vcglib/vcg/space/fitting3.h

101 lines
3.2 KiB
C
Raw Normal View History

2005-03-14 18:04:24 +01:00
/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
/****************************************************************************
History
$Log: not supported by cvs2svn $
****************************************************************************/
#ifndef __VCGLIB_FITTING3
#define __VCGLIB_FITTING3
#include <vector>
#include <vcg/space/plane3.h>
namespace vcg {
// Funzione di supporto: Ritorna il vettore 1 x y z
template<class S>
inline double FIT_VExp( const Point3<S> & x, const int i )
{
assert(i>=0);
assert(i<4);
if(i==0) return 1;
else return x[i-1];
}
/** Fitting di piani: trova il piano che meglio approssima
l'insieme di punti dato
*/
template<class POINT_TYPE, class PLANE_TYPE>
bool PlaneFittingPoints( const std::vector< POINT_TYPE > & samples, Plane3<typename POINT_TYPE::ScalarType> & p )
{
typedef typename POINT_TYPE::ScalarType S;
const int N = 4;
S P[N][N]; // A = s' . s
S U[N][N];
int i,j,k,n;
n = samples.size();
if(n<3)
return false;
for(i=0;i<N;++i)
{
for(j=i;j<N;++j)
{
P[i][j] = 0;
for(k=0;k<n;++k)
P[i][j] += FIT_VExp(samples[k],i) * FIT_VExp(samples[k],j);
}
for(j=0;j<i;++j)
P[i][j] = P[j][i];
}
for(i=0;i<N;++i)
{
U[i][i] = 1.0;
for(j=0;j<i;++j)
U[i][j] = 0.0;
for(j=i+1;j<N;++j)
{
if(P[i][i]==0.0)
return false;
U[i][j] = P[i][j]/P[i][i];
for(k=j;k<N;++k)
P[j][k] -= U[i][j]*P[i][k];
}
}
p.SetDirection(Point3<S>(U[1][2]*U[2][3]-U[1][3],-U[2][3],1));
p.SetOffset(-(U[0][2]*U[2][3]-U[0][3]+U[0][1]*U[1][3]-U[0][1]*U[1][2]*U[2][3]));
return true;
}
} // end namespace
#endif