vcglib/vcg/space/index/perfect_spatial_hashing.h

1599 lines
59 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H
#define VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H
#pragma warning(disable : 4996)
#define _USE_GRID_UTIL_PARTIONING_ 1
#define _USE_OCTREE_PARTITIONING_ (1-_USE_GRID_UTIL_PARTIONING_)
#include <vector>
#include <list>
#include <algorithm>
#include <vcg/space/index/base.h>
#include <vcg/space/index/grid_util.h>
#include <vcg/space/point2.h>
#include <vcg/space/point3.h>
#include <vcg/space/box3.h>
namespace vcg
{
// Compute the greatest common divisor between two integers a and b
int GreatestCommonDivisor(const int a, const int b)
{
int m = a;
int n = b;
do
{
if (m<n) std::swap(m, n);
m = m % n;
std::swap(m, n);
}
while (n!=0);
return m;
}
// Doxygen documentation
/** \addtogroup index */
/*! @{ */
/*!
* This class implements the perfect spatial hashing by S.Lefebvre and H.Hoppe
* This is an spatial indexing structure such as the uniform grid, but with lower
* memory requirements, since all the empty cells of the uniform grid are removed.
* Access to a non-empty cell is performed looking up in two d-dimensional tables,
* the offset table and the hash table.
* @param OBJECT_TYPE (Template parameter) the type of objects to be indexed
* @param SCALAR_TYPE (Template parameter) the scalar type
*/
template < class OBJECT_TYPE, class SCALAR_TYPE >
class PerfectSpatialHashing : public vcg::SpatialIndex< OBJECT_TYPE, SCALAR_TYPE >
{
// Given an object or a pointer to an object, return the reference to the object
template < typename TYPE >
struct Dereferencer
{
static TYPE& Reference(TYPE &t) { return t; }
static TYPE& Reference(TYPE* &t) { return *t; }
static const TYPE& Reference(const TYPE &t) { return t; }
static const TYPE& Reference(const TYPE* &t) { return *t; }
};
// Given a type, holds this type in Type
template < typename TYPE >
struct ReferenceType { typedef TYPE Type; };
// Given as type a "pointer to type", holds the type in Type
template < typename TYPE >
struct ReferenceType< TYPE * > { typedef typename ReferenceType<TYPE>::Type Type; };
public:
typedef SCALAR_TYPE ScalarType;
typedef OBJECT_TYPE ObjectType;
typedef typename ReferenceType< ObjectType >::Type * ObjectPointer;
typedef typename vcg::Box3< ScalarType > BoundingBoxType;
typedef typename vcg::Point3< ScalarType > CoordinateType;
protected:
/*! \struct NeighboringEntryIterator
* This class provides a convenient way to iterate over the six neighboring cells of a given cell.
*/
struct NeighboringEntryIterator
{
/*!
* Default constructor.
* @param[in] entry The index of the cell in the UniformGrid around which iterate.
* @param[in] table_size The number of cells in the UniformGrid for each side.
*/
NeighboringEntryIterator(const vcg::Point3i &entry, const int table_size)
{
m_Center = entry;
m_TableSize = table_size;
m_CurrentNeighbor.X() = (m_Center.X()+m_TableSize-1)%m_TableSize;
m_CurrentNeighbor.Y() = m_Center.Y();
m_CurrentNeighbor.Z() = m_Center.Z();
m_CurrentIteration = 0;
}
/*!
* Increment the iterator to point to the next neighboring entry in the UniformGrid
*/
void operator++(int)
{
switch(++m_CurrentIteration)
{
case 1: m_CurrentNeighbor.X()=(m_Center.X()+1)%m_TableSize; break;
case 2: m_CurrentNeighbor.X()=m_Center.X(); m_CurrentNeighbor.Y()=(m_Center.Y()+m_TableSize-1)%m_TableSize; break;
case 3: m_CurrentNeighbor.Y()=(m_Center.Y()+1)%m_TableSize; break;
case 4: m_CurrentNeighbor.Y()=m_Center.Y(); m_CurrentNeighbor.Z()=(m_Center.Z()+m_TableSize-1)%m_TableSize; break;
case 5: m_CurrentNeighbor.Z()=(m_Center.Z()+1)%m_TableSize; break;
default: m_CurrentNeighbor = vcg::Point3i(-1, -1, -1); break;
}
}
/*!
* Dereferencing operator
* \return The neighbor of the given cell at the current iteration
*/
vcg::Point3i operator*() { return m_CurrentNeighbor; }
/*!
* Assignment operator
* @param[in] The source neighboring iterator
* \return The reference to this iterator
*/
NeighboringEntryIterator& operator =(const NeighboringEntryIterator &it)
{
m_Center = it.m_Center ;
m_CurrentNeighbor = it.m_CurrentNeighbor ;
m_CurrentIteration = it.m_CurrentIteration ;
m_TableSize = it.m_TableSize ;
return *this;
}
/*!
* Less than operator. Since each entry in the UniformGrid has only 6 neighbors,
* the iterator over the neighboring entries can be compared with an integer.
*/
inline bool operator <(const int value) { return m_CurrentIteration<value; }
protected:
vcg::Point3i m_Center; /*!< The cell whose neighboring cells are to be looked up. */
vcg::Point3i m_CurrentNeighbor; /*!< The neighboring cell at the current iteration. */
int m_CurrentIteration; /*!< The current iteration. */
int m_TableSize; /*!< The number of cell in the UniformGrid for each side */
}; // end of class NeighboringEntryIterator
/************************************************************************/
/*! \class UniformGrid
* This class represent the domain U in the original article. It is used
* only during the construction of the offset and hash tables.
*/
/************************************************************************/
class UniformGrid
{
public:
typedef vcg::Point3i CellCoordinate;
/*! \struct EntryIterator
* This class provides a convenient way to iterate over the set of the grid cells.
*/
struct EntryIterator
{
friend class UniformGrid;
/*!
* Default constructor
*/
EntryIterator(UniformGrid *uniform_grid, const CellCoordinate &position)
{
m_UniformGrid = uniform_grid;
m_CurrentPosition = position;
}
/*!
* Increment operator. Move the iterator to the next cell in the UniformGrid
*/
void operator++(int)
{
if (++m_CurrentPosition.Z()==m_UniformGrid->GetResolution())
{
m_CurrentPosition.Z() = 0;
if (++m_CurrentPosition.Y()==m_UniformGrid->GetResolution())
{
m_CurrentPosition.Y() = 0;
if (++m_CurrentPosition.X()==m_UniformGrid->GetResolution())
m_CurrentPosition = CellCoordinate(-1, -1, -1);
}
}
}
/*!
* Copy operator.
* @param[in] it The iterator whose value has to be copied.
*/
void operator =(const EntryIterator &it)
{
m_UniformGrid = it.m_UniformGrid;
m_CurrentPosition = it.m_CurrentPosition;
}
/*!
* Equivalence operator
*/
bool operator==(const EntryIterator &it) const
{
return m_CurrentPosition==it.m_CurrentPosition;
}
/*!
* Diversity operator
*/
bool operator!=(const EntryIterator &it) const
{
return m_CurrentPosition!=it.m_CurrentPosition;
}
/*!
