281 lines
9.7 KiB
C++
281 lines
9.7 KiB
C++
|
// This file is part of Eigen, a lightweight C++ template library
|
||
|
// for linear algebra. Eigen itself is part of the KDE project.
|
||
|
//
|
||
|
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
|
||
|
//
|
||
|
// Eigen is free software; you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU Lesser General Public
|
||
|
// License as published by the Free Software Foundation; either
|
||
|
// version 3 of the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Alternatively, you can redistribute it and/or
|
||
|
// modify it under the terms of the GNU General Public License as
|
||
|
// published by the Free Software Foundation; either version 2 of
|
||
|
// the License, or (at your option) any later version.
|
||
|
//
|
||
|
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
|
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||
|
// GNU General Public License for more details.
|
||
|
//
|
||
|
// You should have received a copy of the GNU Lesser General Public
|
||
|
// License and a copy of the GNU General Public License along with
|
||
|
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||
|
|
||
|
#include "main.h"
|
||
|
#include <unsupported/Eigen/FFT>
|
||
|
|
||
|
template <typename T>
|
||
|
std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
|
||
|
|
||
|
using namespace std;
|
||
|
using namespace Eigen;
|
||
|
|
||
|
float norm(float x) {return x*x;}
|
||
|
double norm(double x) {return x*x;}
|
||
|
long double norm(long double x) {return x*x;}
|
||
|
|
||
|
template < typename T>
|
||
|
complex<long double> promote(complex<T> x) { return complex<long double>(x.real(),x.imag()); }
|
||
|
|
||
|
complex<long double> promote(float x) { return complex<long double>( x); }
|
||
|
complex<long double> promote(double x) { return complex<long double>( x); }
|
||
|
complex<long double> promote(long double x) { return complex<long double>( x); }
|
||
|
|
||
|
|
||
|
template <typename VT1,typename VT2>
|
||
|
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
|
||
|
{
|
||
|
long double totalpower=0;
|
||
|
long double difpower=0;
|
||
|
long double pi = acos((long double)-1 );
|
||
|
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
|
||
|
complex<long double> acc = 0;
|
||
|
long double phinc = -2.*k0* pi / timebuf.size();
|
||
|
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
|
||
|
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
|
||
|
}
|
||
|
totalpower += norm(acc);
|
||
|
complex<long double> x = promote(fftbuf[k0]);
|
||
|
complex<long double> dif = acc - x;
|
||
|
difpower += norm(dif);
|
||
|
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
|
||
|
}
|
||
|
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
|
||
|
return sqrt(difpower/totalpower);
|
||
|
}
|
||
|
|
||
|
template <typename VT1,typename VT2>
|
||
|
long double dif_rmse( const VT1 buf1,const VT2 buf2)
|
||
|
{
|
||
|
long double totalpower=0;
|
||
|
long double difpower=0;
|
||
|
size_t n = (min)( buf1.size(),buf2.size() );
|
||
|
for (size_t k=0;k<n;++k) {
|
||
|
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
|
||
|
difpower += norm(buf1[k] - buf2[k]);
|
||
|
}
|
||
|
return sqrt(difpower/totalpower);
|
||
|
}
|
||
|
|
||
|
enum { StdVectorContainer, EigenVectorContainer };
|
||
|
|
||
|
template<int Container, typename Scalar> struct VectorType;
|
||
|
|
||
|
template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
