376 lines
15 KiB
C++
376 lines
15 KiB
C++
|
// -----------------------------------------------------------------------------------------------
|
||
|
|
||
|
// standard libraries
|
||
|
#include <time.h>
|
||
|
|
||
|
// project definitions.
|
||
|
#include "defs.h"
|
||
|
#include "sampling.h"
|
||
|
#include "mesh_type.h"
|
||
|
#include <vcg/complex/trimesh/update/edges.h>
|
||
|
#include <vcg/complex/trimesh/update/bounding.h>
|
||
|
//#include <wrap/io_trimesh/import_smf.h>
|
||
|
#include <wrap/io_trimesh/import_ply.h>
|
||
|
#include <wrap/io_trimesh/export_ply.h>
|
||
|
|
||
|
|
||
|
|
||
|
// -----------------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
////////////////// Command line Flags and parameters
|
||
|
bool ComputeHistFlag = false;
|
||
|
bool VertexSampleFlag = true;
|
||
|
bool EdgeSampleFlag = true;
|
||
|
bool FaceSampleFlag = true;
|
||
|
bool MontecarloSamplingFlag = false;
|
||
|
bool SubdivisionSamplingFlag = false;
|
||
|
bool SimilarTrianglesSamplingFlag = false;
|
||
|
bool NumberOfSamples = false;
|
||
|
bool SamplesPerAreaUnit = false;
|
||
|
bool SaveErrorDisplacement = false;
|
||
|
bool SaveErrorAsColour = false;
|
||
|
|
||
|
// -----------------------------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
inline char* GetExtension(char* filename)
|
||
|
{
|
||
|
for(int i=strlen(filename)-1; i >= 0; i--)
|
||
|
if(filename[i] == '.')
|
||
|
break;
|
||
|
if(i > 0)
|
||
|
return &(filename[i+1]);
|
||
|
else
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void main(int argc, char**argv)
|
||
|
{
|
||
|
CMesh S1, S2;
|
||
|
double dist1_max, dist1_mean, dist1_RMS, volume_1;
|
||
|
double dist2_max, dist2_mean, dist2_RMS, volume_2;
|
||
|
double mesh_dist_max;
|
||
|
unsigned long n_samples_target, n_samples_output, elapsed_time;
|
||
|
double n_samples_per_area_unit;
|
||
|
int flags, flags_fwd, flags_back, n_samples_area, n_samples_edge, n_samples_vertex, err;
|
||
|
char *fmt, *hist_filename, *new_mesh_filename, *new_mesh_filename_2;
|
||
|
char fname_1[] = STR_NEW_MESH_FILENAME_DEFAULT, fname_2[] = STR_NEW_MESH_FILENAME_DEFAULT_2;
|
||
|
FILE *fd;
|
||
|
|
||
|
// print program info
|
||
|
printf("-------------------------------\n"
|
||
|
" Metro\n"
|
||
|
" release date: "__DATE__"\n"
|
||
|
"-------------------------------\n\n");
|
||
|
|
||
|
// load input meshes.
|
||
|
if(argc <= 2)
|
||
|
{
|
||
|
printf(MSG_ERR_N_ARGS);
|
||
|
exit(-1);
|
||
|
}
|
||
|
|
||
|
// load mesh M1.
|
||
|
if(!(fmt = GetExtension(argv[1])))
|
||
|
{
|
||
|
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
|
||
|
exit(-1);
|
||
|
}
|
||
|
if(!_stricmp(FILE_EXT_PLY, fmt))
|
||
|
{
|
||
|
printf("reading the mesh `%s'...", argv[1]);
|
||
|
err = tri::io::ImporterPLY<CMesh>::Open(S1,argv[1]);
|
||
|
}
|
||
|
/* else
|
||
|
if(!_stricmp(FILE_EXT_SMF, fmt))
|
||
|
{
|
||
|
printf("reading the mesh `%s'...", argv[1]);
|
||
|
err = tri::io::ImporterSMF::Open(S1,argv[1]);
|
||
|
}*/
|
||
|
else
|
||
|
{
|
||
|
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
|
||
|
exit(-1);
|
||
|
}
|
||
|
if(err < 0)
|
||
|
{
|
||
|
printf("\n");
|
||
|
printf(MSG_ERR_MESH_LOAD);
|
||
|
exit(-1);
|
||
|
}
|
||
|
else
|
||
|
printf("done\n");
|
||
|
|
||
|
// load mesh M2.
