656 lines
17 KiB
C
656 lines
17 KiB
C
|
/****************************************************************************
|
||
|
* VCGLib o o *
|
||
|
* Visual and Computer Graphics Library o o *
|
||
|
* _ O _ *
|
||
|
* Copyright(C) 2004 \/)\/ *
|
||
|
* Visual Computing Lab /\/| *
|
||
|
* ISTI - Italian National Research Council | *
|
||
|
* \ *
|
||
|
* All rights reserved. *
|
||
|
* *
|
||
|
* This program is free software; you can redistribute it and/or modify *
|
||
|
* it under the terms of the GNU General Public License as published by *
|
||
|
* the Free Software Foundation; either version 2 of the License, or *
|
||
|
* (at your option) any later version. *
|
||
|
* *
|
||
|
* This program is distributed in the hope that it will be useful, *
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||
|
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||
|
* for more details. *
|
||
|
* *
|
||
|
****************************************************************************/
|
||
|
/****************************************************************************
|
||
|
History
|
||
|
|
||
|
$Log: not supported by cvs2svn $
|
||
|
****************************************************************************/
|
||
|
|
||
|
#ifndef __VCGLIB_UGRID
|
||
|
#define __VCGLIB_UGRID
|
||
|
|
||
|
namespace vcg {
|
||
|
|
||
|
/** Static Uniform Grid
|
||
|
A spatial search structure for a accessing a container of objects. It is based on a uniform grid overlayed over a protion of space.
|
||
|
The grid partion the space into cells. Cells contains just pointers to the object that are stored elsewhere.
|
||
|
The set of object is meant to be static and pointer stable.
|
||
|
Useful for situation were many space related query are issued over the same dataset (ray tracing, measuring distances between meshes, re-detailing ecc.). Works well for distribution that ar reasonably uniform.
|
||
|
How to use it:
|
||
|
|
||
|
*/
|
||
|
template < class ContainerType >
|
||
|
class UGrid
|
||
|
{
|
||
|
public:
|
||
|
|
||
|
/** Internal class for keeping the first pointer of object.
|
||
|
Definizione Link dentro la griglia. Classe di supporto per UGrid.
|
||
|
*/
|
||
|
class Link
|
||
|
{
|
||
|
public:
|
||
|
/// Costruttore di default
|
||
|
inline Link(){};
|
||
|
/// Costruttore con inizializzatori
|
||
|
inline Link( ContainerType::iterator const nt, const int ni ){
|
||
|
assert(ni>=0);
|
||
|
t = nt;
|
||
|
i = ni;
|
||
|
};
|
||
|
|
||
|
|
||
|
inline bool operator < ( const Link & l ) const{ return i < l.i; }
|
||
|
inline bool operator <= ( const Link & l ) const{ return i <= l.i; }
|
||
|
inline bool operator > ( const Link & l ) const{ return i > l.i; }
|
||
|
inline bool operator >= ( const Link & l ) const{ return i >= l.i; }
