vcglib/wrap/nanoply/nanoply_demo/main.cpp

285 lines
12 KiB
C++
Raw Normal View History

/****************************************************************************
* NanoPLY *
* NanoPLY is a C++11 header-only library to read and write PLY file *
* *
* Copyright(C) 2014-2015 *
* Visual Computing Lab *
* ISTI - Italian National Research Council *
* *
* This Source Code Form is subject to the terms of the Mozilla Public *
* License, v. 2.0. If a copy of the MPL was not distributed with this *
* file, You can obtain one at http://mozilla.org/MPL/2.0/. *
* *
****************************************************************************/
2015-09-10 23:16:44 +02:00
#include <iostream>
#include <nanoply.hpp>
template<typename T, int N>
struct Container
2015-09-10 23:16:44 +02:00
{
public:
T data[N];
Container(){}
Container(T* temp, int n)
{
for (int i = 0; i < std::min(n, N); i++)
data[i] = temp[i];
}
T* V()
{
return data;
}
bool operator == (Container<T, N> const & m) const
{
bool flag = true;
for (int i = 0; i < N; i++)
flag = flag && (data[i] == m.data[i]);
return flag;
}
2015-09-10 23:16:44 +02:00
};
typedef Container<float, 3> Point3f;
typedef Container<unsigned char, 4> Color4f;
typedef Container<int, 3> VertexIndex;
struct MyVertexInfo
2015-09-10 23:16:44 +02:00
{
Color4f c;
float density;
int materialId;
bool operator == (MyVertexInfo const & m) const
{
return (c == m.c && m.density == density && m.materialId == materialId);
}
};
struct MyMaterialInfo
{
Point3f kd;
Point3f ks;
float rho;
bool operator == (MyMaterialInfo const & m) const
{
return (kd == m.kd && ks == m.ks && rho == m.rho);
}
};
class MyMesh
{
public:
2015-09-10 23:16:44 +02:00
std::vector<Point3f> coordVec;
std::vector<Point3f> normalVec;
std::vector<MyVertexInfo> infoVec;
std::vector<VertexIndex> faceIndex;
std::vector<MyMaterialInfo> material;
void FillMesh()
{
float pos[] = { 1.0, 1.0, 1.0, -1.0, 1.0, -1.0, -1.0, -1.0, 1.0, 1.0, -1.0, -1.0 };
int index[] = { 0, 1, 2, 0, 2, 3, 0, 3, 1, 3, 2, 1 };
float norm[] = { 0.57735, 0.57735, 0.57735, -0.57735, 0.57735, -0.57735, -0.57735, -0.57735, 0.57735, 0.57735, -0.57735, -0.57735 };
unsigned char color[] = { 68, 68, 68, 255, 177, 68, 177, 255, 177, 177, 68, 255, 68, 177, 177 };
float density[] = { 3.5, 2.0, 4.0, 3.0 };
float materialId[] = { 1, 0, -1, 1 };
float materialValue[] = { 0.2, 0.3, 0.2, 0.5, 0.5, 0.6, 20.0, 0.1, 0.1, 0.1, 0.7, 0.5, 0.4, 1.0 };
coordVec.push_back(Point3f(pos, 3)); coordVec.push_back(Point3f(&pos[3], 3)); coordVec.push_back(Point3f(&pos[6], 3)); coordVec.push_back(Point3f(&pos[9], 3));
normalVec.push_back(Point3f(norm, 3)); normalVec.push_back(Point3f(&norm[3], 3)); normalVec.push_back(Point3f(&norm[6], 3)); normalVec.push_back(Point3f(&norm[9], 3));
MyVertexInfo info1 = { Color4f(color, 4), density[0], materialId[0] }; infoVec.push_back(info1);
MyVertexInfo info2 = { Color4f(&color[4], 4), density[1], materialId[1] }; infoVec.push_back(info2);
MyVertexInfo info3 = { Color4f(&color[8], 4), density[2], materialId[2] }; infoVec.push_back(info3);
MyVertexInfo info4 = { Color4f(&color[12], 4), density[3], materialId[3] }; infoVec.push_back(info4);
faceIndex.push_back(VertexIndex(index, 3)); faceIndex.push_back(VertexIndex(&index[3], 3)); faceIndex.push_back(VertexIndex(&index[6], 3)); faceIndex.push_back(VertexIndex(&index[9], 3));
MyMaterialInfo mat1 = { Point3f(materialValue, 3), Point3f(&materialValue[3], 3), materialValue[6] }; material.push_back(mat1);
MyMaterialInfo mat2 = { Point3f(&materialValue[7], 3), Point3f(&materialValue[10], 3), materialValue[13] }; material.push_back(mat2);