|
||
|
if(!(fmt = GetExtension(argv[2])))
|
||
|
{
|
||
|
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
|
||
|
exit(-1);
|
||
|
}
|
||
|
if(!_stricmp(FILE_EXT_PLY, fmt))
|
||
|
{
|
||
|
printf("reading the mesh `%s'...", argv[2]);
|
||
|
err = tri::io::ImporterPLY<CMesh>::Open(S2,argv[2]);
|
||
|
}
|
||
|
/*else
|
||
|
if(!_stricmp(FILE_EXT_SMF, fmt))
|
||
|
{
|
||
|
printf("reading the mesh `%s'...", argv[2]);
|
||
|
err = S2.Load_Smf(argv[2]);
|
||
|
}*/
|
||
|
else
|
||
|
{
|
||
|
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
|
||
|
exit(-1);
|
||
|
}
|
||
|
if(err < 0)
|
||
|
{
|
||
|
printf(MSG_ERR_MESH_LOAD);
|
||
|
exit(-1);
|
||
|
}
|
||
|
else
|
||
|
printf("done\n");
|
||
|
|
||
|
// parse command line.
|
||
|
for(int i=3; i < argc;)
|
||
|
{
|
||
|
if(argv[i][0]=='-')
|
||
|
switch(argv[i][1])
|
||
|
{
|
||
|
case CMD_LINE_ARG_HIST : ComputeHistFlag = true; hist_filename = &(argv[i][2]);
|
||
|
if(hist_filename[0] == '\0')
|
||
|
strcpy(hist_filename, STR_HIST_FILENAME_DEFAULT);
|
||
|
break;
|
||
|
case CMD_LINE_ARG_VERTEX_SAMPLE : VertexSampleFlag = false; break;
|
||
|
case CMD_LINE_ARG_EDGE_SAMPLE : EdgeSampleFlag = false; break;
|
||
|
case CMD_LINE_ARG_FACE_SAMPLE : FaceSampleFlag = false; break;
|
||
|
case CMD_LINE_ARG_SAMPLE_TYPE :
|
||
|
switch(argv[i][2])
|
||
|
{
|
||
|
case CMD_LINE_ARG_MONTECARLO_SAMPLING : MontecarloSamplingFlag = true; break;
|
||
|
case CMD_LINE_ARG_SUBDIVISION_SAMPLING : SubdivisionSamplingFlag = true; break;
|
||
|
case CMD_LINE_ARG_SIMILAR_TRIANGLES_SAMPLING : SimilarTrianglesSamplingFlag = true; break;
|
||
|
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
|
||
|
exit(0);
|
||
|
}
|
||
|
break;
|
||
|
case CMD_LINE_ARG_N_SAMPLES : NumberOfSamples = true; n_samples_target = atoi(&(argv[i][2])); break;
|
||
|
case CMD_LINE_ARG_SAMPLES_PER_AREA_UNIT : SamplesPerAreaUnit = true; n_samples_per_area_unit = (double) atof(&(argv[i][2])); break;
|
||
|
case CMD_LINE_ARG_SAVE_DISPLACEMENT : SaveErrorDisplacement = true; new_mesh_filename = &(argv[i][2]);
|
||
|
if(new_mesh_filename[0] == '\0')
|
||
|
new_mesh_filename = fname_1;
|
||
|
break;
|
||
|
case CMD_LINE_ARG_SAVE_ERROR_AS_COLOUR : SaveErrorAsColour = true; new_mesh_filename_2 = &(argv[i][2]);
|
||
|
if(new_mesh_filename_2[0] == '\0')
|
||
|
new_mesh_filename_2 = fname_2;
|
||
|
break;
|
||
|
default : printf(MSG_ERR_INVALID_OPTION, argv[i]);
|
||
|
exit(0);
|
||
|
}
|
||
|
i++;
|
||
|
}
|
||
|
|
||
|
// set sampling scheme
|
||
|
int sampling_method = MontecarloSamplingFlag + SubdivisionSamplingFlag + SimilarTrianglesSamplingFlag;
|
||
|
// defaults
|
||
|
if(!sampling_method)
|
||
|
SimilarTrianglesSamplingFlag = true;
|
||
|
if(sampling_method > 1)
|
||
|
{
|
||
|
printf("Cannot choose more than one sampling method. Similar Triangles sampling assumed.\n");
|
||
|
SimilarTrianglesSamplingFlag = true;
|
||
|
MontecarloSamplingFlag = false;
|
||
|
SubdivisionSamplingFlag = false;
|
||
|
}
|
||
|
if(!NumberOfSamples && !SamplesPerAreaUnit)
|
||
|
{
|
||
|
NumberOfSamples = true;
|
||
|
n_samples_target = NO_SAMPLES_PER_FACE * max(S1.fn,S2.fn);
|
||
|
}
|
||
|
|
||
|
// compute face information
|
||
|
tri::UpdateEdges<CMesh>::Set(S1);
|
||
|
tri::UpdateEdges<CMesh>::Set(S2);
|
||
|
|
||
|
// set bounding boxes for S1 and S2
|
||
|
tri::UpdateBounding<CMesh>::Box(S1);
|
||
|
tri::UpdateBounding<CMesh>::Box(S2);
|
||
|
|
||
|
// set Bounding Box.
