vcglib/vcg/space/index/ugrid.h

656 lines
17 KiB
C
Raw Normal View History

2004-03-08 10:24:59 +01:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#ifndef __VCGLIB_UGRID
#define __VCGLIB_UGRID
namespace vcg {
/** Static Uniform Grid
A spatial search structure for a accessing a container of objects. It is based on a uniform grid overlayed over a protion of space.
The grid partion the space into cells. Cells contains just pointers to the object that are stored elsewhere.
The set of object is meant to be static and pointer stable.
Useful for situation were many space related query are issued over the same dataset (ray tracing, measuring distances between meshes, re-detailing ecc.). Works well for distribution that ar reasonably uniform.
How to use it:
*/
template < class ContainerType >
class UGrid
{
public:
/** Internal class for keeping the first pointer of object.
Definizione Link dentro la griglia. Classe di supporto per UGrid.
*/
class Link
{
public:
/// Costruttore di default
inline Link(){};
/// Costruttore con inizializzatori
inline Link( ContainerType::iterator const nt, const int ni ){
assert(ni>=0);
t = nt;
i = ni;
};
inline bool operator < ( const Link & l ) const{ return i < l.i; }
inline bool operator <= ( const Link & l ) const{ return i <= l.i; }
inline bool operator > ( const Link & l ) const{ return i > l.i; }
inline bool operator >= ( const Link & l ) const{ return i >= l.i; }
inline bool operator == ( const Link & l ) const{ return i == l.i; }
inline bool operator != ( const Link & l ) const{ return i != l.i; }
inline ContainerType::iterator & Elem() {
return t;
}
inline int & Index() {
return i;
}
private:
/// Puntatore all'elemento T
ContainerType::iterator t;
/// Indirizzo del voxel dentro la griglia
int i;
};//end class Link
typedef ContainerType::value_type ObjType;
typedef ObjType::ScalarType ScalarType;
typedef Point3<ScalarType> Point3x;
typedef Box3<ScalarType> Box3x;
typedef Line3<ScalarType> Line3x;
Box3x bbox;
Point3x dim; /// Dimensione spaziale (lunghezza lati) del bbox
Point3i siz; /// Dimensioni griglia in celle
Point3x voxel; /// Dimensioni di una cella
/// Insieme di tutti i links
vector<Link> links;
/// Griglia vera e propria
vector<Link *> grid;
/// Dato un punto, ritorna la cella che lo contiene
inline Link ** Grid( const Point3d & p )
{
int x = int( (p[0]-bbox.min[0])/voxel[0] );
int y = int( (p[1]-bbox.min[1])/voxel[1] );
int z = int( (p[2]-bbox.min[2])/voxel[2] );
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
return NULL;
else
#endif
return grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
/// Date le coordinate ritorna la cella
inline Link ** Grid( const int x, const int y, const int z )
{
#ifndef NDEBUG
if ( x<0 || x>=siz[0] || y<0 || y>=siz[1] || z<0 || z>=siz[2] )
assert(0);
//return NULL;
else
#endif
assert(x+siz[0]*(y+siz[1]*z<grid.size()));
return &*grid.begin() + ( x+siz[0]*(y+siz[1]*z) );
}
void Grid( const Point3d & p, Link * & first, Link * & last )
{
Link ** g = Grid(s);
first = *g;
last = *(g+1);
}
void Grid( const int x, const int y, const int z, Link * & first, Link * & last )
{
Link ** g = Grid(x,y,z);
first = *g;
last = *(g+1);
}
/// Setta il bounding box della griglia
void SetBBox( const Box3x & b )
{
bbox = b;
dim = b.max - b.min;
}
void SetSafeBBox( const Box3x & b )
{
Box3x btmp=b;
btmp.InflateFix(0.01);
bbox = btmp;
dim = bbox.max - bbox.min;
}