|
||
|
inline bool operator == ( const Link & l ) const{ return i == l.i; }
|
||
|
inline bool operator != ( const Link & l ) const{ return i != l.i; }
|
||
|
|
||
|
inline ContainerType::iterator & Elem() {
|
||
|
return t;
|
||
|
}
|
||
|
inline int & Index() {
|
||
|
return i;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
/// Puntatore all'elemento T
|
||
|
ContainerType::iterator t;
|
||
|
/// Indirizzo del voxel dentro la griglia
|
||
|
int i;
|
||
|
|
||
|
|
||
|
};//end class Link
|
||
|
|
||
|
typedef ContainerType::value_type ObjType;
|
||
|
typedef ObjType::ScalarType ScalarType;
|
||
|
typedef Point3<ScalarType> Point3x;
|
||
|
typedef Box3<ScalarType> Box3x;
|
||
|
typedef Line3<ScalarType> Line3x;
|
||
|
|
||
|
Box3x bbox;
|
||
|
Point3x dim; /// Dimensione spaziale (lunghezza lati) del bbox
|
||
|
Point3i siz; /// Dimensioni griglia in celle
|
||
|
Point3x voxel; /// Dimensioni di una cella
|
||
|
|
||
|
/// Insieme di tutti i links
|
||
|
vector<Link> links;
|
||
|
/// Griglia vera e propria
|
||
|
vector<Link *> grid;
|
||
|
|
||
|
/// Dato un punto, ritorna la cella che lo contiene
|
||
|
inline Link ** Grid( const Point3d & p )
|
||
|
{
|
||
|
int x = int( (p[0]-bbox.min[0])/voxel[0] );
|
||
|
int y = int( (p[1]-bbox.min[1])/voxel[1] );
|
||
|
int z = int( (p[2]-bbox.min[2])/voxel[2] );
|
||
|
|
||
|
#ifndef NDEBUG
|
||
|
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
|
||
|
return NULL;
|
||
|
else
|
||
|
#endif
|
||
|
|
||
|
return grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
|
||
|
}
|
||
|
/// Date le coordinate ritorna la cella
|
||
|
inline Link ** Grid( const int x, const int y, const int z )
|
||
|
{
|
||
|
#ifndef NDEBUG
|
||
|
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
|
||
|
assert(0);
|
||
|
//return NULL;
|
||
|
else
|
||
|
#endif
|
||
|
assert(x+siz[0]*(y+siz[1]*z<grid.size()));
|
||
|
return &*grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
|
||
|
}
|
||
|
|
||
|
void Grid( const Point3d & p, Link * & first, Link * & last )
|
||
|
{
|
||
|
Link ** g = Grid(s);
|
||
|
|
||
|
first = *g;
|
||
|
last = *(g+1);
|
||
|
}
|
||
|
|
||
|
void Grid( const int x, const int y, const int z, Link * & first, Link * & last )
|
||
|
{
|
||
|
Link ** g = Grid(x,y,z);
|
||
|
|
||
|
first = *g;
|
||
|
last = *(g+1);
|
||
|
}
|
||
|
|
||
|
/// Setta il bounding box della griglia
|
||
|
void SetBBox( const Box3x & b )
|
||
|
{
|
||
|
bbox = b;
|
||
|
dim = b.max - b.min;
|
||
|
}
|
||
|
|
||
|
void SetSafeBBox( const Box3x & b )
|
||
|
{
|
||
|
Box3x btmp=b;
|
||
|
btmp.InflateFix(0.01);
|
||
|
bbox = btmp;
|
||
|
dim = bbox.max - bbox.min;
|
||
|
}
|
||
|
|
||
|
/// Dato un punto 3d ritorna l'indice del box corrispondente
