vcglib/vcg/space/index/space_iterators.h

523 lines
13 KiB
C
Raw Normal View History

2006-06-01 22:53:56 +02:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2006 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
2006-06-01 22:53:56 +02:00
/****************************************************************************
History
$Log: not supported by cvs2svn $
Revision 1.14 2006/06/01 20:53:56 cignoni
added missing header
2006-06-01 22:53:56 +02:00
****************************************************************************/
#ifndef __VCGLIB_SPATIAL_ITERATORS
#define __VCGLIB_SPATIAL_ITERATORS
2005-09-19 15:33:58 +02:00
#include <vector>
#include <vcg/space/intersection3.h>
#include <vcg/space/point3.h>
2005-09-19 15:33:58 +02:00
#include <vcg/space/box3.h>
//#include <vcg/space/point4.h>
#include <vcg/space/ray3.h>
#include <vcg/math/base.h>
2005-09-19 15:33:58 +02:00
#include <algorithm>
#include <float.h>
2005-12-14 18:03:13 +01:00
#include <limits>
2005-09-19 15:33:58 +02:00
namespace vcg{
template <class Spatial_Idexing,class INTFUNCTOR,class TMARKER>
class RayIterator
{
public:
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Ray3<ScalarType> RayType;
typedef typename Spatial_Idexing::Box3x IndexingBoxType;
protected:
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
///control right bonding current cell index (only on initialization)
void _ControlLimits()
2005-09-19 15:33:58 +02:00
{
for (int i=0;i<3;i++)
{
vcg::Point3i dim=Si.siz;
if (CurrentCell.V(i)<0)
CurrentCell.V(i) = 0;
else
if (CurrentCell.V(i)>=dim.V(i))
CurrentCell.V(i)=dim.V(i)-1;
}
2005-09-19 15:33:58 +02:00
}
///find initial line parameters
void _FindLinePar()
2005-09-19 15:33:58 +02:00
{
/* Punti goal */
///da verificare se vanno oltre ai limiti
vcg::Point3i ip;
Si.PToIP(start,ip);
Si.IPToP(ip,goal);
for (int i=0;i<3;i++)
if(r.Direction().V(i)>0.0)
goal.V(i)+=Si.voxel.V(i);
ScalarType gx=goal.X();
ScalarType gy=goal.Y();
ScalarType gz=goal.Z();
dist=(r.Origin()-goal).Norm();
const float LocalMaxScalar = std::numeric_limits<float>::(max)();
const float EPSILON = 1e-50f;
/* Parametri della linea */
ScalarType tx,ty,tz;
if( fabs(r.Direction().X())>EPSILON )
tx = (gx-r.Origin().X())/r.Direction().X();
2005-09-19 15:33:58 +02:00
else
tx =LocalMaxScalar;
if( fabs(r.Direction().Y())>EPSILON )
ty = (gy-r.Origin().Y())/r.Direction().Y();
else
ty =LocalMaxScalar;
2005-09-19 15:33:58 +02:00
if( fabs(r.Direction().Z())>EPSILON )
tz = (gz-r.Origin().Z())/r.Direction().Z();
else
tz =LocalMaxScalar;
2005-09-19 15:33:58 +02:00
t=CoordType(tx,ty,tz);
}
2005-09-19 15:33:58 +02:00
bool _controlEnd()
{
return (((CurrentCell.X()<0)||(CurrentCell.Y()<0)||(CurrentCell.Z()<0))||
((CurrentCell.X()>=Si.siz.X())||(CurrentCell.Y()>=Si.siz.Y())||(CurrentCell.Z()>=Si.siz.Z())));
}
2005-09-19 15:33:58 +02:00
void _NextCell()
2005-09-19 15:33:58 +02:00
{
assert(!end);
if( t.X()<t.Y() && t.X()<t.Z() )
{
if(r.Direction().X()<0.0)
{goal.X() -= Si.voxel.X(); --CurrentCell.X();}
else
{goal.X() += Si.voxel.X(); ++CurrentCell.X();}
t.X() = (goal.X()-r.Origin().X())/r.Direction().X();
}
else if( t.Y()<t.Z() ){
if(r.Direction().Y()<0.0)
{goal.Y() -= Si.voxel.Y(); --CurrentCell.Y();}
else
{goal.Y() += Si.voxel.Y(); ++CurrentCell.Y();}
t.Y() = (goal.Y()-r.Origin().Y())/r.Direction().Y();