/// Dato un punto 3d ritorna l'indice del box corrispondente
inline void PToIP(const Point3x & p, Point3i &pi ) const
{
Point3x t = p - bbox.min;
pi[0] = int( t[0]/voxel[0] );
pi[1] = int( t[1]/voxel[1] );
pi[2] = int( t[2]/voxel[2] );
}
/// Dato un box reale ritorna gli indici dei voxel compresi dentro un ibox
void BoxToIBox( const Box3x & b, Box3i & ib ) const
{
PToIP(b.min,ib.min);
PToIP(b.max,ib.max);
}
#ifdef MONITOR_GRID
void ShowRayCastingStats() {
if (n_rays>0) {
printf("\n%d rays (%f faces in %f voxel per ray)\n",
n_rays,
double(n_traversed_elem)/n_rays,
double(n_traversed_voxel)/n_rays);
printf("HIT: %d rays (%d%%) (%f faces in %f voxel per ray)\n",
n_rays_hit,
(n_rays_hit*100)/n_rays,
double(n_traversed_elem_hit)/n_rays_hit,
double(n_traversed_voxel_hit)/n_rays_hit);
}
}
#endif
void ShowStats(FILE *fp)
{
// Conto le entry
int nentry = 0;
Hist H;
H.SetRange(0,1000,1000);
int pg;
for(pg=0;pg<grid.size()-1;++pg)
if( grid[pg]!=grid[pg+1] )
{
++nentry;
H.Add(grid[pg+1]-grid[pg]);
}
fprintf(fp,"Uniform Grid: %d x %d x %d (%d voxels), %.1f%% full, %d links \nNon empty Cell Occupancy Distribution Avg: %f (%4.0f %4.0f %4.0f) \n",
siz[0],siz[1],siz[2],grid.size()-1,
double(nentry)*100.0/(grid.size()-1),links.size(),H.Avg(),H.Percentile(.25),H.Percentile(.5),H.Percentile(.75)
);
}
void SlicedPPM( const char * filename )
{
xstring basename=filename;
xstring name;
int ix,iy,iz;
for(iz=0;iz<siz[2];++iz)
{
name.format("%s%03i.ppm",filename,iz);
FILE * fp = fopen(name,"wb");
fprintf(fp,
"P6\n"
"%d %d\n"
"255\n"
,siz[0]
,siz[1]
);
for(ix=0;ix<siz[0];++ix)
{
for(iy=0;iy<siz[1];++iy)
{
Link ** ii= Grid(ix,iy,iz);
if( *ii != *(ii+1) )
{
unsigned char c = 255;
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
}
else
{
unsigned char c = 0;
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
}
}
}
fclose(fp);
}
}
void PPM( const char * filename )
{
int ix,iy,iz;
FILE * fp = fopen(filename,"wb");
fprintf(fp,
"P6\n"
"%d %d\n"
"255\n"
,(siz[1]+1)*siz[0]
,siz[2]
);
for(iz=0;iz<siz[2];++iz)
for(ix=0;ix<siz[0];++ix)
{
for(iy=0;iy<siz[1];++iy)
{
int i = ix+siz[0]*(iy+siz[1]*iz);
if( grid[i]!=grid[i+1] )
{
unsigned char c = 255;
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
}
else
{
unsigned char c = 0;
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
}
}
{
unsigned char c = 0;
fwrite(&c,1,1,fp);
fwrite(&c,1,1,fp);
c = 255;
fwrite(&c,1,1,fp);
}
}
fclose(fp);
}
/** Returns the closest posistion of a point p and its distance
@param p a 3d point
@return The closest element
*/
T * GetClosest( const Point3x & p, ScalarType & min_dist, Point3x & res)
{
ScalarType dx = ( (p[0]-bbox.min[0])/voxel[0] );
ScalarType dy = ( (p[1]-bbox.min[1])/voxel[1] );
ScalarType dz = ( (p[2]-bbox.min[2])/voxel[2] );
int ix = int( dx );
int iy = int( dy );
int iz = int( dz );
double voxel_min=voxel[0];
if (voxel_min<voxel[1]) voxel_min=voxel[1];
if (voxel_min<voxel[2]) voxel_min=voxel[2];
ScalarType radius=(dx-ScalarType(ix));
if (radius>0.5) radius=(1.0-radius); radius*=voxel[0];
/*ScalarType radio_if[6];
radio_if[0]= (dx-double(ix) )*voxel[0] ;
radio_if[1]= (dy-double(iy) )*voxel[1] ;
radio_if[2]= (dz-double(iz) )*voxel[2] ;
radio_if[3]= (1.0+double(ix)-dx)*voxel[0] ;
radio_if[4]= (1.0+double(iy)-dy)*voxel[1] ;
radio_if[5]= (1.0+double(iz)-dz)*voxel[2] ;*/
ScalarType
tmp=dy-ScalarType(iy); if (tmp>0.5) tmp=1.0-tmp; tmp*=voxel[1]; if (radius>tmp) radius=tmp;