|
||
|
inline void PToIP(const Point3x & p, Point3i &pi ) const
|
||
|
{
|
||
|
Point3x t = p - bbox.min;
|
||
|
pi[0] = int( t[0]/voxel[0] );
|
||
|
pi[1] = int( t[1]/voxel[1] );
|
||
|
pi[2] = int( t[2]/voxel[2] );
|
||
|
}
|
||
|
/// Dato un box reale ritorna gli indici dei voxel compresi dentro un ibox
|
||
|
void BoxToIBox( const Box3x & b, Box3i & ib ) const
|
||
|
{
|
||
|
PToIP(b.min,ib.min);
|
||
|
PToIP(b.max,ib.max);
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef MONITOR_GRID
|
||
|
void ShowRayCastingStats() {
|
||
|
if (n_rays>0) {
|
||
|
printf("\n%d rays (%f faces in %f voxel per ray)\n",
|
||
|
n_rays,
|
||
|
double(n_traversed_elem)/n_rays,
|
||
|
double(n_traversed_voxel)/n_rays);
|
||
|
printf("HIT: %d rays (%d%%) (%f faces in %f voxel per ray)\n",
|
||
|
n_rays_hit,
|
||
|
(n_rays_hit*100)/n_rays,
|
||
|
double(n_traversed_elem_hit)/n_rays_hit,
|
||
|
double(n_traversed_voxel_hit)/n_rays_hit);
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
void ShowStats(FILE *fp)
|
||
|
{
|
||
|
// Conto le entry
|
||
|
int nentry = 0;
|
||
|
Hist H;
|
||
|
H.SetRange(0,1000,1000);
|
||
|
int pg;
|
||
|
for(pg=0;pg<grid.size()-1;++pg)
|
||
|
if( grid[pg]!=grid[pg+1] )
|
||
|
{
|
||
|
++nentry;
|
||
|
H.Add(grid[pg+1]-grid[pg]);
|
||
|
}
|
||
|
|
||
|
fprintf(fp,"Uniform Grid: %d x %d x %d (%d voxels), %.1f%% full, %d links \nNon empty Cell Occupancy Distribution Avg: %f (%4.0f %4.0f %4.0f) \n",
|
||
|
siz[0],siz[1],siz[2],grid.size()-1,
|
||
|
double(nentry)*100.0/(grid.size()-1),links.size(),H.Avg(),H.Percentile(.25),H.Percentile(.5),H.Percentile(.75)
|
||
|
|
||
|
);
|
||
|
}
|
||
|
void SlicedPPM( const char * filename )
|
||
|
{
|
||
|
xstring basename=filename;
|
||
|
xstring name;
|
||
|
int ix,iy,iz;
|
||
|
|
||
|
for(iz=0;iz<siz[2];++iz)
|
||
|
{
|
||
|
name.format("%s%03i.ppm",filename,iz);
|
||
|
FILE * fp = fopen(name,"wb");
|
||
|
fprintf(fp,
|
||
|
"P6\n"
|
||
|
"%d %d\n"
|
||
|
"255\n"
|
||
|
,siz[0]
|
||
|
,siz[1]
|
||
|
);
|
||
|
for(ix=0;ix<siz[0];++ix)
|
||
|
{
|
||
|
for(iy=0;iy<siz[1];++iy)
|
||
|
{
|
||
|
Link ** ii= Grid(ix,iy,iz);
|
||
|
if( *ii != *(ii+1) )
|
||
|
{
|
||
|
unsigned char c = 255;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
unsigned char c = 0;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
fclose(fp);
|
||
|
}
|
||
|
}
|
||
|
void PPM( const char * filename )
|
||
|
{
|
||
|
int ix,iy,iz;
|
||
|
|
||
|
FILE * fp = fopen(filename,"wb");
|
||
|
fprintf(fp,
|
||
|
"P6\n"
|
||
|
"%d %d\n"
|
||
|
"255\n"
|
||
|
,(siz[1]+1)*siz[0]
|
||
|
,siz[2]
|
||
|
);
|
||
|
for(iz=0;iz<siz[2];++iz)
|
||
|
for(ix=0;ix<siz[0];++ix)
|
||
|
{
|
||
|
for(iy=0;iy<siz[1];++iy)
|
||
|
{
|
||
|
int i = ix+siz[0]*(iy+siz[1]*iz);
|
||
|