* Dereferencing operator.
* \return The pointer to the vector of the objects contained in the cell pointed to by the iterator.
*/
std::vector< ObjectPointer >* operator*()
{
return m_UniformGrid->GetObjects(m_CurrentPosition);
}
/*!
* Return the index of the cell pointed to by the iterator.
*/
CellCoordinate GetPosition() const
{
return m_CurrentPosition;
}
protected:
UniformGrid * m_UniformGrid;
CellCoordinate m_CurrentPosition;
}; // end of struct EntryIterator
/*!
* Default constructor
*/
UniformGrid() {}
/*!
* Default destructor
*/
~UniformGrid() {}
/*!
* These functions return an iterator pointing to the first and the last cell of the grid respectively.
*/
EntryIterator Begin() { return EntryIterator(this, CellCoordinate( 0, 0, 0)); }
EntryIterator End() { return EntryIterator(this, CellCoordinate(-1, -1, -1)); }
/*!
* Return an iterator that iterates over the six adjacent cells of a given cell.
* @param[in] at The cell around which this iterator takes values.
* \return The iterator over the neighboring cells of <CODE>at</CODE>.
*/
NeighboringEntryIterator GetNeighboringEntryIterator(const CellCoordinate &at) { return NeighboringEntryIterator(at, m_CellPerSide); }
/*!
* Allocate the necessary space for the uniform grid.
* @param[in] bounding_box The bounding box enclosing the whole dataset.
* @param[in] cell_per_side The resolution of the grid.
*/
void Allocate(const BoundingBoxType &bounding_box, const int cell_per_side)
{
m_CellPerSide = cell_per_side;
m_BoundingBox = bounding_box;
m_CellSize = (m_BoundingBox.max - m_BoundingBox.min)/ScalarType(cell_per_side);
m_Grid.resize(m_CellPerSide);
for (int i=0; i<m_CellPerSide; i++)
{
m_Grid[i].resize(m_CellPerSide);
for (int j=0; j<m_CellPerSide; j++)
m_Grid[i][j].resize(m_CellPerSide);
}
}
/*!
* Removes all the reference to the domain data from the UniformGrid cells.
*/
void Finalize()
{
m_Grid.clear();
}
/*!
* Adds a set of elements to the uniform grid.
* @param[in] begin The iterator addressing the position of the first element in the range to be added.
* @param[in] end The iterator addressing the position one past the final element in the range to be added.
*/
template < class OBJECT_ITERATOR >
void InsertElements(const OBJECT_ITERATOR &begin, const OBJECT_ITERATOR &end)
{
typedef OBJECT_ITERATOR ObjectIterator;
typedef Dereferencer< typename ReferenceType< typename OBJECT_ITERATOR::value_type >::Type > ObjectDereferencer;
std::vector< CellCoordinate > cells_occupied;
for (ObjectIterator iObject=begin; iObject!=end; iObject++)
{
ObjectPointer pObject = &ObjectDereferencer::Reference( *iObject );
GetCellsIndex( pObject, cells_occupied);
for (std::vector< CellCoordinate >::iterator iCell=cells_occupied.begin(), eCell=cells_occupied.end(); iCell!=eCell; iCell++)
GetObjects( *iCell )->push_back( pObject );
cells_occupied.clear();
}
}
/*!
* Given a point contained in the UniformGrid, returns the index of the cell where it's contained.
* @param[in] query The 3D point.
* \return The index of the UniformGrid entry where this point is contained.
*/
inline CellCoordinate Interize(const CoordinateType &query) const
{
CellCoordinate result;
result.X() = (int) floorf( (query.X()-m_BoundingBox.min.X())/m_CellSize.X() );
result.Y() = (int) floorf( (query.Y()-m_BoundingBox.min.Y())/m_CellSize.Y() );
result.Z() = (int) floorf( (query.Z()-m_BoundingBox.min.Z())/m_CellSize.Z() );
return result;
}
/*!
* Given a bounding box contained in the UniformGrid, returns its integer-equivalent bounding box.
* @param[in] bounding_box The bounding box in the 3D space.
* \return The integer representation of the bounding box.
*/
inline vcg::Box3i Interize(const BoundingBoxType &bounding_box) const
{
vcg::Box3i result;
result.min = Interize(bounding_box.min);
result.max = Interize(bounding_box.max);
return result;
}
/*!
* Given the pointer to an object, returns the set of cells in the uniform grid containing the object.
* @param[in] pObject The pointer to the object
* @param[out] cells_occuppied The set of cell index containing the object
*/
void GetCellsIndex(const ObjectPointer pObject, std::vector< CellCoordinate > & cells_occupied)
{
BoundingBoxType object_bb;
(*pObject).GetBBox(object_bb);
CoordinateType corner = object_bb.min;
while (object_bb.IsIn(corner))
{
CellCoordinate cell_index;
cell_index.X() = (int) floorf( (corner.X()-m_BoundingBox.min.X())/m_CellSize.X() );
cell_index.Y() = (int) floorf( (corner.Y()-m_BoundingBox.min.Y())/m_CellSize.Y() );
cell_index.Z() = (int) floorf( (corner.Z()-m_BoundingBox.min.Z())/m_CellSize.Z() );
cells_occupied.push_back( cell_index );
if ((corner.X()+=m_CellSize.X())>object_bb.max.X())
{
corner.X() = object_bb.min.X();
if ( (corner.Z()+=m_CellSize.Z())>object_bb.max.Z() )
{
corner.Z() = object_bb.min.Z();
corner.Y() += m_CellSize.Y();
}
}
}
}
/*!
* Return the number of cells of the uniform grid where there are no item of the input dataset.
* \return The number of cells occupied by at least one item.
*/
int GetNumberOfNotEmptyCells()
{
int number_of_not_empty_cell = 0;
for (int i=0; i<m_CellPerSide; i++)
for (int j=0; j<m_CellPerSide; j++)
for (int k=0; k<m_CellPerSide; k++)
if (GetObjects(i, j, k)->size()>0)
number_of_not_empty_cell++;
return number_of_not_empty_cell;
}
/*!
* Returns the number of entries for each side of the grid.
* \return The resolution of the UniformGrid in each dimension.
*/
inline int GetResolution() const { return m_CellPerSide; }
/*!
* Return the pointer to a vector containing pointers to the objects falling in a given domain cell.
* @param[in] at The index of the cell of the uniform grid where looking for
* \return A pointer to a vector of pointers to the objects falling in the cell having index <CODE>at</CODE>.
*/
std::vector< ObjectPointer >* GetObjects(const int i, const int j, const int k) { return &m_Grid[i][j][k]; }
std::vector< ObjectPointer >* GetObjects(const CellCoordinate &at) { return &m_Grid[at.X()][at.Y()][at.Z()];}
std::vector< ObjectPointer >* operator[](const CellCoordinate &at) { return &m_Grid[at.X()][at.Y()][at.Z()];}
protected:
std::vector< std::vector< std::vector< std::vector< ObjectPointer > > > >
m_Grid; /*!< The uniform grid */
BoundingBoxType m_BoundingBox; /*!< The bounding box of the uniform grid. */
int m_CellPerSide; /*!< The number of cell per side. */
CoordinateType m_CellSize; /*!< The dimension of each cell. */
}; //end of class UniformGrid
/************************************************************************/
/*! \class HashTable
* This class substitutes the uniform grid.