|
||
|
{
|
||
|
typedef vector<Scalar> type;
|
||
|
};
|
||
|
|
||
|
template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
|
||
|
{
|
||
|
typedef Matrix<Scalar,Dynamic,1> type;
|
||
|
};
|
||
|
|
||
|
template <int Container, typename T>
|
||
|
void test_scalar_generic(int nfft)
|
||
|
{
|
||
|
typedef typename FFT<T>::Complex Complex;
|
||
|
typedef typename FFT<T>::Scalar Scalar;
|
||
|
typedef typename VectorType<Container,Scalar>::type ScalarVector;
|
||
|
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||
|
|
||
|
FFT<T> fft;
|
||
|
ScalarVector tbuf(nfft);
|
||
|
ComplexVector freqBuf;
|
||
|
for (int k=0;k<nfft;++k)
|
||
|
tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
|
||
|
|
||
|
// make sure it DOESN'T give the right full spectrum answer
|
||
|
// if we've asked for half-spectrum
|
||
|
fft.SetFlag(fft.HalfSpectrum );
|
||
|
fft.fwd( freqBuf,tbuf);
|
||
|
VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
|
||
|
VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
|
||
|
|
||
|
fft.ClearFlag(fft.HalfSpectrum );
|
||
|
fft.fwd( freqBuf,tbuf);
|
||
|
VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
|
||
|
VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
|
||
|
|
||
|
if (nfft&1)
|
||
|
return; // odd FFTs get the wrong size inverse FFT
|
||
|
|
||
|
ScalarVector tbuf2;
|
||
|
fft.inv( tbuf2 , freqBuf);
|
||
|
VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
|
||
|
|
||
|
|
||
|
// verify that the Unscaled flag takes effect
|
||
|
ScalarVector tbuf3;
|
||
|
fft.SetFlag(fft.Unscaled);
|
||
|
|
||
|
fft.inv( tbuf3 , freqBuf);
|
||
|
|
||
|
for (int k=0;k<nfft;++k)
|
||
|
tbuf3[k] *= T(1./nfft);
|
||
|
|
||
|
|
||
|
//for (size_t i=0;i<(size_t) tbuf.size();++i)
|
||
|
// cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
|
||
|
|
||
|
VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check
|
||
|
|
||
|
// verify that ClearFlag works
|
||
|
fft.ClearFlag(fft.Unscaled);
|
||
|
fft.inv( tbuf2 , freqBuf);
|
||
|
VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void test_scalar(int nfft)
|
||
|
{
|
||
|
test_scalar_generic<StdVectorContainer,T>(nfft);
|
||
|
//test_scalar_generic<EigenVectorContainer,T>(nfft);
|
||
|
}
|
||
|
|
||
|
|
||
|
template <int Container, typename T>
|
||
|
void test_complex_generic(int nfft)
|
||
|
{
|
||
|
typedef typename FFT<T>::Complex Complex;
|
||
|
typedef typename VectorType<Container,Complex>::type ComplexVector;
|
||
|
|
||
|
FFT<T> fft;
|
||
|
|
||
|
ComplexVector inbuf(nfft);
|
||
|
ComplexVector outbuf;
|
||
|
ComplexVector buf3;
|
||
|
for (int k=0;k<nfft;++k)
|
||
|
inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
|
||
|
fft.fwd( outbuf , inbuf);
|
||
|
|
||
|
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
|
||
|
fft.inv( buf3 , outbuf);
|
||
|
|
||
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||
|
|
||
|
// verify that the Unscaled flag takes effect
|
||
|
ComplexVector buf4;
|
||
|
fft.SetFlag(fft.Unscaled);
|
||
|
fft.inv( buf4 , outbuf);
|
||
|
for (int k=0;k<nfft;++k)
|
||
|
buf4[k] *= T(1./nfft);
|
||
|
VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
|
||
|
|
||
|
// verify that ClearFlag works
|
||
|
fft.ClearFlag(fft.Unscaled);
|
||
|
fft.inv( buf3 , outbuf);
|
||
|
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
void test_complex(int nfft)
|
||
|
{
|
||
|
test_complex_generic<StdVectorContainer,T>(nfft);
|
||
|
test_complex_generic<EigenVectorContainer,T>(nfft);