tmp=dz-ScalarType(iz); if (tmp>0.5) tmp=1.0-tmp; tmp*=voxel[2]; if (radius>tmp) radius=tmp;
Point3x t_res;
//ScalarType min_dist=1e10;
T* winner=NULL;
Link *first, *last, *l;
if ((ix>=0) && (iy>=0) && (iz>=0) && (ix<siz[0]) && (iy<siz[1]) && (iz<siz[2])) {
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
}
};
};
//return winner;
Point3i done_min=Point3i(ix,iy,iz), done_max=Point3i(ix,iy,iz);
//printf(".");
while (min_dist>radius) {
//if (dy-ScalarType(iy))
done_min[0]--; if (done_min[0]<0) done_min[0]=0;
done_min[1]--; if (done_min[1]<0) done_min[1]=0;
done_min[2]--; if (done_min[2]<0) done_min[2]=0;
done_max[0]++; if (done_max[0]>=siz[0]-1) done_max[0]=siz[0]-1;
done_max[1]++; if (done_max[1]>=siz[1]-1) done_max[1]=siz[1]-1;
done_max[2]++; if (done_max[2]>=siz[2]-1) done_max[2]=siz[2]-1;
radius+=voxel_min;
//printf("+");
for (ix=done_min[0]; ix<=done_max[0]; ix++)
for (iy=done_min[1]; iy<=done_max[1]; iy++)
for (iz=done_min[2]; iz<=done_max[2]; iz++)
{
Grid( ix, iy, iz, first, last );
for(l=first;l!=last;++l)
{
if (l->Elem()->Dist(p,min_dist,t_res)) {
winner=&*(l->Elem());
res=t_res;
};
};
}
};
return winner;
};
T * DoRay( Line3x & ray, double & dist , double &p_a, double &p_b)
{
int ix,iy,iz;
double gx,gy,gz;
if(!bbox.IsIn(ray.orig))
{
//printf(".");
Point3x ip;
if(Intersection(bbox,ray,ip))
{
ix = int( (ip.x() - bbox.min.x())/voxel.x() );
iy = int( (ip.y() - bbox.min.y())/voxel.y() );
iz = int( (ip.z() - bbox.min.z())/voxel.z() );
if(ix<0) ix = 0;
if(iy<0) iy = 0;
if(iz<0) iz = 0;
if(ix>=siz[0]) ix = siz[0]-1;
if(iy>=siz[1]) iy = siz[1]-1;
if(iz>=siz[2]) iz = siz[2]-1;
}
else
return 0;
}
else
{
/* Indici di voxel */
ix = int( (ray.orig.x() - bbox.min.x())/voxel.x() );
iy = int( (ray.orig.y() - bbox.min.y())/voxel.y() );
iz = int( (ray.orig.z() - bbox.min.z())/voxel.z() );
}
/* Punti goal */
if(ray.dire.x()>0.0) gx=double(ix+1)*voxel.x()+bbox.min.x();
else gx=double(ix )*voxel.x()+bbox.min.x();
if(ray.dire.y()>0.0) gy=double(iy+1)*voxel.y()+bbox.min.y();
else gy=double(iy )*voxel.y()+bbox.min.y();
if(ray.dire.z()>0.0) gz=double(iz+1)*voxel.z()+bbox.min.z();
else gz=double( iz )*voxel.z()+bbox.min.z();
const ScalarType MAXFLOAT = 1e50;
const ScalarType EPSILON = 1e-50;
/* Parametri della linea */
double tx,ty,tz;
if( fabs(ray.dire.x())>EPSILON ) tx = (gx-ray.orig.x())/ray.dire.x();
else tx = MAXFLOAT;
if( fabs(ray.dire.y())>EPSILON ) ty = (gy-ray.orig.y())/ray.dire.y();
else ty = MAXFLOAT;
if( fabs(ray.dire.z())>EPSILON ) tz = (gz-ray.orig.z())/ray.dire.z();
else tz = MAXFLOAT;
T * bestf = NULL;
#ifdef MONITOR_GRID
int n_traversed_voxel0=0,n_traversed_elem0=0;
n_rays++;
#endif
for(;;)
{
Link *first, *last, *l;
Grid( ix, iy, iz, first, last );
#ifdef MONITOR_GRID
n_traversed_voxel++;n_traversed_voxel0++;
#endif
for(l=first;l!=last;++l)
{
#ifdef MONITOR_GRID
n_traversed_elem++;n_traversed_elem0++;
#endif
//return &(*(l->Elem()));
if(l->Elem()->Intersect(ray,dist, p_a, p_b)) {
#ifdef MONITOR_GRID
n_traversed_voxel_hit+=n_traversed_voxel0;
n_traversed_elem_hit+=n_traversed_elem0;
n_rays_hit++;
#endif
return &(*(l->Elem()));
//{
// bestf = &(*(l->Elem())); break;
//}
}
//if(bestf) break;
}
if( tx<ty && tx<tz ){
if(ray.dire.x()<0.0) { gx -= voxel.x(); --ix; if(ix<0 ) break; }
else { gx += voxel.x(); ++ix; if(ix>=siz[0]) break; }
tx = (gx-ray.orig.x())/ray.dire.x();
} else if( ty<tz ){
if(ray.dire.y()<0.0) { gy -= voxel.y(); --iy; if(iy<0 ) break; }
else { gy += voxel.y(); ++iy; if(iy>=siz[1]) break; }