*/
/************************************************************************/
class HashTable
{
public:
typedef vcg::Point3i EntryCoordinate;
// We preferred using the Data structure instead of a pointer
// to the vector of the domain elements just for extensibility
struct Data
{
/*!
* Default constructor
*/
Data(std::vector< ObjectPointer > *data)
{
domain_data = data;
}
std::vector< ObjectPointer > *domain_data;
};
/*!
* Default constructor
*/
HashTable() {}
/*!
* Default destructor
*/
~HashTable() { Clear(true); }
/*!
*
*/
NeighboringEntryIterator GetNeighborintEntryIterator(const EntryCoordinate &at) { return NeighboringEntryIterator(at, m_EntryPerSide); }
/*!
* Allocates the space for the hash table; the number of entries created is entry_per_side^3.
* @param[in] entry_per_side The number of entries for each size
*/
void Allocate(const int entry_per_side)
{
m_EntryPerSide = entry_per_side;
m_Table.resize(m_EntryPerSide);
for (int i=0; i<m_EntryPerSide; i++)
{
m_Table[i].resize(m_EntryPerSide);
for (int j=0; j<m_EntryPerSide; j++)
m_Table[i][j].resize(m_EntryPerSide, NULL);
}
BuildFreeEntryList();
}
/*
* Once the PerfectSpatialHash has been computed, all the unnecessary data can be eliminated.
* This function frees the empyt_list, and substitutes all the pointers to the UniformGrid
* whit brand new pointers to the input objects.
*/
void Finalize()
{
Data *pData;
for (int i=0; i<m_EntryPerSide; i++)
for (int j=0; j<m_EntryPerSide; j++)
for (int k=0; k<m_EntryPerSide; k++)
if ((pData=GetData(i, j, k))!=NULL)
{
std::vector< ObjectPointer > *domain_data = pData->domain_data;
pData->domain_data = new std::vector< ObjectPointer>( *domain_data );
}
m_FreeEntries.clear();
}
/*!
* Inserts each entry in the hash table in the free entry list.
* When this function is called, each entry in the hash table must be free.
*/
void BuildFreeEntryList()
{
m_FreeEntries.clear();
for (int i=0; i<m_EntryPerSide; i++)
for (int j=0; j<m_EntryPerSide; j++)
for (int k=0; k<m_EntryPerSide; k++)
{
assert(m_Table[i][j][k]==NULL);
m_FreeEntries.push_back(EntryCoordinate(i, j, k));
}
}
/*!
* Removes all the entries from the table and clears the free entry list
*/
void Clear(bool delete_vectors=false)
{
for (int i=0; i<m_EntryPerSide; i++)
for (int j=0; j<m_EntryPerSide; j++)
for (int k=0; k<m_EntryPerSide; k++)
if (m_Table[i][j][k]!=NULL)
{
if (delete_vectors)
delete m_Table[i][j][k]->domain_data;
delete m_Table[i][j][k];
m_Table[i][j][k] = NULL;
}
m_FreeEntries.clear();
}
/*!
* Returns the reference to the free entry list
* \return The reference to the free entry list
*/
std::list< EntryCoordinate >* GetFreeEntryList() { return &m_FreeEntries; }
/*!
* Maps a given domain entry index into a hash table index.
* It corresponds to the \f$f_0\f$ function in the original article.
*/
EntryCoordinate DomainToHashTable(const typename UniformGrid::CellCoordinate &p)
{
EntryCoordinate result;
result.X() = p.X()%m_EntryPerSide;
result.Y() = p.Y()%m_EntryPerSide;
result.Z() = p.Z()%m_EntryPerSide;
return result;
}
/*!
* Inserts a new element in the hash table at the given position.
* @param[in] at The position in the hash table where the new element will be created
* @param[in] data The set of the domain elements contained in this entry
*/
void SetEntry(const EntryCoordinate &at, std::vector< ObjectPointer > *data)
{
assert(IsFree(at));
m_Table[at.X()][at.Y()][at.Z()] = new Data(data);
m_FreeEntries.remove(at);
}
/*!
* Given a hash table entry, this function modifies its coordinates in order to guarantee that
* they are in the valid range. Call this function before accessing the hash table.
* @param[in, out] entry The entry whose coordinates have to be checked.
*/
void ValidateEntry(EntryCoordinate &entry)
{
while (entry.X()<0) entry.X()+=m_EntryPerSide;
while (entry.Y()<0) entry.Y()+=m_EntryPerSide;
while (entry.Z()<0) entry.Z()+=m_EntryPerSide;
}
/*!
* Check if a given position in the hash table is free.
* @param[in] at The position of the hash table to check.
* \return True if and only if the hash table is free at the given position.
*/
inline bool IsFree(const EntryCoordinate &at) const
{
return (GetData(at)==NULL);
}
/*!
*/
inline int GetSize() { return m_EntryPerSide; }
/*!
* Returns the number of free entries.
*/
inline int GetNumberOfFreeEntries()
{
return int(m_FreeEntries.size());
}
/*!
* Return the number of entries where there is some domain data.
*/
inline int GetNumberOfNotEmptyEntries()
{
return (int(powf(float(m_EntryPerSide), 3.0f))-int(m_FreeEntries.size()));
}
/*!
* Return the pointer to the data stored in the hash table at the given position.
* @param[in] at The position of the hash table where looks for the data.
* \return A pointer to a valid data only if a valid pointer is stored in the hash
* table at the given position; otherwise return NULL.
*/
inline Data* GetData (const int i, const int j, const int k) const { return m_Table[i][j][k]; }
inline Data* GetData (const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; }
inline Data* operator[](const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; }
protected:
int m_EntryPerSide; /*!< The number of entries for each side of the hash-table. */
std::vector< std::vector< std::vector < Data* > > > m_Table; /*!< The table. */
std::list< EntryCoordinate > m_FreeEntries; /*!< The list containing the free entries. */
}; //end of class HashTable
/************************************************************************/
/*! \class OffsetTable
* This class containts the offsets used for shifting the access to the hash table.
*/
/************************************************************************/
class OffsetTable
{
public:
typedef unsigned char OffsetType;
typedef vcg::Point3<OffsetType> Offset;
typedef Offset * OffsetPointer;
typedef vcg::Point3i EntryCoordinate;
/*! \struct PreImage
* This class represents the pre-image for a given entry in the offset table, that is the set
* \f$h_1^{-1}(q)={p \in S s.t. h_1(p)=q}\f$
*/
struct PreImage
{
/*!
* Default constructor.
* @param[in] at The entry in the offset table where the cells in the preimage are mapped into.
* @param[in] preimage The set of UniformGrid cells mapping to this entry.
*/
PreImage(EntryCoordinate &at, std::vector< typename UniformGrid::CellCoordinate > *preimage)
{
entry_index = at;
pre_image = preimage;
cardinality = int(pre_image->size());
}
/*!
* less-than operator: needed for sorting the preimage slots based on their cardinality.
* @param second
* \return <code>true</code> if and only if the cardinality of this preimage slot is greater than that of <code>second</code>.
