2008-10-27 15:48:14 +01:00
|
|
|
/****************************************************************************
|
|
|
|
* VCGLib o o *
|
|
|
|
* Visual and Computer Graphics Library o o *
|
|
|
|
* _ O _ *
|
|
|
|
* Copyright(C) 2004 \/)\/ *
|
|
|
|
* Visual Computing Lab /\/| *
|
|
|
|
* ISTI - Italian National Research Council | *
|
|
|
|
* \ *
|
|
|
|
* All rights reserved. *
|
|
|
|
* *
|
|
|
|
* This program is free software; you can redistribute it and/or modify *
|
|
|
|
* it under the terms of the GNU General Public License as published by *
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or *
|
|
|
|
* (at your option) any later version. *
|
|
|
|
* *
|
|
|
|
* This program is distributed in the hope that it will be useful, *
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
|
|
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
|
|
|
* for more details. *
|
|
|
|
* *
|
|
|
|
****************************************************************************/
|
|
|
|
|
|
|
|
#ifndef EIGEN_VCGLIB
|
|
|
|
#define EIGEN_VCGLIB
|
|
|
|
|
make point2 derived Eigen's Matrix, and a set of minimal fixes to make meshlab compile
with both old and new version. The fixes include:
- dot product: vec0 * vec1 => vec0.dot(vec1) (I added .dot() to the old Point classes too)
- Transpose: Transpose is an Eigen type, so we cannot keep it if Eigen is used. Therefore
I added a .tranpose() to old matrix classes, and modified most of the Transpose() to transpose()
both in vcg and meshlab. In fact, transpose() are free with Eigen, it simply returns a transpose
expression without copies. On the other be carefull: m = m.transpose() won't work as expected,
here me must evaluate to a temporary: m = m.transpose().eval(); However, this operation in very
rarely needed: you transpose at the same sime you set m, or you use m.transpose() directly.
- the last issue is Normalize which both modifies *this and return a ref to it. This behavior
don't make sense anymore when using expression template, e.g., in (a+b).Normalize(), the type
of a+b if not a Point (or whatever Vector types), it an expression of the addition of 2 points,
so we cannot modify the value of *this, since there is no value. Therefore I've already changed
all those .Normalize() of expressions to the Eigen's version .normalized().
- Finally I've changed the Zero to SetZero in the old Point classes too.
2008-10-28 01:59:46 +01:00
|
|
|
// TODO enable the vectorization
|
|
|
|
#define EIGEN_DONT_VECTORIZE
|
2008-10-27 15:48:14 +01:00
|
|
|
#define EIGEN_MATRIXBASE_PLUGIN <vcg/math/eigen_vcgaddons.h>
|
|
|
|
|
2008-10-27 20:35:17 +01:00
|
|
|
#include "../Eigen/LU"
|
|
|
|
#include "../Eigen/Geometry"
|
2008-10-27 15:48:14 +01:00
|
|
|
#include "../Eigen/Array"
|
|
|
|
#include "../Eigen/Core"
|
2008-10-27 20:35:17 +01:00
|
|
|
#include "base.h"
|
|
|
|
|
|
|
|
namespace Eigen {
|
|
|
|
template<> struct NumTraits<unsigned char>
|
|
|
|
{
|
|
|
|
typedef unsigned char Real;
|
|
|
|
typedef float FloatingPoint;
|
|
|
|
enum {
|
|
|
|
IsComplex = 0,
|
|
|
|
HasFloatingPoint = 0,
|
|
|
|
ReadCost = 1,
|
|
|
|
AddCost = 1,
|
|
|
|
MulCost = 1
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
template<> struct NumTraits<short int>
|
|
|
|
{
|
|
|
|
typedef short int Real;
|
|
|
|
typedef float FloatingPoint;
|
|
|
|
enum {
|
|
|
|
IsComplex = 0,
|
|
|
|
HasFloatingPoint = 0,
|
|
|
|
ReadCost = 1,
|
|
|
|
AddCost = 1,
|
|
|
|
MulCost = 1
|
|
|
|
};
|
|
|
|
};
|
|
|
|
|
|
|
|
}
|
2008-10-27 15:48:14 +01:00
|
|
|
|
|
|
|
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, Op) \
|
|
|
|
template<typename OtherDerived> \
|
|
|
|
Derived& operator Op(const Eigen::MatrixBase<OtherDerived>& other) \
|
|
|
|
{ \
|
|
|
|
Base::operator Op(other.derived()); return *this;\
|
|
|
|
} \
|
|
|
|
Derived& operator Op(const Derived& other) \
|
|
|
|
{ \
|
|
|
|
Base::operator Op(other); return *this;\
|
|
|
|
}
|
|
|
|
|
|
|
|
#define VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, Op) \
|
|
|
|
template<typename Other> \
|
|
|
|
Derived& operator Op(const Other& scalar) \
|
|
|
|
{ \
|
|
|
|
Base::operator Op(scalar); return *this;\
|
|
|
|
}
|
|
|
|
|
|
|
|
#define VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Derived) \
|
|
|
|
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, =) \
|
|
|
|
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, +=) \
|
|
|
|
VCG_EIGEN_INHERIT_ASSIGNMENT_OPERATOR(Derived, -=) \
|
|
|
|
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, *=) \
|
|
|
|
VCG_EIGEN_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
|
|
|
|
|
2008-10-27 20:35:17 +01:00
|
|
|
|
|
|
|
namespace vcg {
|
|
|
|
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
|
|
typename Eigen::ei_traits<Derived1>::Scalar
|
|
|
|
Angle(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
|
|
|
|
{
|
|
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived1)
|
|
|
|
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived2)
|
|
|
|
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived1)
|
|
|
|
EIGEN_STATIC_ASSERT_FIXED_SIZE(Derived2)
|
|
|
|
EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived1,Derived2)
|
|
|
|
typedef typename Eigen::ei_traits<Derived1>::Scalar Scalar;
|
|
|
|
|
|
|
|
Scalar w = p1.norm()*p2.norm();
|
|
|
|
if(w==0) return Scalar(-1);
|
|
|
|
Scalar t = (p1.dot(p2))/w;
|
|
|
|
if(t>1) t = 1;
|
|
|
|
else if(t<-1) t = -1;
|
|
|
|
return vcg::math::Acos(t);
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename Derived1>
|
|
|
|
inline typename Eigen::ei_traits<Derived1>::Scalar Norm( const Eigen::MatrixBase<Derived1>& p)
|
|
|
|
{ return p.norm(); }
|
|
|
|
|
|
|
|
template<typename Derived1>
|
|
|
|
inline typename Eigen::ei_traits<Derived1>::Scalar SquaredNorm( const Eigen::MatrixBase<Derived1>& p)
|
|
|
|
{ return p.norm2(); }
|
|
|
|
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
|
|
inline typename Eigen::ei_traits<Derived1>::Scalar
|
|
|
|
Distance(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
|
|
|
|
{ return (p1-p2).norm(); }
|
|
|
|
|
|
|
|
template<typename Derived1, typename Derived2>
|
|
|
|
inline typename Eigen::ei_traits<Derived1>::Scalar
|
|
|
|
SquaredDistance(const Eigen::MatrixBase<Derived1>& p1, const Eigen::MatrixBase<Derived2> & p2)
|
|
|
|
{ return (p1-p2).norm2(); }
|
|
|
|
|
|
|
|
}
|
|
|
|
|
2008-10-27 15:48:14 +01:00
|
|
|
#endif
|