ty = (gy-ray.orig.y())/ray.dire.y();
} else {
if(ray.dire.z()<0.0) { gz -= voxel.z(); --iz; if(iz<0 ) break; }
else { gz += voxel.z(); ++iz; if(iz>=siz[2]) break; }
tz = (gz-ray.orig.z())/ray.dire.z();
}
}
return bestf;
}
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( S & s )
{
Set(s,s.size());
}
/// Inserisce una mesh nella griglia. Nota: prima bisogna
/// chiamare SetBBox che setta dim in maniera corretta
void Set( S & s,int _size )
{
Point3i _siz;
BestDim( _size, dim, _siz );
Set(s,_siz);
}
void Set(S & s, Point3i _siz)
{
siz=_siz;
// Calcola la dimensione della griglia
voxel[0] = dim[0]/siz[0];
voxel[1] = dim[1]/siz[1];
voxel[2] = dim[2]/siz[2];
// "Alloca" la griglia: +1 per la sentinella
grid.resize( siz[0]*siz[1]*siz[2]+1 );
// Ciclo inserimento dei tetraedri: creazione link
links.clear();
S::iterator pt;
for(pt=s.begin(); pt!=s.end(); ++pt)
{
Box3x bb; // Boundig box del tetraedro corrente
(*pt).GetBBox(bb);
bb.Intersect(bbox);
if(! bb.IsNull() )
{
Box3i ib; // Boundig box in voxels
BoxToIBox( bb,ib );
/*ib.min-=Point3i(1,1,1);
ib.max+=Point3i(1,1,1);
if (ib.min[0]<0) ib.min[0]=0;
if (ib.min[1]<0) ib.min[1]=0;
if (ib.min[2]<0) ib.min[2]=0;
if (ib.max[0]>siz[0]) ib.max[0]=siz[0];
if (ib.max[1]>siz[1]) ib.max[1]=siz[1];
if (ib.max[2]>siz[2]) ib.max[2]=siz[2];*/
int x,y,z;
for(z=ib.min[2];z<=ib.max[2];++z)
{
int bz = z*siz[1];
for(y=ib.min[1];y<=ib.max[1];++y)
{
int by = (y+bz)*siz[0];
for(x=ib.min[0];x<=ib.max[0];++x)
// Inserire calcolo cella corrente
// if( pt->Intersect( ... )
links.push_back( Link(pt,by+x) );
}
}
}
}
// Push della sentinella
links.push_back( Link(NULL,grid.size()-1) );
// Ordinamento dei links
sort( links.begin(), links.end() );
// Creazione puntatori ai links
vector<Link>::iterator pl;
int pg;
pl = links.begin();
for(pg=0;pg<grid.size();++pg)
{
assert(pl!=links.end());
grid[pg] = &*pl;
while( pg == pl->Index() ) // Trovato inizio
{
++pl; // Ricerca prossimo blocco
if(pl==links.end())
break;
}
}
}
/** Calcolo dimensioni griglia.
Calcola la dimensione della griglia in funzione
della ratio del bounding box e del numero di elementi
*/
static void BestDim( const int elems, const Point3x & size, Point3i & dim )
{
const int mincells = 27; // Numero minimo di celle
const double GFactor = 1.0; // GridEntry = NumElem*GFactor
double diag = size.Norm(); // Diagonale del box
double eps = diag*1e-4; // Fattore di tolleranza
assert(elems>0);
assert(size[0]>=0.0);
assert(size[1]>=0.0);
assert(size[2]>=0.0);
int ncell = int(elems*GFactor); // Calcolo numero di voxel
if(ncell<mincells)
ncell = mincells;
dim[0] = 1;
dim[1] = 1;
dim[2] = 1;
if(size[0]>eps)
{
if(size[1]>eps)
{
if(size[2]>eps)
{
double k = pow(ncell/(size[0]*size[1]*size[2]),1.0/3.0);
dim[0] = int(size[0] * k);
dim[1] = int(size[1] * k);
dim[2] = int(size[2] * k);
}
else
{
dim[0] = int(::sqrt(ncell*size[0]/size[1]));
dim[1] = int(::sqrt(ncell*size[1]/size[0]));
}
}
else
{
if(size[2]>eps)
{
dim[0] = int(::sqrt(ncell*size[0]/size[2]));
dim[2] = int(::sqrt(ncell*size[2]/size[0]));
}
else
dim[0] = int(ncell);
}
}
else
{
if(size[1]>eps)
{
if(size[2]>eps)
{
dim[1] = int(::sqrt(ncell*size[1]/size[2]));
dim[2] = int(::sqrt(ncell*size[2]/size[1]));
}
else
dim[1] = int(ncell);
}
else if(size[2]>eps)
dim[2] = int(ncell);
}
}
int MemUsed()
{
return sizeof(UGrid)+ sizeof(Link)*links.size() + sizeof(Link *) * grid.size();
}
}; //end class UGrid
} // end namespace
#endif