*/
inline bool operator<(const PreImage &second) const { return (cardinality>second.cardinality); }
std::vector< typename UniformGrid::CellCoordinate >
* pre_image; /*!< The set of entries in the uniform grid whose image through \f$h_1\f$ is this entry.*/
EntryCoordinate entry_index; /*!< The index of the entry inside the offset table. */
int cardinality; /*!< The cardinality of the pre-image. */
}; // end of struct PreImage
/*!
* Default constructor
*/
OffsetTable() { m_EntryPerSide=-1; m_NumberOfOccupiedEntries=0;}
/*!
* Destructor
*/
~OffsetTable() { Clear(); }
/*!
* Clear the entries in the offset table and in the preimage table.
*/
void Clear()
{
for (int i=0; i<m_EntryPerSide; i++)
for (int j=0; j<m_EntryPerSide; j++)
for (int k=0; k<m_EntryPerSide; k++)
if (m_Table[i][j][k]!=NULL)
{
delete m_Table[i][j][k];
m_Table[i][j][k] = NULL;
}
m_EntryPerSide = -1;
m_H1PreImage.clear();
m_NumberOfOccupiedEntries = 0;
}
/*!
* Allocate the space necessary for a offset table containing size entries for
* each dimension and the necessary space for computing the relative anti-image.
* @param[in] size The number of entries per side to allocate.
*/
void Allocate(int size)
{
m_NumberOfOccupiedEntries = 0;
m_EntryPerSide = size;
m_Table.resize(m_EntryPerSide);
for (int i=0; i<m_EntryPerSide; i++)
{
m_Table[i].resize(m_EntryPerSide);
for (int j=0; j<m_EntryPerSide; j++)
m_Table[i][j].resize(m_EntryPerSide, NULL);
}
m_H1PreImage.resize(m_EntryPerSide);
for (int i=0; i<m_EntryPerSide; i++)
{
m_H1PreImage[i].resize(m_EntryPerSide);
for (int j=0; j<m_EntryPerSide; j++)
m_H1PreImage[i][j].resize(m_EntryPerSide);
}
}
/*!
*
*/
void Finalize()
{
m_H1PreImage.clear();
}
/*!
* Build the pre-image of the \f$h_1\f$ function: the <CODE>m_H1PreImage</CODE> grid contains, for each
* cell (i, j, k) a list of the domain grid (the UniformGrid) that are mapped through \f$h_1\f$ into that cell.
*/
void BuildH1PreImage(const typename UniformGrid::EntryIterator &begin, const typename UniformGrid::EntryIterator &end)
{
for (typename UniformGrid::EntryIterator iter=begin; iter!=end; iter++)
{
if ((*iter)->size()==0)
continue;
typename UniformGrid::CellCoordinate cell_index = iter.GetPosition();
EntryCoordinate at = DomainToOffsetTable(cell_index);
m_H1PreImage[at.X()][at.Y()][at.Z()].push_back(cell_index);
}
}
/*!
* Sorts the entries of the PreImage table based on their cardinality.
* @param[out] preimage The list containing the entries of the preimage sorted by cardinality
*/
void GetPreImageSortedPerCardinality(std::list< PreImage > &pre_image)
{
pre_image.clear();
for (int i=0; i<m_EntryPerSide; i++)
for (int j=0; j<m_EntryPerSide; j++)
for (int k=0; k<m_EntryPerSide; k++)
{
std::vector< typedef UniformGrid::CellCoordinate > *preimage = &m_H1PreImage[i][j][k];
if (preimage->size()>0)
pre_image.push_back( PreImage(typename UniformGrid::CellCoordinate(i, j, k), preimage) );
}
pre_image.sort();
}
/*!
* Check if the entries in the offset table near the given entry contain a valid offset.
* @param[in] at The entry of the offset table whose neighboring entries will be checked.
* @param[out] offsets The set of consistent offset found by inspecting the neighboring entries.
* \return a vector containing possible offsets for the given entry
*/
void SuggestConsistentOffsets(const EntryCoordinate &at, std::vector< Offset > &offsets)
{
offsets.clear();
for (int i=-1; i<2; i++)
for (int j=-1; j<2; j++)
for (int k=-1; k<2; k++)
{
if (i==0 && j==0 && k==0)
continue;
int x = (at.X()+i+m_EntryPerSide)%m_EntryPerSide;
int y = (at.Y()+j+m_EntryPerSide)%m_EntryPerSide;
int z = (at.Z()+k+m_EntryPerSide)%m_EntryPerSide;
EntryCoordinate neighboring_entry(x, y, z);
if (!IsFree(neighboring_entry))
offsets.push_back( *GetOffset(neighboring_entry) );
}
}
/*!
* Assures that the given entry can be used to access the offset table without throwing an out-of-bound exception.
* @param[in,out] entry The entry to be checked.
*/
void ValidateEntryCoordinate(EntryCoordinate &entry)
{
while (entry.X()<0) entry.X()+=m_EntryPerSide;
while (entry.Y()<0) entry.Y()+=m_EntryPerSide;
while (entry.Z()<0) entry.Z()+=m_EntryPerSide;
}
/*!
* Converts the coordinate of a given cell in the UniformGrid to a valid entry in the offset table.
* This function corresponds to the \f$h_1\f$ function of the article.
* @param[in] coord The index of a domain cell in the UniformGrid.
* \return The coordinate of the entry corresponding to <CODE>coord<CODE> through this mapping.
*/
EntryCoordinate DomainToOffsetTable(const typename UniformGrid::CellCoordinate &coord)
{
EntryCoordinate result;
result.X() = coord.X()%m_EntryPerSide;
result.Y() = coord.Y()%m_EntryPerSide;
result.Z() = coord.Z()%m_EntryPerSide;
return result;
}
/*!
* Adds a new element to the offset table.
* @param[in] coord The index of the UniformGrid cell whose offset has to be stored.
* @param[in] offset The offset to associate to the given UniformGrid cell.
*/
void SetOffset(const typename UniformGrid::CellCoordinate &coord, const Offset &offset)
{
EntryCoordinate entry = DomainToOffsetTable(coord);
assert(IsFree(entry));
m_Table[entry.X()][entry.Y()][entry.Z()] = new Offset(offset);
m_NumberOfOccupiedEntries++;
}
/*!
* Return a random offset: this function is used during the first steps of the creation process,
* when the offsets are computed at random.
* @param[out] A random offset
*/
void GetRandomOffset( Offset &offset )
{
offset.X() = OffsetType(rand()%m_MAX_VERSOR_LENGTH);
offset.Y() = OffsetType(rand()%m_MAX_VERSOR_LENGTH);
offset.Z() = OffsetType(rand()%m_MAX_VERSOR_LENGTH);
}
/*!
* Return the number of entries of the offset table for each dimension.
* \return The number of entries for each side
*/
inline int GetSize() const {return m_EntryPerSide;}
/*!
* Checks if the given entry in the offset table is free
* @param[in] at The coordinate of the entry to be checked.
* \return true if and only if the entry with coordinate <CODE>at</CODE> is free.
*/
inline bool IsFree(const EntryCoordinate &at) const { return GetOffset(at)==NULL; }
//{ return m_Table[at.X()][at.Y()][at.Z()]==NULL; }
/*!
