 is an extern face
//if ((pos.T()->IsBorderF(fa3))
{
tleft->TTp(ileft)=tleft;
tleft->TTi(ileft)=ileft;
}
//end setting T-T topology
//setting the V-T topology
//i remove the tetrahedrons that have the edge
// to collapse
_Topo.DetachVTTopology(pos.T());
//end setting the V-T topology
To_Del.push_back(pos.T());
pos.NextT();
tm.tn--;
}
//delting old tetrahedrons
vector<TetraType*>::iterator ti;
for (ti=To_Del.begin();ti<To_Del.end();ti++)
(*ti)->SetD();
//now I cycle on the tetrahedron that had the old vertex
//reassegning the new one.
VTIterator< TetraType> VTi(Vdel->VTb(),Vdel->VTi());
while (!VTi.End())
{
TetraType *T_Change=VTi.Vt();
int index=VTi.Vi();
//VTi++;
//assegning the vertex that remain
T_Change->V(index)=Vrem;
_Topo.DetachVTTopology(Vdel,T_Change);
_Topo.InsertVTTopology(Vrem,index,T_Change);
//that's cause i restart everytime in the chain
//from the vertex
VTi.Vt()=Vdel->VTb();
VTi.Vi()=Vdel->VTi();
#ifdef _DEBUG
_AssertingVolume(T_Change);
#endif
}
if (Vdel->IsB())
Vrem->SetB();
//set as deleted the vertex
Vdel->SetD();
tm.vn--;
}
struct Face
{
VertexType* v[3];
Face( VertexType* a, VertexType* b,VertexType* c)
{
assert((a!=b)&&(b!=c)&&(a!=c));
v[0]=a;
v[1]=b;
v[2]=c;
sort(v,v+3);
}
const bool operator <(const Face & f) const
{
return ((v[0]==f.v[0])?((v[1]==f.v[1])?(v[2]<f.v[2]):(v[1]<f.v[1])):(v[0]<f.v[0]));
}
const bool operator ==(const Face & f) const {
return ((v[0]==f.v[0])&&(v[1]==f.v[1])&&(v[2]==f.v[2]));
}
};
struct Edge{
VertexType* v0;
VertexType* v1;
Edge( VertexType* a, VertexType* b){
assert(a!=b);
if(a<b)
{v0=a;v1=b;}
else
{v1=a;v0=b;}
}
const bool operator <(const Edge & e) const {
return (v0==e.v0)?(v1<e.v1):(v0<e.v0);
}
const bool operator ==(const Edge & e) const {
return (v0==e.v0)&&(v1==e.v1);
}
};
map<Edge,char> EdgeMark;
map<Face,char> FaceMark;
VertexType _dummyV;
void orMarkE(Edge E,char M)
{
map<Edge,char>::iterator EI;
EI=EdgeMark.find(E);
if (EI==EdgeMark.end())
EdgeMark.insert (pair<Edge,char>(E,M));
else
(*EI).second|=M;
}
bool isMarkedE(Edge E,char M)
{
map<Edge,char>::iterator EI;
EI=EdgeMark.find(E);
if (EI==EdgeMark.end())
return false;
else return ((*EI).second & M);
}
void orMarkF(Face F,char M)
{
map<Face,char>::iterator FI;
FI=FaceMark.find(F);
if (FI==FaceMark.end())
FaceMark.insert (pair<Face,char>(F,M));
else
(*FI).second|=M;
}
bool isMarkedF(Face F,char M)
{
map<Face,char>::iterator FI;
FI=FaceMark.find(F);
if (FI==FaceMark.end())
return false;
else return ((*FI).second & M);
}
///this structure is used to find the sets that are used in link conditions and more
struct TetraSets
{
std::vector <TetraType*> v0;
std::vector <TetraType*> v1;
std::vector <TetraType*> v0_U_v1;
std::vector <TetraType*> no_E;
std::vector <TetraType*> E;
std::vector <char> indexE;
std::vector <char> indexv0;
std::vector <char> indexv1;
};
TetraSets _Sets;
2004-06-18 13:49:47 +02:00
///verify the link conditions on faces
2004-06-15 18:00:21 +02:00
bool _LinkConditionsF(PosType pos)
{
const int LINK_V0 = 0x00000001;
const int LINK_EE = 0x00000002;