|
||
|
}
|
||
|
/*
|
||
|
template <typename T,int nrows,int ncols>
|
||
|
void test_complex2d()
|
||
|
{
|
||
|
typedef typename Eigen::FFT<T>::Complex Complex;
|
||
|
FFT<T> fft;
|
||
|
Eigen::Matrix<Complex,nrows,ncols> src,src2,dst,dst2;
|
||
|
|
||
|
src = Eigen::Matrix<Complex,nrows,ncols>::Random();
|
||
|
//src = Eigen::Matrix<Complex,nrows,ncols>::Identity();
|
||
|
|
||
|
for (int k=0;k<ncols;k++) {
|
||
|
Eigen::Matrix<Complex,nrows,1> tmpOut;
|
||
|
fft.fwd( tmpOut,src.col(k) );
|
||
|
dst2.col(k) = tmpOut;
|
||
|
}
|
||
|
|
||
|
for (int k=0;k<nrows;k++) {
|
||
|
Eigen::Matrix<Complex,1,ncols> tmpOut;
|
||
|
fft.fwd( tmpOut, dst2.row(k) );
|
||
|
dst2.row(k) = tmpOut;
|
||
|
}
|
||
|
|
||
|
fft.fwd2(dst.data(),src.data(),ncols,nrows);
|
||
|
fft.inv2(src2.data(),dst.data(),ncols,nrows);
|
||
|
VERIFY( (src-src2).norm() < test_precision<T>() );
|
||
|
VERIFY( (dst-dst2).norm() < test_precision<T>() );
|
||
|
}
|
||
|
*/
|
||
|
|
||
|
|
||
|
void test_return_by_value(int len)
|
||
|
{
|
||
|
VectorXf in;
|
||
|
VectorXf in1;
|
||
|
in.setRandom( len );
|
||
|
VectorXcf out1,out2;
|
||
|
FFT<float> fft;
|
||
|
|
||
|
fft.SetFlag(fft.HalfSpectrum );
|
||
|
|
||
|
fft.fwd(out1,in);
|
||
|
out2 = fft.fwd(in);
|
||
|
VERIFY( (out1-out2).norm() < test_precision<float>() );
|
||
|
in1 = fft.inv(out1);
|
||
|
VERIFY( (in1-in).norm() < test_precision<float>() );
|
||
|
}
|
||
|
|
||
|
void test_FFTW()
|
||
|
{
|
||
|
CALL_SUBTEST( test_return_by_value(32) );
|
||
|
//CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
|
||
|
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
|
||
|
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) );
|
||
|
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) );
|
||
|
CALL_SUBTEST( test_complex<float>(3*8) ); CALL_SUBTEST( test_complex<double>(3*8) );
|
||
|
CALL_SUBTEST( test_complex<float>(5*32) ); CALL_SUBTEST( test_complex<double>(5*32) );
|
||
|
CALL_SUBTEST( test_complex<float>(2*3*4) ); CALL_SUBTEST( test_complex<double>(2*3*4) );
|
||
|
CALL_SUBTEST( test_complex<float>(2*3*4*5) ); CALL_SUBTEST( test_complex<double>(2*3*4*5) );
|
||
|
CALL_SUBTEST( test_complex<float>(2*3*4*5*7) ); CALL_SUBTEST( test_complex<double>(2*3*4*5*7) );
|
||
|
|
||
|
CALL_SUBTEST( test_scalar<float>(32) ); CALL_SUBTEST( test_scalar<double>(32) );
|
||
|
CALL_SUBTEST( test_scalar<float>(45) ); CALL_SUBTEST( test_scalar<double>(45) );
|
||
|
CALL_SUBTEST( test_scalar<float>(50) ); CALL_SUBTEST( test_scalar<double>(50) );
|
||
|
CALL_SUBTEST( test_scalar<float>(256) ); CALL_SUBTEST( test_scalar<double>(256) );
|
||
|
CALL_SUBTEST( test_scalar<float>(2*3*4*5*7) ); CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
|
||
|
|
||
|
#ifdef EIGEN_HAS_FFTWL
|
||
|
CALL_SUBTEST( test_complex<long double>(32) );
|
||
|
CALL_SUBTEST( test_complex<long double>(256) );
|
||
|
CALL_SUBTEST( test_complex<long double>(3*8) );
|
||
|
CALL_SUBTEST( test_complex<long double>(5*32) );
|
||
|
CALL_SUBTEST( test_complex<long double>(2*3*4) );
|
||
|
CALL_SUBTEST( test_complex<long double>(2*3*4*5) );
|
||
|
CALL_SUBTEST( test_complex<long double>(2*3*4*5*7) );
|
||
|
|
||
|
CALL_SUBTEST( test_scalar<long double>(32) );
|
||
|
CALL_SUBTEST( test_scalar<long double>(45) );
|
||
|
CALL_SUBTEST( test_scalar<long double>(50) );
|
||
|
CALL_SUBTEST( test_scalar<long double>(256) );
|
||
|
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
|
||
|
#endif
|
||
|
}
|