* Return the number of entries containing a valid offset.
* \return The number of not empty entries.
*/
inline int GetNumberOfOccupiedCells() const { return m_NumberOfOccupiedEntries; }
/*!
* Return the pointer to the offset stored at the given entry. NULL if that entry doesn't contain a offset
*/
inline OffsetPointer& GetOffset (const int i, const int j, const int k) { return m_Table[i][j][k]; }
inline OffsetPointer GetOffset (const int i, const int j, const int k) const { return m_Table[i][j][k]; }
inline OffsetPointer& GetOffset (const EntryCoordinate &at) { return m_Table[at.X()][at.Y()][at.Z()]; }
inline OffsetPointer GetOffset (const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; }
inline OffsetPointer& operator[](const EntryCoordinate &at) { return m_Table[at.X()][at.Y()][at.Z()]; }
inline OffsetPointer operator[](const EntryCoordinate &at) const { return m_Table[at.X()][at.Y()][at.Z()]; }
protected:
const static int m_MAX_VERSOR_LENGTH = 256; /*!< The maximal length of the single component of each offset. */
int m_EntryPerSide; /*!< The resolution of the offset table. */
int m_NumberOfOccupiedEntries; /*!< The number of entries containing a valid offset. */
std::vector< std::vector< std::vector< OffsetPointer > > > m_Table; /*!< The offset table. */
std::vector< std::vector< std::vector< std::vector< typename UniformGrid::CellCoordinate > > > > m_H1PreImage; /*!< The \f$f1\f$ pre-image. */
}; //end of class OffsetTable
/*******************************************************************************************************************************/
/*! \class BinaryImage
* This class is used to encode the sparsity of the dataset. Since the hash table stores data associated with a sparse
* subset of the domain, it may be necessary to determine if an arbitrary query point lies in this defined domain.
*/
/*******************************************************************************************************************************/
class BinaryImage
{
public:
/*!
* Default constructor
*/
BinaryImage()
{
m_Resolution = -1;
}
/*!
* Destructor
*/
~BinaryImage() {}
/*!
* Allocate the space necessary to encode the distribution of the dataset over the domain.
* @param[in] size The resolution on each dimension of the bitmap.
*/
void Allocate(const int size)
{
m_Resolution = size;
m_Mask.resize(m_Resolution);
for (int i=0; i<m_Resolution; i++)
{
m_Mask[i].resize(m_Resolution);
for (int j=0; j<m_Resolution; j++)
m_Mask[i][j].resize(m_Resolution, false);
}
}
/*!
* Removes all flags from the bitmap. This function is called after a failed attempt to create the offset-table.
*/
void Clear()
{
for (int i=0; i<m_Resolution; i++)
for (int j=0; j<m_Resolution; j++)
std::fill(m_Mask[i][j].begin(), m_Mask[i][j].end(), false);
}
/*!
* Checks if a portion of the dataset fall inside the UniformGrid cell having coordinate <CODE>at</CODE>.
* @param[in] at The index of the UniformGrid cell to check.
* \return <code>true</code> if and only if a portion of the dataset in included in this UniformGrid cell.
*/
inline bool ContainsData(const typename UniformGrid::CellCoordinate &at) const { return GetFlag(at)==true;}
/*!
* Returns the number of entries in each dimension.
* \return The resolution of the BinaryImage.
*/
inline int GetResolution() const { return m_Resolution; }
/*!
* Return the value stored in the d-dimensional bitmap at the given position.
* @param[in] i
* @param[in] j
* @param[in] k
* \return
*/
inline bool operator()(const int i, const int j, const int k) { return m_Mask[i][j][k]; }
/*!
* Return the value stored at the given position in the d-dimensional bitmap.
* @param[in] at
* \return
*/
inline bool operator[](const typename UniformGrid::CellCoordinate &at) { return m_Mask[at.X()][at.Y()][at.Z()]; }
inline bool& GetFlag(const int i, const int j, const int k)const { return m_Mask[i][j][k]; }
inline void SetFlat(const int i, const int j, const int k) { m_Mask[i][j][k] = true; }
inline bool GetFlag(const typename UniformGrid::CellCoordinate &at) const { return m_Mask[at.X()][at.Y()][at.Z()]; }
inline void SetFlag(const typename UniformGrid::CellCoordinate &at) { m_Mask[at.X()][at.Y()][at.Z()] = true; }
protected:
std::vector< std::vector< std::vector< bool > > >
m_Mask; /*!< The bitmap image. */
int m_Resolution; /*!< The resolution of the bitmap. */
}; // end of class BinaryImage
/*******************************************************************************************************************************/
/*! \struct Neighbor
* This class is used to retrieve the neighboring objects in the spatial queries and to sort them.
*/
/*******************************************************************************************************************************/
struct Neighbor
{
/*!
* Default constructor
*/
Neighbor()
{
object = NULL;
distance = ScalarType(-1.0);
nearest_point.Zero();
}
/*!
* Constructor
* @param[in] pObject The pointer to the object.
* @param[in] dist The distance between the object and the query point.
* @param[in] point The point on the object having minimal distance from the query point.
*/
Neighbor(ObjectPointer pObject, ScalarType dist, CoordinateType point)
{
object = pObject;
distance = dist;
nearest_point(point);
}
/*!
* Less than operator. Needed for sorting a range of neighbor based on their distance from the query object.
*/
inline bool operator<(const Neighbor &second)
{
return distance<second.distance;
}
ObjectPointer object;
ScalarType distance;
CoordinateType nearest_point;
}; // end of struct Neighbor
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/************************************************************************/
/* Functions */
/************************************************************************/
public:
/*!
* The hash table can be constructed following two different approaches:
* the first is more fast, but might allocate a offset table bigger than the necessary
* the second try to construct the offset table up to m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION times, and then chooses the minimum size for which the construction succeeded.
*/
enum ConstructionApproach { FastConstructionApproach=0, CompactConstructionApproach=1 };
/*!
* Default constructor
*/
PerfectSpatialHashing() { srand( (unsigned) time(NULL) ); }
/*!
* Destructor
*/
~PerfectSpatialHashing() { /* ... I don't remember if there is something to delete! :D */ }
template < class OBJECT_ITERATOR >
void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj)
{ Set<OBJECT_ITERATOR>(bObj, eObj, FastConstructionApproach, NULL); }
template < class OBJECT_ITERATOR >
void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, vcg::CallBackPos *callback)
{ Set<OBJECT_ITERATOR>(bObj, eObj, FastConstructionApproach, callback); }
template < class OBJECT_ITERATOR >
void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, const ConstructionApproach approach)
{ Set<OBJECT_ITERATOR>(bObj, eObj, approach, NULL); }
/*!
* Add the elements to the PerfectSpatialHashing data structure. Since this structure can handle only
* static dataset, the elements mustn't be changed while using this structure.
* @param[in] bObj The iterator addressing the first element to be included in the hashing.
* @param[in] eObj The iterator addressing the position after the last element to be included in the hashing.
* @param[in] approach Either <code>FastConstructionApproach</code> or <code>CompactConstructionApproach</code>.
* @param[in] callback The callback to call to provide information about the progress of the computation.