|
||
|
Box3d bbox, tmp_bbox_M1=S1.bbox, tmp_bbox_M2=S2.bbox;
|
||
|
bbox.Add(S1.bbox);
|
||
|
bbox.Add(S2.bbox);
|
||
|
bbox.InflateFix(INFLATE_PERCENTAGE);
|
||
|
S1.bbox = bbox;
|
||
|
S2.bbox = bbox;
|
||
|
|
||
|
// set flags.
|
||
|
flags = 0;
|
||
|
if(ComputeHistFlag)
|
||
|
flags |= FLAG_HIST;
|
||
|
if(VertexSampleFlag)
|
||
|
flags |= FLAG_VERTEX_SAMPLING;
|
||
|
if(EdgeSampleFlag)
|
||
|
flags |= FLAG_EDGE_SAMPLING;
|
||
|
if(FaceSampleFlag)
|
||
|
flags |= FLAG_FACE_SAMPLING;
|
||
|
if(MontecarloSamplingFlag)
|
||
|
flags |= FLAG_MONTECARLO_SAMPLING;
|
||
|
if(SubdivisionSamplingFlag)
|
||
|
flags |= FLAG_SUBDIVISION_SAMPLING;
|
||
|
if(SimilarTrianglesSamplingFlag)
|
||
|
flags |= FLAG_SIMILAR_TRIANGLES_SAMPLING;
|
||
|
flags_fwd = flags;
|
||
|
flags_back = flags;
|
||
|
if(SaveErrorDisplacement)
|
||
|
{
|
||
|
if(S1.vn >= S2.vn)
|
||
|
flags_fwd |= FLAG_SAVE_ERROR_DISPLACEMENT;
|
||
|
else
|
||
|
flags_back |= FLAG_SAVE_ERROR_DISPLACEMENT;
|
||
|
}
|
||
|
|
||
|
if(SaveErrorAsColour)
|
||
|
{
|
||
|
if(S1.vn >= S2.vn)
|
||
|
flags_fwd |= FLAG_SAVE_ERROR_AS_COLOUR;
|
||
|
else
|
||
|
flags_back |= FLAG_SAVE_ERROR_AS_COLOUR;
|
||
|
}
|
||
|
|
||
|
// initialize time info.
|
||
|
int t0=clock();
|
||
|
|
||
|
// print mesh info.
|
||
|
Sampling<CMesh> ForwardSampling(S1,S2);
|
||
|
Sampling<CMesh> BackwardSampling(S2,S1);
|
||
|
|
||
|
printf("Mesh info:\n");
|
||
|
printf(" M1: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[1], S1.vn, S1.fn, ForwardSampling.GetArea());
|
||
|
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M1.min[0], tmp_bbox_M1.min[1], tmp_bbox_M1.min[2], tmp_bbox_M1.max[0], tmp_bbox_M1.max[1], tmp_bbox_M1.max[2]);
|
||
|
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M1.Diag());
|
||
|
printf(" M2: '%s'\n\t%vertices %7i\n\tfaces %7i\n\tarea %12.4f\n", argv[2], S2.vn, S2.fn, BackwardSampling.GetArea());
|
||
|
printf("\tbbox (%7.4f %7.4f %7.4f)-(%7.4f %7.4f %7.4f)\n", tmp_bbox_M2.min[0], tmp_bbox_M2.min[1], tmp_bbox_M2.min[2], tmp_bbox_M2.max[0], tmp_bbox_M2.max[1], tmp_bbox_M2.max[2]);
|
||
|
printf("\tbbox diagonal %f\n", (float)tmp_bbox_M2.Diag());
|
||
|
|
||
|
// Forward distance.