} else {
if(r.Direction().Z()<0.0)
{ goal.Z() -= Si.voxel.Z(); --CurrentCell.Z();}
else
{ goal.Z() += Si.voxel.Z(); ++CurrentCell.Z();}
t.Z() = (goal.Z()-r.Origin().Z())/r.Direction().Z();
}
dist=(r.Origin()-goal).Norm();
end=_controlEnd();
2005-09-19 15:33:58 +02:00
}
public:
2005-09-19 15:33:58 +02:00
///contructor
RayIterator(Spatial_Idexing &_Si,INTFUNCTOR _int_funct):Si(_Si),int_funct(_int_funct){
};
2005-09-19 15:33:58 +02:00
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
2005-09-19 15:33:58 +02:00
void Init(const RayType _r)
2005-09-19 15:33:58 +02:00
{
r=_r;
end=false;
tm.UnMarkAll();
Elems.clear();
//CoordType ip;
//control if intersect the bounding box of the mesh
if (Si.bbox.IsIn(r.Origin()))
start=r.Origin();
else
if (!(vcg::Intersection_Ray_Box<ScalarType>(Si.bbox,r,start))){
end=true;
return;
}
Si.PToIP(start,CurrentCell);
_ControlLimits();
_FindLinePar();
//go to first intersection
while ((!End())&& Refresh())
_NextCell();
2005-09-19 15:33:58 +02:00
}
bool End()
{return end;}
2005-09-19 15:33:58 +02:00
///refresh current cell intersection , return true if there are
///at lest 1 intersection
bool Refresh()
2005-09-19 15:33:58 +02:00
{
//Elems.clear();
typename Spatial_Idexing::CellIterator first,last,l;
///take first, last iterators to elements in the cell
Si.Grid(CurrentCell.X(),CurrentCell.Y(),CurrentCell.Z(),first,last);
for(l=first;l!=last;++l)
{
ObjType* elem=&(*(*l));
ScalarType t;
CoordType Int;
if((!tm.IsMarked(elem))&&(int_funct((**l),r,t)))
{
Int=r.Origin()+r.Direction()*t;
Elems.push_back(Entry_Type(elem,t,Int));
tm.Mark(elem);
}
}
////then control if there are more than 1 element
if (Elems.size()>1)
std::sort(Elems.begin(),Elems.end());
CurrentElem=Elems.end();
if (Elems.size() > 0) {
CurrentElem--;
}
return((Elems.size()==0)||(Dist()>dist));
2005-09-19 15:33:58 +02:00
}
void operator ++()
2005-09-19 15:33:58 +02:00
{
//if (CurrentElem!=Elems.end())
if (Elems.size()>0)
{
CurrentElem--;
//std::pop_heap<ElemIterator>(Elems.begin(),Elems.end());
Elems.pop_back();
}
/*if (CurrentElem==Elems.end())
{*/
if (Dist()>dist)
2005-09-19 15:33:58 +02:00
{
if (!End())
{
2005-09-19 15:33:58 +02:00
_NextCell();
while ((!End())&&Refresh())
_NextCell();
}
2005-09-19 15:33:58 +02:00
}
}
ObjType &operator *(){return *((*CurrentElem).elem);}
CoordType IntPoint()
{return ((*CurrentElem).intersection);}
ScalarType Dist()
2005-09-19 15:33:58 +02:00
{
if (Elems.size()>0)
return ((*CurrentElem).dist);
else
return ((ScalarType)FLT_MAX);
2005-09-19 15:33:58 +02:00
}
//{return ((*CurrentElem).dist);}
2005-09-19 15:33:58 +02:00
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
2005-09-19 15:33:58 +02:00
protected:
2005-09-19 15:33:58 +02:00
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
2005-09-19 15:33:58 +02:00
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
RayType r; //ray to find intersections
Spatial_Idexing &Si; //reference to spatial index algorithm
bool end; //true if the scan is terminated
INTFUNCTOR &int_funct;
TMARKER tm;
std::vector<Entry_Type> Elems; //element loaded from curren cell
typedef typename std::vector<Entry_Type>::iterator ElemIterator;
ElemIterator CurrentElem; //iterator to current element
vcg::Point3i CurrentCell; //current cell