EdgeMark.clear();
// Mark edges of ve0
vector< TetraType *>::iterator ti=_Sets.v0.begin();
vector< char >::iterator en=_Sets.indexv0.begin();
while (ti!=_Sets.v0.end())
{
//put dummy face
for (int f=0;f<3;f++)
{
int f_test=Tetra::FofV((*en),f);
if ((*ti)->IsBorderF(f_test))
{
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,0)),(*ti)->V(Tetra::VofF(f_test,1)),&_dummyV),LINK_V0);
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,1)),(*ti)->V(Tetra::VofF(f_test,2)),&_dummyV),LINK_V0);
orMarkF(Face((*ti)->V(Tetra::VofF(f_test,2)),(*ti)->V(Tetra::VofF(f_test,0)),&_dummyV),LINK_V0);
}
}
ti++;
en++;
}
ti=_Sets.E.begin();
en=_Sets.indexE.begin();
//mark them as intersection
while (ti!=_Sets.E.end())
{
//faces on the edge
int f0=Tetra::FofE((*en),0);
int f1=Tetra::FofE((*en),1);
if ((*ti)->IsBorderF(f0))
{
orMarkF(Face((*ti)->V(Tetra::VofF(f0,0)),(*ti)->V(Tetra::VofF(f0,1)),&_dummyV),LINK_EE);
orMarkF(Face((*ti)->V(Tetra::VofF(f0,1)),(*ti)->V(Tetra::VofF(f0,2)),&_dummyV),LINK_EE);
orMarkF(Face((*ti)->V(Tetra::VofF(f0,2)),(*ti)->V(Tetra::VofF(f0,0)),&_dummyV),LINK_EE);
}
if ((*ti)->IsBorderF(f1))
{
orMarkF(Face((*ti)->V(Tetra::VofF(f1,0)),(*ti)->V(Tetra::VofF(f1,1)),&_dummyV),LINK_EE);
orMarkF(Face((*ti)->V(Tetra::VofF(f1,1)),(*ti)->V(Tetra::VofF(f1,2)),&_dummyV),LINK_EE);
orMarkF(Face((*ti)->V(Tetra::VofF(f1,2)),(*ti)->V(Tetra::VofF(f1,0)),&_dummyV),LINK_EE);
}
ti++;
en++;
}
//and at the end I verify if the intersection is equal to the star of the edge
ti=_Sets.v1.begin();
en=_Sets.indexv1.begin();
while (ti!=_Sets.v1.end())
{
//dummy edges control
for (int f=0;f<3;f++)
{
int f_test=Tetra::FofV((*en),f);
if ((*ti)->IsBorderF(f_test))
{
//control all the 3 edges
Face f_test0=Face((*ti)->V(Tetra::VofF(f_test,0)),(*ti)->V(Tetra::VofF(f_test,1)),&_dummyV);
Face f_test1=Face((*ti)->V(Tetra::VofF(f_test,1)),(*ti)->V(Tetra::VofF(f_test,2)),&_dummyV);
Face f_test2=Face((*ti)->V(Tetra::VofF(f_test,2)),(*ti)->V(Tetra::VofF(f_test,0)),&_dummyV);
if (((isMarkedF(f_test0,LINK_V0))&&(!isMarkedF(f_test0,LINK_EE)))||
((isMarkedF(f_test1,LINK_V0))&&(!isMarkedF(f_test1,LINK_EE)))||
((isMarkedF(f_test2,LINK_V0))&&(!isMarkedF(f_test2,LINK_EE))))
return false;
}
}
ti++;
en++;
}
return true;
}
2004-06-18 13:49:47 +02:00
///verify the link conditions on edges
2004-06-15 18:00:21 +02:00
bool _LinkConditionsE(PosType pos)
{
const int LINK_V0 = 0x00000001;
const int LINK_EE = 0x00000002;
FaceMark.clear();
// Mark edges of ve0
vector< TetraType *>::iterator ti=_Sets.v0.begin();
vector< char >::iterator en=_Sets.indexv0.begin();
while (ti!=_Sets.v0.end())
{
//put dummy edge
for (int f=0;f<3;f++)
{
int f_test=Tetra::FofV((*en),f);
if ((*ti)->IsBorderF(f_test))
{
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,0)),&_dummyV),LINK_V0);
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,1)),&_dummyV),LINK_V0);
orMarkE(Edge((*ti)->V(Tetra::VofF(f_test,2)),&_dummyV),LINK_V0);
}
}
ti++;
en++;
}
ti=_Sets.E.begin();
en=_Sets.indexE.begin();
//mark them as intersection
while (ti!=_Sets.E.end())
{
//faces on the edge