if( grid[i]!=grid[i+1] )
|
||
|
{
|
||
|
unsigned char c = 255;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
unsigned char c = 0;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
}
|
||
|
}
|
||
|
{
|
||
|
unsigned char c = 0;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
fwrite(&c,1,1,fp);
|
||
|
c = 255;
|
||
|
fwrite(&c,1,1,fp);
|
||
|
}
|
||
|
}
|
||
|
fclose(fp);
|
||
|
}
|
||
|
|
||
|
|
||
|
/** Returns the closest posistion of a point p and its distance
|
||
|
@param p a 3d point
|
||
|
@return The closest element
|
||
|
*/
|
||
|
T * GetClosest( const Point3x & p, ScalarType & min_dist, Point3x & res)
|
||
|
{
|
||
|
ScalarType dx = ( (p[0]-bbox.min[0])/voxel[0] );
|
||
|
ScalarType dy = ( (p[1]-bbox.min[1])/voxel[1] );
|
||
|
ScalarType dz = ( (p[2]-bbox.min[2])/voxel[2] );
|
||
|
|
||
|
int ix = int( dx );
|
||
|
int iy = int( dy );
|
||
|
int iz = int( dz );
|
||
|
|
||
|
double voxel_min=voxel[0];
|
||
|
if (voxel_min<voxel[1]) voxel_min=voxel[1];
|
||
|
if (voxel_min<voxel[2]) voxel_min=voxel[2];
|
||
|
|
||
|
ScalarType radius=(dx-ScalarType(ix));
|
||
|
if (radius>0.5) radius=(1.0-radius); radius*=voxel[0];
|
||
|
|
||
|
/*ScalarType radio_if[6];
|
||
|
radio_if[0]= (dx-double(ix) )*voxel[0] ;
|
||
|
radio_if[1]= (dy-double(iy) )*voxel[1] ;
|
||
|
radio_if[2]= (dz-double(iz) )*voxel[2] ;
|
||
|
radio_if[3]= (1.0+double(ix)-dx)*voxel[0] ;
|
||
|
radio_if[4]= (1.0+double(iy)-dy)*voxel[1] ;
|
||
|
radio_if[5]= (1.0+double(iz)-dz)*voxel[2] ;*/
|
||
|
|
||
|
ScalarType
|
||
|
tmp=dy-ScalarType(iy); if (tmp>0.5) tmp=1.0-tmp; tmp*=voxel[1]; if (radius>tmp) radius=tmp;
|
||
|
tmp=dz-ScalarType(iz); if (tmp>0.5) tmp=1.0-tmp; tmp*=voxel[2]; if (radius>tmp) radius=tmp;
|
||
|
|
||
|
Point3x t_res;
|
||
|
//ScalarType min_dist=1e10;
|
||
|
T* winner=NULL;
|
||
|
|
||
|
Link *first, *last, *l;
|
||
|
if ((ix>=0) && (iy>=0) && (iz>=0) && (ix<siz[0]) && (iy<siz[1]) && (iz<siz[2])) {
|
||
|
|
||
|
Grid( ix, iy, iz, first, last );
|
||
|
for(l=first;l!=last;++l)
|
||
|
{
|
||
|
if (l->Elem()->Dist(p,min_dist,t_res)) {
|
||
|
winner=&*(l->Elem());
|
||
|
res=t_res;
|
||
|
|
||
|
}
|
||
|
};
|
||
|
};
|
||
|
|
||
|
//return winner;
|
||
|
|
||
|
Point3i done_min=Point3i(ix,iy,iz), done_max=Point3i(ix,iy,iz);
|
||
|
|
||
|
//printf(".");
|
||
|
|
||
|
while (min_dist>radius) {
|
||
|
//if (dy-ScalarType(iy))
|
||
|
done_min[0]--; if (done_min[0]<0) done_min[0]=0;
|
||
|
done_min[1]--; if (done_min[1]<0) done_min[1]=0;
|
||
|
done_min[2]--; if (done_min[2]<0) done_min[2]=0;
|
||
|
done_max[0]++; if (done_max[0]>=siz[0]-1) done_max[0]=siz[0]-1;
|
||
|
done_max[1]++; if (done_max[1]>=siz[1]-1) done_max[1]=siz[1]-1;
|
||
|
done_max[2]++; if (done_max[2]>=siz[2]-1) done_max[2]=siz[2]-1;
|
||
|