|
||
|
printf("\nForward distance (M1 -> M2):\n");
|
||
|
ForwardSampling.SetFlags(flags_fwd);
|
||
|
if(NumberOfSamples)
|
||
|
{
|
||
|
ForwardSampling.SetSamplesTarget(n_samples_target);
|
||
|
n_samples_per_area_unit = ForwardSampling.GetNSamplesPerAreaUnit();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
ForwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
|
||
|
n_samples_target = ForwardSampling.GetNSamplesTarget();
|
||
|
}
|
||
|
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
|
||
|
ForwardSampling.Hausdorff();
|
||
|
dist1_max = ForwardSampling.GetDistMax();
|
||
|
dist1_mean = ForwardSampling.GetDistMean();
|
||
|
dist1_RMS = ForwardSampling.GetDistRMS();
|
||
|
volume_1 = ForwardSampling.GetDistVolume();
|
||
|
n_samples_output = ForwardSampling.GetNSamples();
|
||
|
n_samples_area = ForwardSampling.GetNAreaSamples();
|
||
|
n_samples_edge = ForwardSampling.GetNEdgeSamples();
|
||
|
n_samples_vertex = ForwardSampling.GetNVertexSamples();
|
||
|
printf("\ndistance:\n max : %f (%f with respect to bounding box diagonal)\n mean : %f\n RMS : %f\n", (float)dist1_max, (float)dist1_max/bbox.Diag(), (float)dist1_mean, (float)dist1_RMS);
|
||
|
if(VertexSampleFlag)
|
||
|
printf("# vertex samples %d\n", n_samples_vertex);
|
||
|
if(EdgeSampleFlag)
|
||
|
printf("# edge samples %d\n", n_samples_edge);
|
||
|
printf("# area samples %d\n# total samples %d\nsamples per area unit: %f\n\n", n_samples_area, n_samples_output, ForwardSampling.GetNSamplesPerAreaUnit());
|
||
|
|
||
|
// Backward distance.
|
||
|
printf("\nBackward distance (M2 -> M1):\n");
|
||
|
BackwardSampling.SetFlags(flags_back);
|
||
|
if(NumberOfSamples)
|
||
|
{
|
||
|
BackwardSampling.SetSamplesTarget(n_samples_target);
|
||
|
n_samples_per_area_unit = BackwardSampling.GetNSamplesPerAreaUnit();
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
BackwardSampling.SetSamplesPerAreaUnit(n_samples_per_area_unit);
|
||
|
n_samples_target = BackwardSampling.GetNSamplesTarget();
|
||
|
}
|
||
|
printf("target # samples : %u\ntarget # samples/area : %f\n", n_samples_target, n_samples_per_area_unit);
|
||
|
BackwardSampling.Hausdorff();
|
||
|
dist2_max = BackwardSampling.GetDistMax();
|
||
|
dist2_mean = BackwardSampling.GetDistMean();
|
||
|
dist2_RMS = BackwardSampling.GetDistRMS();
|
||
|
volume_2 = BackwardSampling.GetDistVolume();
|
||
|
n_samples_output = BackwardSampling.GetNSamples();
|
||
|
n_samples_area = BackwardSampling.GetNAreaSamples();
|
||
|
n_samples_edge = BackwardSampling.GetNEdgeSamples();
|
||
|
n_samples_vertex = BackwardSampling.GetNVertexSamples();
|
||
|
printf("\ndistance:\n max : %f (%f with respect to bounding box diagonal)\n mean : %f\n RMS : %f\n", (float)dist2_max, (float)dist2_max/bbox.Diag(), (float)dist2_mean, (float)dist2_RMS);
|
||
|
if(VertexSampleFlag)
|
||
|
printf("# vertex samples %d\n", n_samples_vertex);
|
||
|
if(EdgeSampleFlag)
|
||
|
printf("# edge samples %d\n", n_samples_edge);
|
||
|
printf("# area samples %d\n# total samples %d\nsamples per area unit: %f\n\n", n_samples_area, n_samples_output, BackwardSampling.GetNSamplesPerAreaUnit());
|
||
|
|
||
|
// compute time info.