int f0=Tetra::FofE((*en),0);
int f1=Tetra::FofE((*en),1);
if ((*ti)->IsBorderF(f0))
{
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,0)),&_dummyV),LINK_EE);
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,1)),&_dummyV),LINK_EE);
orMarkE(Edge((*ti)->V(Tetra::VofF(f0,2)),&_dummyV),LINK_EE);
}
if ((*ti)->IsBorderF(f1))
{
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,0)),&_dummyV),LINK_EE);
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,1)),&_dummyV),LINK_EE);
orMarkE(Edge((*ti)->V(Tetra::VofF(f1,2)),&_dummyV),LINK_EE);
}
ti++;
en++;
}
//and at the end I verify if the intersection is equal to the star of the edge
ti=_Sets.v1.begin();
en=_Sets.indexv1.begin();
while (ti!=_Sets.v1.end())
{
//dummy edges control
for (int f=0;f<3;f++)
{
int f_test=Tetra::FofV((*en),f);
if ((*ti)->IsBorderF(f_test))
{
//control all the 3 edges
Edge e_test0=Edge((*ti)->V(Tetra::VofF(f_test,0)),&_dummyV);
Edge e_test1=Edge((*ti)->V(Tetra::VofF(f_test,1)),&_dummyV);
Edge e_test2=Edge((*ti)->V(Tetra::VofF(f_test,2)),&_dummyV);
if (((isMarkedE(e_test0,LINK_V0))&&(!isMarkedE(e_test0,LINK_EE)))||
((isMarkedE(e_test1,LINK_V0))&&(!isMarkedE(e_test1,LINK_EE)))||
((isMarkedE(e_test2,LINK_V0))&&(!isMarkedE(e_test2,LINK_EE))))
return false;
}
}
ti++;
en++;
}
return true;
}
2004-06-18 13:49:47 +02:00
///verify the link conditions on vertices
2004-06-15 18:00:21 +02:00
bool _LinkConditionsV()
{
const int LINK_V0 = VertexType::NewUserBit();
const int LINK_V1 = VertexType::NewUserBit();
const int LINK_EE = VertexType::NewUserBit();
const int NOT_LINKED = ~(LINK_V0 | LINK_V1 | LINK_EE);
_dummyV.Flags() &= NOT_LINKED;
VertexType *vt0;
VertexType *vt1;
VertexType *vt2;
VertexType *vt3;
vector< TetraType *>::iterator ti=_Sets.v0_U_v1.begin();
//reset all link flags
while (ti!=_Sets.v0_U_v1.end())
{
for(int i=0;i<4;i++)
(*ti)->V(i)->Flags() &= NOT_LINKED;
ti++;
}
//also in the ones that appartain to the edge
vector< char >::iterator en;
ti=_Sets.E.begin();
en=_Sets.indexE.begin();
//reset all link flags for intersection and in the same
//time mark them as intersection
while (ti!=_Sets.E.end())
{
for(int i=0;i<4;i++)
{
(*ti)->V(i)->Flags() &= NOT_LINKED;
(*ti)->V(i)->Flags() |= LINK_EE;
}
//dummy vertex
//faces on the edge
int f0=Tetra::FofE((*en),0);
int f1=Tetra::FofE((*en),1);
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1)))
_dummyV.Flags() |= LINK_EE;
ti++;
en++;
}
// Mark vertices of ve0
ti=_Sets.v0.begin();
en=_Sets.indexv0.begin();
while (ti!=_Sets.v0.end())
{
for(int i=0;i<4;i++)
(*ti)->V(i)->Flags() |= LINK_V0;
//dummy faces on the vertex
int f0=Tetra::FofV((*en),0);
int f1=Tetra::FofV((*en),1);
int f2=Tetra::FofV((*en),2);
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1))||((*ti)->IsBorderF(f2)))
_dummyV.Flags() |= LINK_V0;
ti++;
en++;
}
//and at the end I verify if the intersection is equal to the star of the edge
bool correct=true;
ti=_Sets.v1.begin();
en=_Sets.indexv1.begin();
while (ti!=_Sets.v1.end())
{
vt0=(*ti)->V(0);
vt1=(*ti)->V(1);
vt2=(*ti)->V(2);
vt3=(*ti)->V(3);