//used for raterization
CoordType start;
CoordType goal;
ScalarType dist;
CoordType t;
};
2005-09-19 15:33:58 +02:00
template <class Spatial_Idexing,class DISTFUNCTOR,class TMARKER>
class ClosestIterator
{
typedef typename Spatial_Idexing::ObjType ObjType;
typedef typename Spatial_Idexing::ScalarType ScalarType;
typedef typename vcg::Point3<ScalarType> CoordType;
typedef typename Spatial_Idexing::CellIterator CellIterator;
2005-09-19 15:33:58 +02:00
///control the end of scanning
bool _EndGrid()
{
if ((explored.min==vcg::Point3i(0,0,0))&&(explored.max>Si.siz/*-vcg::Point3i(1,1,1)*/))
2005-09-19 15:33:58 +02:00
end =true;
return end;
}
2005-09-19 15:33:58 +02:00
void _UpdateRadius()
{
if (radius>=max_dist)
end=true;
radius+=step_size;
2005-09-19 15:33:58 +02:00
//control bounds
if (radius>max_dist)
radius=max_dist;
}
2005-09-19 15:33:58 +02:00
///add cell to the curren set of explored cells
bool _NextShell()
{
2005-09-19 15:33:58 +02:00
//then expand the box
explored=to_explore;
_UpdateRadius();
Box3<ScalarType> b3d(p,radius);
2005-10-05 19:04:45 +02:00
/*b3d.Intersect(Si.bbox);
Si.BoxToIBox(b3d,to_explore);*/
Si.BoxToIBox(b3d,to_explore);
Box3i ibox(Point3i(0,0,0),Si.siz/*-Point3i(1,1,1)*/);
to_explore.Intersect(ibox);
if (!to_explore.IsNull())
{
/* assert(!( to_explore.min.X()<0 || to_explore.max.X()>Si.siz[0] ||
to_explore.min.Y()<0 || to_explore.max.Y()>Si.siz[1] || to_explore.min.Z()<0
|| to_explore.max.Z()>Si.siz[2] ));
*/ return true;
}
return false;
}
2005-09-19 15:33:58 +02:00
public:
2005-09-19 15:33:58 +02:00
///contructor
ClosestIterator(Spatial_Idexing &_Si,DISTFUNCTOR _dist_funct):Si(_Si),dist_funct(_dist_funct){}
2005-09-19 15:33:58 +02:00
///set the current spatial indexing structure used
void SetIndexStructure(Spatial_Idexing &_Si)
{Si=_Si;}
void SetMarker(TMARKER _tm)
{
tm=_tm;
}
2005-09-19 15:33:58 +02:00
///initialize the Itarator
void Init(CoordType _p,const ScalarType &_max_dist)
{
explored.SetNull(); // box currently searched
2005-10-05 19:04:45 +02:00
to_explore.SetNull();
p=_p; // p is the CoordType point from which the search begin
max_dist=_max_dist; // max_dist is the maximal distance where the search stops
Elems.clear(); // set of Entry_Type elements where to search
end=false;
tm.UnMarkAll();
step_size=Si.voxel.Norm();
radius=0;
///inflate the bbox until find a valid bbox
while ((!_NextShell())&&(!End()));
if (!_EndGrid())
Refresh();///load elements form currect cell
///until don't find an element
///that is inside the radius
while ((!End())&&(Dist()>radius))
{
if ((_NextShell())&&(!_EndGrid()))
Refresh();
}
2005-09-19 15:33:58 +02:00
if (!Elems.empty())
std::sort(Elems.begin(), Elems.end());
}
2005-09-19 15:33:58 +02:00
//return true if the scan is complete
bool End()
{return end;}
///refresh Object found also considering current shere radius,
//and object comes from previos that are already in the stack
void Refresh()
2005-09-19 15:33:58 +02:00
{
int ix,iy,iz;
for( iz = to_explore.min.Z();iz <= to_explore.max.Z(); ++iz)
2005-10-05 19:04:45 +02:00
for(iy =to_explore.min.Y(); iy <=to_explore.max.Y(); ++iy)
for(ix =to_explore.min.X(); ix <= to_explore.max.X();++ix)
2005-09-19 15:33:58 +02:00
{
2005-10-05 19:04:45 +02:00
// this test is to avoid to re-process already analyzed cells.