*/
template < class OBJECT_ITERATOR >
void Set(const OBJECT_ITERATOR & bObj, const OBJECT_ITERATOR & eObj, const ConstructionApproach approach, vcg::CallBackPos *callback)
{
BoundingBoxType bounding_box;
BoundingBoxType object_bb;
bounding_box.SetNull();
for (OBJECT_ITERATOR iObj=bObj; iObj!=eObj; iObj++)
{
(*iObj).GetBBox(object_bb);
bounding_box.Add(object_bb);
}
//...and expand it a bit more
BoundingBoxType resulting_bb(bounding_box);
CoordinateType offset = bounding_box.Dim()*float(m_BOUNDING_BOX_EXPANSION_FACTOR);
CoordinateType center = bounding_box.Center();
resulting_bb.Offset(offset);
float longest_side = vcg::math::Max( resulting_bb.DimX(), vcg::math::Max(resulting_bb.DimY(), resulting_bb.DimZ()) )/2.0f;
resulting_bb.Set(center);
resulting_bb.Offset(longest_side);
int number_of_objects = int(std::distance(bObj, eObj));
// Try to find a reasonable space partition
#ifdef _USE_GRID_UTIL_PARTIONING_
vcg::Point3i resolution;
vcg::BestDim<ScalarType>(number_of_objects, resulting_bb.Dim(), resolution);
int cells_per_side = resolution.X();
#else ifdef _USE_OCTREE_PARTITIONING_ // Alternative to find the resolution of the uniform grid:
int primitives_per_voxel;
int depth = 4;
do
{
int number_of_voxel = 1<<(3*depth); // i.e. 8^depth
float density = float(number_of_voxel)/float(depth);
primitives_per_voxel = int(float(number_of_objects)/density);
depth++;
}
while (primitives_per_voxel>16 && depth<15);
int cells_per_side = int(powf(2.0f, float(depth)));
#endif
m_UniformGrid.Allocate(resulting_bb, cells_per_side);
m_UniformGrid.InsertElements(bObj, eObj);
m_Bitmap.Allocate(cells_per_side);
int number_of_cells_occupied = m_UniformGrid.GetNumberOfNotEmptyCells();
int hash_table_size = (int) ceilf(powf(float(number_of_cells_occupied), 1.0f/float(m_DIMENSION)));
if (hash_table_size>256)
hash_table_size = (int) ceilf(powf(1.01f*float(number_of_cells_occupied), 1.0f/float(m_DIMENSION)));
m_HashTable.Allocate(hash_table_size);
switch (approach)
{
case FastConstructionApproach : PerformFastConstruction(number_of_cells_occupied, callback) ; break;
case CompactConstructionApproach: PerformCompactConstruction(number_of_cells_occupied, callback); break;
default: assert(false);
}
Finalize();
} // end of method Set
/*!
* Returns all the objects contained inside a specified sphere
* @param[in] distance_functor
* @param[in] marker
* @param[in] sphere_center
* @param[in] sphere_radius
* @param[out] objects
* @param[out] distances
* @param[out] points
* \return
*/
template <class OBJECT_POINT_DISTANCE_FUNCTOR, class OBJECT_MARKER, class OBJECT_POINTER_CONTAINER, class DISTANCE_CONTAINER, class POINT_CONTAINER>
unsigned int GetInSphere
(
OBJECT_POINT_DISTANCE_FUNCTOR & distance_functor,
OBJECT_MARKER & marker,
const CoordType & sphere_center,
const ScalarType & sphere_radius,
OBJECT_POINTER_CONTAINER & objects,
DISTANCE_CONTAINER & distances,
POINT_CONTAINER & points,
bool sort_per_distance = true,
bool allow_zero_distance = true
)
{
BoundingBoxType query_bb(sphere_center, sphere_radius);
vcg::Box3i integer_bb = m_UniformGrid.Interize(query_bb);
vcg::Point3i index;
std::vector< std::vector< ObjectPointer >* > contained_objects;
std::vector< ObjectPointer >* tmp;
for (index.X()=integer_bb.min.X(); index.X()<=integer_bb.max.X(); index.X()++)
for (index.Y()=integer_bb.min.Y(); index.Y()<=integer_bb.max.Y(); index.Y()++)
for (index.Z()=integer_bb.min.Z(); index.Z()<=integer_bb.max.Z(); index.Z()++)
if ((tmp=(*this)[index])!=NULL)
contained_objects.push_back(tmp);
std::vector< Neighbor > results;
for (std::vector< std::vector< ObjectPointer >* >::iterator iVec=contained_objects.begin(), eVec=contained_objects.end(); iVec!=eVec; iVec++)
for (std::vector< ObjectPointer >::iterator iObj=(*iVec)->begin(), eObj=(*iVec)->end(); iObj!=eObj; iObj++ )
{
int r = int(results.size());
results.push_back(Neighbor());
results[r].object = *iObj;
results[r].distance = sphere_radius;
if (!distance_functor(*results[r].object, sphere_center, results[r].distance, results[r].nearest_point) || (results[r].distance==ScalarType(0.0) && !allow_zero_distance) )
results.pop_back();
}
if (sort_per_distance)
std::sort( results.begin(), results.end() );
int number_of_objects = int(results.size());
distances.resize(number_of_objects);
points.resize(number_of_objects);
objects.resize(number_of_objects);
for (int i=0, size=int(results.size()); i<size; i++)
{
distances[i] = results[i].distance;
points[i] = results[i].nearest_point;
objects[i] = results[i].object;
}
return number_of_objects;
} //end of GetInSphere
/*!
* Once the offset table has been built, this function can be used to access the data.
* Given a 3D point in the space, this function returns the set of ObjectPointers contained
* in the same UniformGrid cell where this point is contained.
* @param[in] query The 3D query point.
* \return The pointer to the vector of ObjectPointers contained in the same UG of query. NULL if any.
*/
std::vector< ObjectPointer >* operator[](const CoordinateType &query)
{
typename UniformGrid::CellCoordinate ug_index = m_UniformGrid.Interize(query);
if (!m_Bitmap[ug_index])
return NULL;
HashTable::EntryCoordinate ht_index = PerfectHashFunction(ug_index);
std::vector< ObjectPointer >* result = m_HashTable[ht_index];
return result;
}
std::vector< ObjectPointer >* operator[](const typename UniformGrid::CellCoordinate &query)
{
if(!m_Bitmap[query])
return NULL;
HashTable::EntryCoordinate ht_index = PerfectHashFunction(query);
std::vector< ObjectPointer >* result = m_HashTable[ht_index]->domain_data;
return result;
}
protected:
/*!
* The injective mapping from the set of occupied cells to a slot in the hash-table
* @param[in] query The index of a domain cell whose mapping has to be calculated.
* @param[out] result The index of a entry in the hash-table where query is mapped into.
*/
typename HashTable::EntryCoordinate PerfectHashFunction(const typename UniformGrid::CellCoordinate &query)
{
typename HashTable::EntryCoordinate result;
OffsetTable::OffsetPointer offset = m_OffsetTable[ m_OffsetTable.DomainToOffsetTable(query) ];
result = m_HashTable.DomainToHashTable( Shift(query, *offset) );
return result;
}
/*!