|
||
|
elapsed_time = clock() - t0;
|
||
|
|
||
|
// save error distribution histogram
|
||
|
/*if(ComputeHistFlag)
|
||
|
{
|
||
|
const Hist &hist1 = ForwardSampling.GetHist();
|
||
|
const Hist &hist2 = BackwardSampling.GetHist();
|
||
|
if(!(fd = fopen(hist_filename, "w")))
|
||
|
{
|
||
|
printf(MSG_ERR_FILE_OPEN);
|
||
|
exit(-1);
|
||
|
}
|
||
|
vector<int>::const_iterator ii;
|
||
|
vector<float>::const_iterator fi;
|
||
|
|
||
|
fprintf(fd, "error distribution histogram (forward distance)\n\n");
|
||
|
for(ii=hist1.H.begin(), fi=hist1.R.begin(); ii != hist1.H.end(); ++fi,ii++)
|
||
|
fprintf(fd, "%6.4f\t%d\n", *fi, *ii);
|
||
|
|
||
|
fprintf(fd, "\n\nerror distribution histogram (backward distance)\n");
|
||
|
for(ii=hist2.H.begin(), fi=hist2.R.begin(); ii != hist2.H.end(); ++fi,ii++)
|
||
|
fprintf(fd, "%6.4f\t%d\n", *fi, *ii);
|
||
|
|
||
|
fclose(fd);
|
||
|
}*/
|
||
|
|
||
|
// max distance.
|
||
|
mesh_dist_max = max(dist1_max , dist2_max);
|
||
|
printf("\nHausdorff distance: %f (%f with respect to bounding box diagonal)\nComputation time : %d ms\n# samples/second : %f\n\n", (float)mesh_dist_max, (float)mesh_dist_max/bbox.Diag(), (int)elapsed_time, (float)n_samples_output/(float)elapsed_time*2000.0F);
|
||
|
|
||
|
// save error files.
|
||
|
if((flags_fwd & FLAG_SAVE_ERROR_DISPLACEMENT) && (flags_fwd & FLAG_SAVE_ERROR_AS_COLOUR))
|
||
|
if(!strcmp(new_mesh_filename, new_mesh_filename_2))
|
||
|
{
|
||
|
tri::io::ExporterPLY<CMesh>::Save( S1,new_mesh_filename);
|
||
|
exit(0);
|
||
|
}
|
||
|
if((flags_back & FLAG_SAVE_ERROR_DISPLACEMENT) && (flags_back & FLAG_SAVE_ERROR_AS_COLOUR))
|
||
|
if(!strcmp(new_mesh_filename, new_mesh_filename_2))
|
||
|
{
|
||
|
tri::io::ExporterPLY<CMesh>::Save( S2,new_mesh_filename_2);
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
//if(flags_fwd & FLAG_SAVE_ERROR_DISPLACEMENT)
|
||
|
// S1.SavePly(new_mesh_filename, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTCOLOR));
|
||
|
//else
|
||
|
// if(flags_back & FLAG_SAVE_ERROR_DISPLACEMENT)
|
||
|
// S2.SavePly(new_mesh_filename, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTCOLOR));
|
||
|
//if(flags_fwd & FLAG_SAVE_ERROR_AS_COLOUR)
|
||
|
// S1.SavePly(new_mesh_filename_2, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTQUALITY));
|
||
|
//else
|
||
|
// if(flags_back & FLAG_SAVE_ERROR_AS_COLOUR)
|
||
|
// S2.SavePly(new_mesh_filename_2, CMesh::SM_ALL & (CMesh::SM_ALL ^ CMesh::SM_VERTQUALITY));
|
||
|
}
|
||
|
|
||
|
// -----------------------------------------------------------------------------------------------
|