radius+=voxel_min;
|
||
|
//printf("+");
|
||
|
for (ix=done_min[0]; ix<=done_max[0]; ix++)
|
||
|
for (iy=done_min[1]; iy<=done_max[1]; iy++)
|
||
|
for (iz=done_min[2]; iz<=done_max[2]; iz++)
|
||
|
{
|
||
|
Grid( ix, iy, iz, first, last );
|
||
|
for(l=first;l!=last;++l)
|
||
|
{
|
||
|
if (l->Elem()->Dist(p,min_dist,t_res)) {
|
||
|
winner=&*(l->Elem());
|
||
|
res=t_res;
|
||
|
};
|
||
|
};
|
||
|
}
|
||
|
};
|
||
|
return winner;
|
||
|
};
|
||
|
|
||
|
T * DoRay( Line3x & ray, double & dist , double &p_a, double &p_b)
|
||
|
{
|
||
|
int ix,iy,iz;
|
||
|
double gx,gy,gz;
|
||
|
|
||
|
if(!bbox.IsIn(ray.orig))
|
||
|
{
|
||
|
//printf(".");
|
||
|
|
||
|
Point3x ip;
|
||
|
if(Intersection(bbox,ray,ip))
|
||
|
{
|
||
|
ix = int( (ip.x() - bbox.min.x())/voxel.x() );
|
||
|
iy = int( (ip.y() - bbox.min.y())/voxel.y() );
|
||
|
iz = int( (ip.z() - bbox.min.z())/voxel.z() );
|
||
|
if(ix<0) ix = 0;
|
||
|
if(iy<0) iy = 0;
|
||
|
if(iz<0) iz = 0;
|
||
|
if(ix>=siz[0]) ix = siz[0]-1;
|
||
|
if(iy>=siz[1]) iy = siz[1]-1;
|
||
|
if(iz>=siz[2]) iz = siz[2]-1;
|
||
|
}
|
||
|
else
|
||
|
return 0;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* Indici di voxel */
|
||
|
ix = int( (ray.orig.x() - bbox.min.x())/voxel.x() );
|
||
|
iy = int( (ray.orig.y() - bbox.min.y())/voxel.y() );
|
||
|
iz = int( (ray.orig.z() - bbox.min.z())/voxel.z() );
|
||
|
}
|
||
|
|
||
|
/* Punti goal */
|
||
|
if(ray.dire.x()>0.0) gx=double(ix+1)*voxel.x()+bbox.min.x();
|
||
|
else gx=double(ix )*voxel.x()+bbox.min.x();
|
||
|
if(ray.dire.y()>0.0) gy=double(iy+1)*voxel.y()+bbox.min.y();
|
||
|
else gy=double(iy )*voxel.y()+bbox.min.y();
|
||
|
if(ray.dire.z()>0.0) gz=double(iz+1)*voxel.z()+bbox.min.z();
|
||
|
else gz=double( iz )*voxel.z()+bbox.min.z();
|
||
|
|
||
|
const ScalarType MAXFLOAT = 1e50;
|
||
|
const ScalarType EPSILON = 1e-50;
|
||
|
|
||
|
/* Parametri della linea */
|
||
|
double tx,ty,tz;
|
||
|
if( fabs(ray.dire.x())>EPSILON ) tx = (gx-ray.orig.x())/ray.dire.x();
|
||
|
else tx = MAXFLOAT;
|
||
|
if( fabs(ray.dire.y())>EPSILON ) ty = (gy-ray.orig.y())/ray.dire.y();
|
||
|
else ty = MAXFLOAT;
|
||
|
if( fabs(ray.dire.z())>EPSILON ) tz = (gz-ray.orig.z())/ray.dire.z();
|
||
|
else tz = MAXFLOAT;
|
||
|
|
||
|
T * bestf = NULL;
|
||
|
|
||
|
#ifdef MONITOR_GRID
|
||
|
int n_traversed_voxel0=0,n_traversed_elem0=0;
|
||
|
n_rays++;
|
||
|
#endif
|
||
|
for(;;)
|
||
|
{
|
||
|
Link *first, *last, *l;
|
||
|
Grid( ix, iy, iz, first, last );
|
||
|
#ifdef MONITOR_GRID
|
||
|
n_traversed_voxel++;n_traversed_voxel0++;
|
||
|
#endif
|
||
|
for(l=first;l!=last;++l)
|
||
|
{
|
||
|
#ifdef MONITOR_GRID
|
||
|
n_traversed_elem++;n_traversed_elem0++;
|
||
|
#endif
|
||
|
//return &(*(l->Elem()));
|
||
|