* Performs the addition between a entry coordinate and an offset.
* @param[in] entry The index of a given cell.
* @param[in] offset The offset that must be applied to the entry.
* \return The entry resulting by the addition of entry and offset.
*/
typename HashTable::EntryCoordinate Shift(const vcg::Point3i &entry, const typename OffsetTable::Offset &offset)
{
HashTable::EntryCoordinate result;
result.X() = entry.X() + int(offset.X());
result.Y() = entry.Y() + int(offset.Y());
result.Z() = entry.Z() + int(offset.Z());
return result;
}
/*!
* Finalizes the data structures at the end of the offset-table construction.
* This function eliminates all unnecessary data, and encodes sparsity.
* TODO At the moment, the sparsity encoding is implemented thought a bitmap, i.e. a boolean grid
* where each slot tells if the relative UniformGrid has a valid entry in the HashTable.
*/
void Finalize()
{
#ifdef _DEBUG
for (UniformGrid::EntryIterator iUGEntry=m_UniformGrid.Begin(), eUGEntry=m_UniformGrid.End(); iUGEntry!=eUGEntry; iUGEntry++)
assert(m_Bitmap.ContainsData(iUGEntry.GetPosition())==((*iUGEntry)->size()>0));
#endif
m_HashTable.Finalize();
m_UniformGrid.Finalize();
m_OffsetTable.Finalize();
}
/*!
* Check if the given offset is valid for a set of domain cell.
* @param[in] pre_image
* @param[in] offset
* \return
*/
bool IsAValidOffset(const std::vector< typename UniformGrid::CellCoordinate > *pre_image, const typename OffsetTable::Offset &offset)
{
int ht_size = m_HashTable.GetSize();
int sqr_ht_size = ht_size*ht_size;
std::vector< int > involved_entries;
for (int i=0, pre_image_size=int((*pre_image).size()); i<pre_image_size; i++)
{
typename UniformGrid::CellCoordinate domain_entry = (*pre_image)[i];
typename HashTable::EntryCoordinate hash_entry = m_HashTable.DomainToHashTable( Shift(domain_entry, offset) );
if (!m_HashTable.IsFree(hash_entry))
return false;
else
involved_entries.push_back(hash_entry.X()*sqr_ht_size + hash_entry.Y()*ht_size + hash_entry.Z());
}
// In order to guarantee that the PerfectHashFunction is injective, the image of each domain-entry must be unique in the hash-table
std::sort(involved_entries.begin(), involved_entries.end());
for (int i=0, j=1, size=int(involved_entries.size()); j<size; i++, j++)
if (involved_entries[i]==involved_entries[j])
return false;
return true;
}
/*!
* Given the size of the hash table and an initial seed for the size of the offset table, returns an appropriate size
* for the offset table in order to avoid less effective constructions.
* @param[in] hash_table_size The number of entries for each side of the hash-table.
* @param[in] offset_table_size The number of entries for each side of the offset-table.
* \return The next appropriate size for the offset table.
*/
int GetUnefectiveOffsetTableSize(const int hash_table_size, const int offset_table_size)
{
int result = offset_table_size;
while (GreatestCommonDivisor(hash_table_size, result)!=1 || hash_table_size%result==0)
result += (hash_table_size%2==0) ? (result%2)+1 : 1; //Change the offset table size, otherwise the hash construction should be ineffective
return result;
}
/*!
* Start the construction of the offset table trying to complete as quickly as possible.
* Sometimes the dimension of the offset table will not be minimal.
* @param[in] number_of_filled_cells The number of entries in the uniform grid containing some elements of the dataset.
*/
void PerformFastConstruction(const int number_of_filled_cells, vcg::CallBackPos *callback)
{
int offset_table_size = (int) ceilf(powf(m_SIGMA*float(number_of_filled_cells), 1.0f/float(m_DIMENSION)));
int hash_table_size = m_HashTable.GetSize();
int failed_construction_count = 0;
do
{
offset_table_size += failed_construction_count++;
offset_table_size = GetUnefectiveOffsetTableSize(hash_table_size, offset_table_size);
}
while(!OffsetTableConstructionSucceded(offset_table_size, callback));
}
/*!
* Start the construction of the offset table trying to minimize its dimension.
* The offset table size is chosen by performing a binary search over possible values for the offset table size.
* For this reason, this method will generally require more time than PerformFastConstruction.
*/
void PerformCompactConstruction(const int number_of_filled_cells, vcg::CallBackPos *callback)
{
int min_successfully_dimension = std::numeric_limits<int>::max();
int hash_table_size = m_HashTable.GetSize();
int half_hash_table_size = int(float(hash_table_size)/2.0f);
// According to the original article, a maximum number of trials are to be made in order to select the optimal (i.e. minimal) offset table size
for (int t=0; t<m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION; t++)
{
int lower_bound = GetUnefectiveOffsetTableSize(hash_table_size, int(double(rand())/double(RAND_MAX)*half_hash_table_size + 1) );
int upper_bound = GetUnefectiveOffsetTableSize(hash_table_size, int(((double) rand() / (double) RAND_MAX) * hash_table_size + half_hash_table_size));
// The construction of the offset table using this pair of values surely succeed for max, but not for min
// The optimal value for the offset table size is then found via binary search over this pair of values
int candidate_offset_table_size;
int last_tried_size = -1;
while (lower_bound<upper_bound)
{
candidate_offset_table_size = GetUnefectiveOffsetTableSize(hash_table_size, int(floorf((lower_bound+upper_bound)/2.0f)));
// If in the previous iteration the offset table has been successfully constructed with the same size,
// a minimum for the range [lower_bound, upper_bound] has been found
if (last_tried_size==candidate_offset_table_size)
break;
if ( OffsetTableConstructionSucceded((last_tried_size=candidate_offset_table_size), callback) )
{
upper_bound = candidate_offset_table_size;
min_successfully_dimension = vcg::math::Min(candidate_offset_table_size, min_successfully_dimension);
}
else
lower_bound = candidate_offset_table_size;
m_HashTable.Clear();
m_HashTable.BuildFreeEntryList();
m_OffsetTable.Clear();
m_Bitmap.Clear();
}
#ifdef _DEBUD
printf("\nPerfectSpatialHashing: minimum offset table size found at the %d-th iteration was %d\n", (t+1), min_successfully_dimension);
#endif
}
// Finally the OffsetTable must be constructed using the minimum valid size
while (!OffsetTableConstructionSucceded(min_successfully_dimension, callback))
{
m_HashTable.Clear();
m_HashTable.BuildFreeEntryList();
m_OffsetTable.Clear();
m_Bitmap.Clear();
}
}
/*!
* Try to construct the offset table for a given size
* \param[in] offset_table_size The size of the offset table.
* \return <CODE>true</CODE> if and only if the construction of the offset table succeeds.