if((explored.IsNull())||
(ix<explored.min[0] || ix>explored.max[0] ||
iy<explored.min[1] || iy>explored.max[1] ||
2005-10-05 19:04:45 +02:00
iz<explored.min[2] || iz>explored.max[2] ))
2005-09-19 15:33:58 +02:00
{
typename Spatial_Idexing::CellIterator first,last,l;
Si.Grid(ix,iy,iz,first,last);
for(l=first;l!=(last + 1);++l)
{
ObjType *elem=&(**l);
if (!tm.IsMarked(elem))
{
CoordType nearest;
ScalarType dist=max_dist;
if (dist_funct((**l),p,dist,nearest))
Elems.push_back(Entry_Type(elem,fabs(dist),nearest));
tm.Mark(elem);
}
}
}
2005-09-19 15:33:58 +02:00
}
if (!Elems.empty())
std::sort(Elems.begin(), Elems.end());
2005-09-19 15:33:58 +02:00
}
void operator ++()
2005-09-19 15:33:58 +02:00
{
if (!Elems.empty())
Elems.pop_back();
2005-10-05 19:04:45 +02:00
while ((!End())&&(Dist()>radius))
if (_NextShell()&&!_EndGrid())
Refresh();
2005-09-19 15:33:58 +02:00
}
ObjType &operator *()
{
assert (!Elems.empty());
return *(Elems.back().elem);
}
//return distance of the element form the point if no element
//are in the vector then return max dinstance
ScalarType Dist()
2005-09-19 15:33:58 +02:00
{
if (!Elems.empty())
return (Elems.back()).dist;
else
return ((ScalarType)FLT_MAX);
2005-09-19 15:33:58 +02:00
}
CoordType NearestPoint()
{
assert (!Elems.empty());
return (Elems.back().intersection);
}
2005-09-19 15:33:58 +02:00
protected:
2005-09-19 15:33:58 +02:00
///structure that mantain for the current cell pre-calculated data
typedef struct Entry_Type
{
public:
Entry_Type(ObjType* _elem,ScalarType _dist,CoordType _intersection)
{
elem=_elem;
dist=_dist;
intersection=_intersection;
}
inline bool operator < ( const Entry_Type & l ) const{return (dist > l.dist); }
inline bool operator == ( const Entry_Type & l ) const{return (elem == l.elem); }
ObjType* elem;
ScalarType dist;
CoordType intersection;
};
CoordType p; // initial point
Spatial_Idexing &Si; // reference to spatial index structure
bool end; // true if the scan is terminated
ScalarType max_dist; // max distance when the scan terminate
vcg::Box3i explored; // current bounding box explored
vcg::Box3i to_explore;
ScalarType radius; // current radius of the volume sphere where to scan
ScalarType step_size; // step fro incrementing the radius
std::vector<Entry_Type> Elems; // set of elements contained in the current sphere
DISTFUNCTOR &dist_funct;
TMARKER tm;
2005-09-19 15:33:58 +02:00
};
}
#endif