if ((vt0->Flags()& LINK_V0)&&(!(vt0->Flags()& LINK_EE)))
correct=false;
else
if ((vt1->Flags()& LINK_V0)&&(!(vt1->Flags()& LINK_EE)))
correct=false;
else
if ((vt2->Flags()& LINK_V0)&&(!(vt2->Flags()& LINK_EE)))
correct=false;
else
if ((vt3->Flags()& LINK_V0)&&(!(vt3->Flags()& LINK_EE)))
correct=false;
//dummy vertex control
int f0=Tetra::FofV((*en),0);
int f1=Tetra::FofV((*en),1);
int f2=Tetra::FofV((*en),2);
if (((*ti)->IsBorderF(f0))||((*ti)->IsBorderF(f1))||((*ti)->IsBorderF(f2)))
if ((_dummyV.Flags()& LINK_V0)&&(!(_dummyV.Flags()& LINK_EE)))
correct=false;
if (!correct)
{
VertexType::DeleteUserBit(LINK_EE);
VertexType::DeleteUserBit(LINK_V1);
VertexType::DeleteUserBit(LINK_V0);
return (false);
}
en++;
ti++;
}
VertexType::DeleteUserBit(LINK_EE);
VertexType::DeleteUserBit(LINK_V1);
VertexType::DeleteUserBit(LINK_V0);
return true;
}
2004-06-18 13:49:47 +02:00
///verify the flip condition
2004-06-15 18:00:21 +02:00
bool _FlipCondition(PosType pos,ScalarType alfa)
{
int edge=pos.E();
VertexType *ve0=pos.T()->V(Tetra::VofE(edge,0));
VertexType *ve1=pos.T()->V(Tetra::VofE(edge,1));
CoordType oldpos0;
CoordType oldpos1;
CoordType newpos=((ve0->P()*alfa)+(ve1->P()*(1.f-alfa)));
vector< TetraType *>::iterator ti=_Sets.no_E.begin();
//verification
oldpos0 = ve0->P();
oldpos1 = ve1->P();
//assegning new position
ve0->P() =newpos;
ve1->P() =newpos;
while (ti!=_Sets.no_E.end())
{
assert(!(*ti)->IsD());
assert((((*ti)->V(0)==ve0)||((*ti)->V(1)==ve0)||((*ti)->V(2)==ve0)||((*ti)->V(3)==ve0))^
(((*ti)->V(0)==ve1)||((*ti)->V(1)==ve1)||((*ti)->V(2)==ve1)||((*ti)->V(3)==ve1)));
Tetra3<ScalarType> T=Tetra3<ScalarType>();
T.P0(0)=(*ti)->V(0)->cP();
T.P1(0)=(*ti)->V(1)->cP();
T.P2(0)=(*ti)->V(2)->cP();
T.P3(0)=(*ti)->V(3)->cP();
//flip comes if volume is less or equal to zero
if (T.ComputeVolume()<=0)
{
ve0->P()=oldpos0;
ve1->P()=oldpos1;
return false;
}
ti++;
}
//reset initial value
ve0->P()=oldpos0;
ve1->P()=oldpos1;
return true;
}
///update the normal of the modified tetrahedrons ond the normal of the vertex that remain after collapse
void _SetNormal(VertexType* v)
{
if (TetraType::HasTetraNormal())
{
VTIterator<TetraType> VTi=VTIterator<TetraType>(v->VTb(),v->VTi());
while (!VTi.End())
{
VTi.Vt()->ComputeNormal();
VTi++;
}
}
if (VertexType::HasNormal())
_UN.PerVertex(v);
}
public:
///Return the aspect Ratio media of the tetrahedrons
///that share the adge to collapse
ScalarType AspectRatioCollapsed(PosType p)
{
PosL pos=PosL(p.T(),p.F(),p.E(),p.V());
pos.Reset();
int num=0;
ScalarType ratio_media=0.f;
while(!pos.end())
{
ratio_media+=pos.T()->AspectRatio();
pos.NextT();
num++;
}
ratio_media=ratio_media/num;
return (ratio_media);
}
2004-06-18 13:49:47 +02:00
///check the topologycal preserving conditions for the collapse indicated by pos
2004-06-15 18:00:21 +02:00
bool CheckPreconditions(PosType pos,ScalarType alfa)
{
VertexType *v0=pos.T()->V(Tetra::VofE(pos.E(),0));
VertexType *v1=pos.T()->V(Tetra::VofE(pos.E(),1));
//if the two vertices are of border and the edge is not a border edge
//we can do it.