*/
bool OffsetTableConstructionSucceded(const int offset_table_size, vcg::CallBackPos *callback)
{
m_OffsetTable.Allocate(offset_table_size); // Create the Offset table
m_OffsetTable.BuildH1PreImage(m_UniformGrid.Begin(), m_UniformGrid.End()); // Build the f0 pre-image
std::list< OffsetTable::PreImage > preimage_slots;
m_OffsetTable.GetPreImageSortedPerCardinality(preimage_slots);
char msg[128];
sprintf(msg, "Building offset table of resolution %d", m_OffsetTable.GetSize());
int step = int(preimage_slots.size())/100;
int number_of_slots = int(preimage_slots.size());
int perc = 0;
int iter = 0;
for (std::list< OffsetTable::PreImage >::iterator iPreImage=preimage_slots.begin(), ePreImage=preimage_slots.end(); iPreImage!=ePreImage; iPreImage++, iter++)
{
if (callback!=NULL && iter%step==0 && (perc=iter*100/number_of_slots)<100) (*callback)(perc, msg);
bool found_valid_offset = false;
typename OffsetTable::Offset candidate_offset;
// Heuristic #1: try to set the offset value to one stored in a neighboring entry of the offset table
std::vector< typename OffsetTable::Offset > consistent_offsets;
m_OffsetTable.SuggestConsistentOffsets( (*iPreImage).entry_index, consistent_offsets);
for (std::vector< typename OffsetTable::Offset >::iterator iOffset=consistent_offsets.begin(), eOffset=consistent_offsets.end(); iOffset!=eOffset && !found_valid_offset; iOffset++)
if (IsAValidOffset(iPreImage->pre_image, *iOffset))
{
found_valid_offset = true;
candidate_offset = *iOffset;
}
// Heuristic #2:
if (!found_valid_offset)
{
std::vector< typename UniformGrid::CellCoordinate > *pre_image = (*iPreImage).pre_image;
for (std::vector< typename UniformGrid::CellCoordinate >::iterator iPreImage=pre_image->begin(), ePreImage=pre_image->end(); iPreImage!=ePreImage && !found_valid_offset; iPreImage++)
for (NeighboringEntryIterator iUGNeighbourhood=m_UniformGrid.GetNeighboringEntryIterator(*iPreImage); iUGNeighbourhood<6 && !found_valid_offset; iUGNeighbourhood++ )
if (!m_OffsetTable.IsFree( m_OffsetTable.DomainToOffsetTable( *iUGNeighbourhood ) ))
{
HashTable::EntryCoordinate ht_entry = PerfectHashFunction(*iUGNeighbourhood);
for (NeighboringEntryIterator iHTNeighbourhood=m_HashTable.GetNeighborintEntryIterator(ht_entry); iHTNeighbourhood<6 && !found_valid_offset; iHTNeighbourhood++)
if (m_HashTable.IsFree(*iHTNeighbourhood))
{
candidate_offset.Import( *iHTNeighbourhood-m_HashTable.DomainToHashTable(*iPreImage) ) ;
// m_OffsetTable.ValidateEntry( candidate_offset ); Is'n necessary, becouse the offset type is unsigned char.
if (IsAValidOffset(pre_image, candidate_offset))
found_valid_offset = true;
}
}
}
if (!found_valid_offset)
{
// At the beginning, the offset can be found via random searches
for (int i=0; i<m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET && !found_valid_offset; i++)
{
HashTable::EntryCoordinate base_entry = (*iPreImage).pre_image->at(0);
do
m_OffsetTable.GetRandomOffset(candidate_offset);
while (!m_HashTable.IsFree( m_HashTable.DomainToHashTable( Shift(base_entry, candidate_offset) ) ));
if (IsAValidOffset( (*iPreImage).pre_image, candidate_offset))
found_valid_offset = true;
}
// The chance to find a valid offset table via random searches decreases toward the end of the offset table construction:
// So a exhaustive search over all the free hash table entries is performed.
for (std::list< HashTable::EntryCoordinate >::const_iterator iFreeCell=m_HashTable.GetFreeEntryList()->begin(), eFreeCell=m_HashTable.GetFreeEntryList()->end(); iFreeCell!=eFreeCell && !found_valid_offset; iFreeCell++)
{
UniformGrid::CellCoordinate domain_entry = (*iPreImage).pre_image->at(0);
OffsetTable::EntryCoordinate offset_entry = m_OffsetTable.DomainToOffsetTable(domain_entry);
HashTable::EntryCoordinate hashtable_entry = m_HashTable.DomainToHashTable(domain_entry);
candidate_offset.Import(*iFreeCell - hashtable_entry);
if ( IsAValidOffset(iPreImage->pre_image, candidate_offset) )
found_valid_offset = true;
}
}
// If a valid offset has been found, the construction of the offset table continues,
// otherwise the offset table must be enlarged and the construction repeated
if (found_valid_offset)
{
m_OffsetTable.SetOffset( (*iPreImage->pre_image).at(0), candidate_offset);
for (int c=0, pre_image_cardinality = iPreImage->cardinality; c<pre_image_cardinality; c++)
{
HashTable::EntryCoordinate ht_entry = PerfectHashFunction( (*iPreImage->pre_image).at(c));
std::vector< ObjectPointer > *domain_data = m_UniformGrid[ (*iPreImage->pre_image).at(c) ];
m_HashTable.SetEntry(ht_entry, domain_data /*, (*iPreImage->pre_image).at(c)*/); // might be useful for encoding sparsity
m_Bitmap.SetFlag((*iPreImage->pre_image).at(c));
}
}
else
{
m_OffsetTable.Clear();
m_HashTable.Clear();
m_HashTable.BuildFreeEntryList();
m_Bitmap.Clear();
return false;
}
}
if (callback!=NULL) (*callback)(100, msg);
return true;
} // end of OffsetTableConstructionSucceded
/************************************************************************/
/* Data Members */
/************************************************************************/
protected:
UniformGrid m_UniformGrid; /*!< The uniform grid used for partitioning the volume. */
OffsetTable m_OffsetTable; /*!< The offset table corresponding to \f$\Phi\f$ in the article. */
HashTable m_HashTable; /*!< The hash table that will substitute the uniform grid. */
BinaryImage m_Bitmap;
const static float m_BOUNDING_BOX_EXPANSION_FACTOR;
const static float m_SIGMA;
const static int m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION;
const static int m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET;
const static int m_DIMENSION;
}; //end of class PerfectSpatialHashing
/*! @} */
//end of Doxygen documentation
}//end of namespace vcg
template < class OBJECT_TYPE, class SCALAR_TYPE >
const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_MAX_NUM_OF_RANDOM_GENERATED_OFFSET = 32;
template < class OBJECT_TYPE, class SCALAR_TYPE >
const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_MAX_TRIALS_IN_COMPACT_CONSTRUCTION = 5;
template < class OBJECT_TYPE, class SCALAR_TYPE >
const int vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_DIMENSION = 3;
template < class OBJECT_TYPE, class SCALAR_TYPE >
const SCALAR_TYPE vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_BOUNDING_BOX_EXPANSION_FACTOR = SCALAR_TYPE(0.035);
template < class OBJECT_TYPE, class SCALAR_TYPE >
const SCALAR_TYPE vcg::PerfectSpatialHashing< OBJECT_TYPE, SCALAR_TYPE >::m_SIGMA = SCALAR_TYPE(1.0f/(2.0f*SCALAR_TYPE(m_DIMENSION)));
#endif //VCG_SPACE_INDEX_PERFECT_SPATIAL_HASHING_H