}
bool operator == (MyMesh& m)
{
bool flag = (coordVec == m.coordVec);
flag = flag && (normalVec == m.normalVec);
flag = flag && (infoVec == m.infoVec);
flag = flag && (faceIndex == m.faceIndex);
flag = flag && (material == m.material);
return flag;
}
};
bool Load(const char* filename, MyMesh& mesh)
{
//Get file info
nanoply::Info info(filename);
if (info.errInfo != nanoply::NNP_OK)
{
std::cout << "Invalid file format" << std::endl;
return false;
}
2015-09-10 23:16:44 +02:00
//Resize the element containers
int vertCnt = info.GetVertexCount();
if (vertCnt <= 0)
{
std::cout << "The file does't contain any vertex." << std::endl;
return false;
}
mesh.coordVec.resize(vertCnt);
mesh.normalVec.resize(vertCnt);
mesh.infoVec.resize(vertCnt);
int faceCnt = info.GetFaceCount();
mesh.faceIndex.resize(faceCnt);
int materialCnt = info.GetElementCount(std::string("material"));
mesh.material.resize(2);
2015-09-10 23:16:44 +02:00
//Create the vertex properties descriptor (what ply property and where to save its data)
nanoply::ElementDescriptor vertex(nanoply::NNP_VERTEX_ELEM);
if (vertCnt > 0)
{
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_PXYZ, (*mesh.coordVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_NXYZ, (*mesh.normalVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 4, unsigned char>(nanoply::NNP_CRGBA, (*mesh.infoVec.begin()).c.V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, float>(nanoply::NNP_DENSITY, &(*mesh.infoVec.begin()).density));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, int>(std::string("materialId"), &(*mesh.infoVec.begin()).materialId));
}
//Create the face properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor face(nanoply::NNP_FACE_ELEM);
if (mesh.faceIndex.size() > 0)
face.dataDescriptor.push_back(new nanoply::DataDescriptor<VertexIndex, 3, int>(nanoply::NNP_FACE_VERTEX_LIST, (*mesh.faceIndex.begin()).V()));
//Create the material properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor material(std::string("material"));
if (mesh.material.size() > 0)
{
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("kd"), (*mesh.material.begin()).kd.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("ks"), (*mesh.material.begin()).ks.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 1, float>(std::string("rho"), &(*mesh.material.begin()).rho));
}
//Create the mesh descriptor
std::vector<nanoply::ElementDescriptor*> meshDescr;
meshDescr.push_back(&vertex);
meshDescr.push_back(&face);
meshDescr.push_back(&material);
//Open the file and save the element data according the relative element descriptor
OpenModel(info, meshDescr);
for (int i = 0; i < vertex.dataDescriptor.size(); i++)
delete vertex.dataDescriptor[i];
for (int i = 0; i < face.dataDescriptor.size(); i++)
delete face.dataDescriptor[i];
for (int i = 0; i < material.dataDescriptor.size(); i++)
delete material.dataDescriptor[i];
return (info.errInfo == nanoply::NNP_OK);
}
bool Save(const char* filename, MyMesh& mesh, bool binary)
{
//Create the vector of vertex properties to save in the file
std::vector<nanoply::PlyProperty> vertexProp;
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_PXYZ));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_NXYZ));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_DENSITY));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, nanoply::NNP_CRGBA));
vertexProp.push_back(nanoply::PlyProperty(nanoply::NNP_INT32, "materialId"));
//Create the vector of face properties to save in the file
std::vector<nanoply::PlyProperty> faceProp;
faceProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_UINT32, nanoply::NNP_FACE_VERTEX_LIST));
//Create the vector of material properties to save in the file
std::vector<nanoply::PlyProperty> materialProp;
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_FLOAT32, "kd"));
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_LIST_UINT8_FLOAT32, "ks"));
materialProp.push_back(nanoply::PlyProperty(nanoply::NNP_FLOAT32, "rho"));
//Create the PlyElement
nanoply::PlyElement vertexElem(nanoply::NNP_VERTEX_ELEM, vertexProp, mesh.coordVec.size());
nanoply::PlyElement faceElem(nanoply::NNP_FACE_ELEM, faceProp, mesh.faceIndex.size());
nanoply::PlyElement materialElem(std::string("material"), materialProp, mesh.material.size());
//Create the Info object with the data to save in the header
nanoply::Info infoSave;
infoSave.filename = filename;
infoSave.binary = binary;
infoSave.AddPlyElement(vertexElem);
infoSave.AddPlyElement(faceElem);
infoSave.AddPlyElement(materialElem);
//Create the vertex properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor vertex(nanoply::NNP_VERTEX_ELEM);
if (mesh.coordVec.size() > 0)
{
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_PXYZ, (*mesh.coordVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<Point3f, 3, float>(nanoply::NNP_NXYZ, (*mesh.normalVec.begin()).V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 4, unsigned char>(nanoply::NNP_CRGBA, (*mesh.infoVec.begin()).c.V()));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, float>(nanoply::NNP_DENSITY, &(*mesh.infoVec.begin()).density));
vertex.dataDescriptor.push_back(new nanoply::DataDescriptor<MyVertexInfo, 1, int>(std::string("materialId"), &(*mesh.infoVec.begin()).materialId));
}
//Create the face properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor face(nanoply::NNP_FACE_ELEM);
if (mesh.faceIndex.size() > 0)
face.dataDescriptor.push_back(new nanoply::DataDescriptor<VertexIndex, 3, int>(nanoply::NNP_FACE_VERTEX_LIST, (*mesh.faceIndex.begin()).V()));
//Create the material properties descriptor (what ply property and where the data is stored)
nanoply::ElementDescriptor material(std::string("material"));
if (mesh.material.size() > 0)
{
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("kd"), (*mesh.material.begin()).kd.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 3, float>(std::string("ks"), (*mesh.material.begin()).ks.V()));
material.dataDescriptor.push_back(new nanoply::DataDescriptor<MyMaterialInfo, 1, float>(std::string("rho"), &(*mesh.material.begin()).rho));
}
//Create the mesh descriptor
std::vector<nanoply::ElementDescriptor*> meshDescr;
meshDescr.push_back(&vertex);
meshDescr.push_back(&face);
meshDescr.push_back(&material);
//Save the file
bool result = nanoply::SaveModel(infoSave.filename, meshDescr, infoSave);
for (int i = 0; i < vertex.dataDescriptor.size(); i++)
delete vertex.dataDescriptor[i];
for (int i = 0; i < face.dataDescriptor.size(); i++)
delete face.dataDescriptor[i];
for (int i = 0; i < material.dataDescriptor.size(); i++)
delete material.dataDescriptor[i];
return result;
2015-09-10 23:16:44 +02:00
}
int main()
{
MyMesh mesh1;
mesh1.FillMesh();
Save("example_ascii.ply", mesh1, false);
Save("example_binary.ply", mesh1, true);
MyMesh mesh2, mesh3;
Load("example_ascii.ply", mesh2);
Load("example_binary.ply", mesh3);
if (mesh2 == mesh1)
std::cout << "Write and read ASCII ply file: SUCCESS\n";
else
std::cout << "Write and read ASCII ply file: FAIL\n";
if (mesh3 == mesh1)
std::cout << "Write and read binary ply file: SUCCESS\n";
else
std::cout << "Write and read binary ply file: FAIL\n";
return true;
}