if(l->Elem()->Intersect(ray,dist, p_a, p_b)) {
|
||
|
#ifdef MONITOR_GRID
|
||
|
n_traversed_voxel_hit+=n_traversed_voxel0;
|
||
|
n_traversed_elem_hit+=n_traversed_elem0;
|
||
|
n_rays_hit++;
|
||
|
#endif
|
||
|
|
||
|
return &(*(l->Elem()));
|
||
|
//{
|
||
|
// bestf = &(*(l->Elem())); break;
|
||
|
//}
|
||
|
}
|
||
|
//if(bestf) break;
|
||
|
}
|
||
|
|
||
|
if( tx<ty && tx<tz ){
|
||
|
if(ray.dire.x()<0.0) { gx -= voxel.x(); --ix; if(ix<0 ) break; }
|
||
|
else { gx += voxel.x(); ++ix; if(ix>=siz[0]) break; }
|
||
|
tx = (gx-ray.orig.x())/ray.dire.x();
|
||
|
} else if( ty<tz ){
|
||
|
if(ray.dire.y()<0.0) { gy -= voxel.y(); --iy; if(iy<0 ) break; }
|
||
|
else { gy += voxel.y(); ++iy; if(iy>=siz[1]) break; }
|
||
|
ty = (gy-ray.orig.y())/ray.dire.y();
|
||
|
} else {
|
||
|
if(ray.dire.z()<0.0) { gz -= voxel.z(); --iz; if(iz<0 ) break; }
|
||
|
else { gz += voxel.z(); ++iz; if(iz>=siz[2]) break; }
|
||
|
tz = (gz-ray.orig.z())/ray.dire.z();
|
||
|
}
|
||
|
}
|
||
|
return bestf;
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Inserisce una mesh nella griglia. Nota: prima bisogna
|
||
|
/// chiamare SetBBox che setta dim in maniera corretta
|
||
|
void Set( S & s )
|
||
|
{
|
||
|
Set(s,s.size());
|
||
|
}
|
||
|
|
||
|
|
||
|
/// Inserisce una mesh nella griglia. Nota: prima bisogna
|
||
|
/// chiamare SetBBox che setta dim in maniera corretta
|
||
|
void Set( S & s,int _size )
|
||
|
{
|
||
|
Point3i _siz;
|
||
|
|
||
|
BestDim( _size, dim, _siz );
|
||
|
Set(s,_siz);
|
||
|
}
|
||
|
void Set(S & s, Point3i _siz)
|
||
|
{
|
||
|
siz=_siz;
|
||
|
// Calcola la dimensione della griglia
|
||
|
voxel[0] = dim[0]/siz[0];
|
||
|
voxel[1] = dim[1]/siz[1];
|
||
|
voxel[2] = dim[2]/siz[2];
|
||
|
|
||
|
// "Alloca" la griglia: +1 per la sentinella
|
||
|
grid.resize( siz[0]*siz[1]*siz[2]+1 );
|
||
|
|
||
|
// Ciclo inserimento dei tetraedri: creazione link
|
||
|
links.clear();
|
||
|
S::iterator pt;
|
||
|
for(pt=s.begin(); pt!=s.end(); ++pt)
|
||
|
{
|
||
|
Box3x bb; // Boundig box del tetraedro corrente
|
||
|
(*pt).GetBBox(bb);
|
||
|
bb.Intersect(bbox);
|
||
|
if(! bb.IsNull() )
|
||
|
{
|
||
|
Box3i ib; // Boundig box in voxels
|
||
|
BoxToIBox( bb,ib );
|
||
|
/*ib.min-=Point3i(1,1,1);
|
||
|
ib.max+=Point3i(1,1,1);
|
||
|
if (ib.min[0]<0) ib.min[0]=0;
|
||
|
if (ib.min[1]<0) ib.min[1]=0;
|
||
|
if (ib.min[2]<0) ib.min[2]=0;
|
||
|
if (ib.max[0]>siz[0]) ib.max[0]=siz[0];
|
||
|
if (ib.max[1]>siz[1]) ib.max[1]=siz[1];
|
||
|
if (ib.max[2]>siz[2]) ib.max[2]=siz[2];*/
|
||
|
|
||
|
int x,y,z;
|
||
|
for(z=ib.min[2];z<=ib.max[2];++z)
|
||
|
{
|
||
|
int bz = z*siz[1];
|
||
|
for(y=ib.min[1];y<=ib.max[1];++y)
|
||
|
{
|
||
|
int by = (y+bz)*siz[0];
|
||
|
for(x=ib.min[0];x<=ib.max[0];++x)
|
||
|