bool border0=v0->IsB();
bool border1=v1->IsB();
bool bordere=_Topo.IsExternEdge(pos.T(),pos.E());
//first case vertex external and edge internal
if ((border0 && border1)&&(!bordere))
return false;
2004-06-18 13:49:47 +02:00
else
2004-06-15 18:00:21 +02:00
//if both vertex are internal so is enougth to verify flip conditions
if ((!border0) && (!border1))
return (_FlipCondition(pos,alfa));
else
//if the edge is internal is enougth to verify link condition on vertex
if (!bordere)
return((_FlipCondition(pos,alfa))&&(_LinkConditionsV()));
else
//at the end if trh edge is on the border we must verify also with the complete test
return ((_FlipCondition(pos,alfa))&&(_LinkConditionsV())&&(_LinkConditionsE(pos))&&(_LinkConditionsF(pos)));
//return false;
}
///Modify pos and alfa to obtain the collapse that minimize the error
void BestCollapse(PosType &pos,ScalarType &alfa,int nsteps)
{
bool ext_v0=(pos.T()->V(Tetra::VofE(pos.E(),0)))->IsB();
bool ext_v1=(pos.T()->V(Tetra::VofE(pos.E(),1)))->IsB();
if ((ext_v0)&&(!ext_v1))
alfa=1.f;
else
if ((!ext_v0)&&(ext_v1))
alfa=0.f;
else
if ((!ext_v0)&&(!ext_v1))
alfa=0.5f;
else
if ((ext_v0)&&(ext_v1))//both are external vertex
{
/*alfa=1.f;*/
ScalarType step=1.f/(nsteps-1);
ScalarType best_error=1000000.f;
ScalarType Vol_Original=_VolumeUnion();
for (int i=0;i<nsteps;i++)
{
ScalarType alfatemp=step*((double)i);
//the error is the absolute value of difference of volumes
ScalarType error=fabs(Vol_Original-_VolumeSimulateCollapse(pos,alfa));
if(error<best_error)
{
alfa=alfatemp;
best_error=error;
}
}
}
}
///finds sets used for all test in edge collapse
void FindSets(vcg::tetra::Pos<TetraType> pos)
{
_Sets.v0.clear();
_Sets.indexv0.clear();
_Sets.v1.clear();
_Sets.indexv1.clear();
_Sets.v0_U_v1.clear();
_Sets.E.clear();
_Sets.no_E.clear();
_Sets.indexE.clear();
int size=40;
_Sets.v0.reserve(size);
_Sets.indexv0.reserve(size);
_Sets.v1.reserve(size);
_Sets.indexv1.reserve(size);
_Sets.v0_U_v1.reserve(size*2);
_Sets.no_E.reserve(size*2);
_Sets.E.reserve(size);
_Sets.indexE.reserve(size);
int edge =pos.E();
VertexType *ve0=pos.T()->V(Tetra::VofE(edge,0));
VertexType *ve1=pos.T()->V(Tetra::VofE(edge,1));
// put all tetrahedrons in the first one vector and in the union
VTIterator<TetraType> vf0(ve0->VTb(),ve0->VTi());
while (!vf0.End())
{
//set of ve0
_Sets.v0.push_back(vf0.Vt());
_Sets.indexv0.push_back(vf0.Vi());
//set of union
_Sets.v0_U_v1.push_back(vf0.Vt());
//set of union minus intersection
if ((vf0.Vt()->V(0)!=ve1)&&(vf0.Vt()->V(1)!=ve1)&&(vf0.Vt()->V(2)!=ve1)&&(vf0.Vt()->V(3)!=ve1))
_Sets.no_E.push_back(vf0.Vt());
vf0++;
}
//second vertex iteration
vf0.Vt()=ve1->VTb();
vf0.Vi()=ve1->VTi();
while (!vf0.End())
{
//set of ve1
_Sets.v1.push_back(vf0.Vt());
_Sets.indexv1.push_back(vf0.Vi());
//set of union
_Sets.v0_U_v1.push_back(vf0.Vt());
//set of union minus intersection
if ((vf0.Vt()->V(0)!=ve0)&&(vf0.Vt()->V(1)!=ve0)&&(vf0.Vt()->V(2)!=ve0)&&(vf0.Vt()->V(3)!=ve0))
_Sets.no_E.push_back(vf0.Vt());
vf0++;
}
//erase duplicated tetrahedrons from the union set
sort(_Sets.v0_U_v1.begin(),_Sets.v0_U_v1.end());
unique(_Sets.v0_U_v1.begin(),_Sets.v0_U_v1.end());
//now compute the intersection
PosLType PL(pos.T(),pos.F(),pos.E(),pos.V());
//mark the vertex on the edge
while (!PL.LoopEnd())
{
_Sets.E.push_back(PL.T());
_Sets.indexE.push_back(PL.E());
PL.NextT();
}
}
///do the collapse on the edge in postype p
void DoCollapse(PosType p,ScalarType alfa)
{
VertexType *v=p.T()->V(p.V());
assert(p.T()->HasVTAdjacency());
assert((alfa>=0)&&(alfa<=1.f));
_Collapse(p,alfa);
_SetNormal(v);
}
};
}//end namespace
}//end namespace
#endif