// Inserire calcolo cella corrente
|
||
|
// if( pt->Intersect( ... )
|
||
|
links.push_back( Link(pt,by+x) );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
// Push della sentinella
|
||
|
links.push_back( Link(NULL,grid.size()-1) );
|
||
|
|
||
|
// Ordinamento dei links
|
||
|
sort( links.begin(), links.end() );
|
||
|
|
||
|
// Creazione puntatori ai links
|
||
|
vector<Link>::iterator pl;
|
||
|
int pg;
|
||
|
pl = links.begin();
|
||
|
for(pg=0;pg<grid.size();++pg)
|
||
|
{
|
||
|
assert(pl!=links.end());
|
||
|
|
||
|
grid[pg] = &*pl;
|
||
|
while( pg == pl->Index() ) // Trovato inizio
|
||
|
{
|
||
|
++pl; // Ricerca prossimo blocco
|
||
|
if(pl==links.end())
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
/** Calcolo dimensioni griglia.
|
||
|
Calcola la dimensione della griglia in funzione
|
||
|
della ratio del bounding box e del numero di elementi
|
||
|
*/
|
||
|
static void BestDim( const int elems, const Point3x & size, Point3i & dim )
|
||
|
{
|
||
|
const int mincells = 27; // Numero minimo di celle
|
||
|
const double GFactor = 1.0; // GridEntry = NumElem*GFactor
|
||
|
double diag = size.Norm(); // Diagonale del box
|
||
|
double eps = diag*1e-4; // Fattore di tolleranza
|
||
|
|
||
|
assert(elems>0);
|
||
|
assert(size[0]>=0.0);
|
||
|
assert(size[1]>=0.0);
|
||
|
assert(size[2]>=0.0);
|
||
|
|
||
|
int ncell = int(elems*GFactor); // Calcolo numero di voxel
|
||
|
if(ncell<mincells)
|
||
|
ncell = mincells;
|
||
|
|
||
|
dim[0] = 1;
|
||
|
dim[1] = 1;
|
||
|
dim[2] = 1;
|
||
|
|
||
|
if(size[0]>eps)
|
||
|
{
|
||
|
if(size[1]>eps)
|
||
|
{
|
||
|
if(size[2]>eps)
|
||
|
{
|
||
|
double k = pow(ncell/(size[0]*size[1]*size[2]),1.0/3.0);
|
||
|
dim[0] = int(size[0] * k);
|
||
|
dim[1] = int(size[1] * k);
|
||
|
dim[2] = int(size[2] * k);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
dim[0] = int(::sqrt(ncell*size[0]/size[1]));
|
||
|
dim[1] = int(::sqrt(ncell*size[1]/size[0]));
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(size[2]>eps)
|
||
|
{
|
||
|
dim[0] = int(::sqrt(ncell*size[0]/size[2]));
|
||
|
dim[2] = int(::sqrt(ncell*size[2]/size[0]));
|
||
|
}
|
||
|
else
|
||
|
dim[0] = int(ncell);
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if(size[1]>eps)
|
||
|
{
|
||
|
if(size[2]>eps)
|
||
|
{
|
||
|
dim[1] = int(::sqrt(ncell*size[1]/size[2]));
|
||
|
dim[2] = int(::sqrt(ncell*size[2]/size[1]));
|
||
|
}
|
||
|
else
|
||
|
dim[1] = int(ncell);
|
||
|
}
|
||
|
else if(size[2]>eps)
|
||
|
dim[2] = int(ncell);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int MemUsed()
|
||
|
{
|
||
|
return sizeof(UGrid)+ sizeof(Link)*links.size() + sizeof(Link *) * grid.size();
|
||
|
}
|
||
|
}; //end class UGrid
|
||
|
|
||
|
} // end namespace
|
||
|
|
||
|
#endif
|