vcglib/vcg/complex/algorithms/voronoi_remesher.h

706 lines
24 KiB
C
Raw Normal View History

/****************************************************************************
* VCGLib o o *
* Visual and Computer Graphics Library o o *
* _ O _ *
* Copyright(C) 2004-2016 \/)\/ *
* Visual Computing Lab /\/| *
* ISTI - Italian National Research Council | *
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
* for more details. *
* *
****************************************************************************/
#ifndef _VCGLIB_VORONOI_REMESHER_H
#define _VCGLIB_VORONOI_REMESHER_H
#include <vcg/complex/complex.h>
#include <vcg/complex/algorithms/update/topology.h>
#include <vcg/complex/algorithms/refine.h>
#include <vcg/complex/algorithms/clean.h>
#include <vcg/simplex/face/pos.h>
#include <vcg/complex/algorithms/voronoi_processing.h>
#include <vcg/complex/algorithms/point_sampling.h>
#include <vcg/complex/algorithms/crease_cut.h>
#include <memory>
#include <string>
#include <vector>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include <cmath>
#include <array>
#include <utility>
//#define DEBUG_VORO 1
namespace vcg {
namespace tri {
template <class MeshType, class EdgeMeshType = MeshType>
class Remesher
{
public:
typedef Remesher ThisType;
typedef MeshType Mesh;
typedef typename Mesh::ScalarType ScalarType;
typedef typename Mesh::CoordType CoordType;
typedef typename Mesh::FaceType FaceType;
typedef typename Mesh::FacePointer FacePointer;
typedef typename Mesh::VertexType VertexType;
typedef typename Mesh::VertexPointer VertexPointer;
typedef typename Mesh::FaceIterator FaceIterator;
typedef typename Mesh::VertexIterator VertexIterator;
typedef std::shared_ptr<Mesh> MeshPtr;
protected:
typedef face::Pos<FaceType> PosType;
/// \brief splitCC split the provided mesh into connected components.
/// \param mesh the inputMesh.
/// \return the vector of connected components (meshes) for the input model
/// (if the input mesh is a single connected component returns an empty vector).
///
inline static std::vector<MeshPtr> splitCC(MeshType & mesh)
{
std::vector<MeshPtr> ret;
// find the connected components
std::vector<std::pair<int, typename MeshType::FacePointer> > CCV;
Clean<MeshType>::ConnectedComponents(mesh, CCV);
if (CCV.size() == 1)
return ret;
ConnectedComponentIterator<MeshType> ci;
for(size_t i=0; i<CCV.size(); ++i)
{
// clear selection
UpdateSelection<MeshType>::Clear(mesh);
for(ci.start(mesh, CCV[i].second); !ci.completed(); ++ci)
{
// select all faces for a CC
(*ci)->SetS();
}
// create from selected
MeshPtr cc = std::make_shared<MeshType>();
Append<MeshType, MeshType>::MeshCopy(*cc, mesh, true);
ret.push_back(cc);
}
return ret;
}
public:
static const int VoroRelaxationStep = 20;
///
/// \brief Remesh the main function that remeshes a mesh preserving creases.
/// \param original the mesh
/// \param samplingRadius is the sampling ragius for remeshing
/// \param borderCreaseAngleThreshold is the angle treshold for preserving corner points on the mesh boundary
/// \return the remeshed mesh
///
static inline MeshPtr Remesh(Mesh & original, const ScalarType samplingRadius, const ScalarType borderCreaseAngleThreshold = 0.0)
{
UpdateTopology<Mesh>::FaceFace(original);
UpdateFlags<Mesh>::FaceBorderFromFF(original);
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(original);
if (Clean<Mesh>::CountNonManifoldEdgeFF(original) > 0)
{
std::cout << "Input mesh has non manifold edges" << std::endl;
return nullptr;
}
// for closed watertight mesh try to split
if (Clean<Mesh>::CountHoles(original) < 1)
{
CreaseCut<Mesh>(original, vcg::math::ToRad(70.0));
Allocator<Mesh>::CompactEveryVector(original);
UpdateTopology<Mesh>::FaceFace(original);
UpdateFlags<Mesh>::FaceBorderFromFF(original);
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(original);
#ifdef DEBUG_VORO
io::Exporter<Mesh>::Save(original, "creaseSplit.ply", 0);
#endif
}
// One CC
std::vector<MeshPtr> ccs = splitCC(original);
if (ccs.empty())
return RemeshOneCC(original, samplingRadius, borderCreaseAngleThreshold);
// Multiple CCs
std::cout << "Remeshing " << ccs.size() << " components" << std::endl;
for (size_t i=0; i<ccs.size(); i++)
{
std::cout << "Remeshing component " << (i+1) << "/" << ccs.size() << std::endl;
ccs[i] = RemeshOneCC(*ccs[i], samplingRadius, borderCreaseAngleThreshold);
}
MeshPtr ret = std::make_shared<Mesh>();
for (MeshPtr & mesh : ccs)
{
Append<Mesh,Mesh>::Mesh(*ret, *mesh);
}
Clean<Mesh>::RemoveDuplicateVertex(*ret, true);
return ret;
}
///
/// \brief RemeshOneCC the function that remeshes a single connected component mesh preserving its boundary (consistently for eventually adjacent meshes).
/// \param original the mesh
/// \param samplingRadius is the sampling ragius for remeshing
/// \param borderCreaseAngleThreshold is the angle treshold for preserving corner points on the mesh boundary
/// \return the remeshed mesh
///
static inline MeshPtr RemeshOneCC(Mesh & original, const ScalarType samplingRadius, const ScalarType borderCreaseAngleThreshold = 0.0)
{
RequireCompactness(original);
RequirePerFaceFlags(original);
UpdateTopology<Mesh>::FaceFace(original);
UpdateFlags<Mesh>::FaceBorderFromFF(original);
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(original);
// Resample border
Mesh poissonEdgeMesh;
{
typedef typename EdgeMeshType::CoordType Coord;
EdgeMeshType em;
// ThisType::ExtractMeshSides(original, em);
ThisType::ExtractMeshBorders(original, em);
// wtf we should close the loops
Clean<EdgeMeshType>::RemoveDuplicateVertex(em);
Allocator<EdgeMeshType>::CompactVertexVector(em);
Allocator<EdgeMeshType>::CompactEdgeVector(em);
#ifdef DEBUG_VORO
io::ExporterOBJ<EdgeMeshType>::Save(em, QString("edgeMesh_%1.obj").arg(idx).toStdString().c_str(), io::Mask::IOM_EDGEINDEX);
#endif
// eventually split on 'creases'
if (borderCreaseAngleThreshold > 0.0)
{
UpdateFlags<EdgeMeshType>::VertexClearS(em);
UpdateFlags<EdgeMeshType>::VertexClearV(em);
Clean<EdgeMeshType>::SelectCreaseVertexOnEdgeMesh(em, vcg::math::ToRad(borderCreaseAngleThreshold));
std::cout << Clean<EdgeMeshType>::SplitSelectedVertexOnEdgeMesh(em) << " splits" << std::endl;
}
#ifdef DEBUG_VORO
io::ExporterOBJ<EdgeMeshType>::Save(em, QString("edgeMesh_split_%1.obj").arg(idx).toStdString().c_str(), io::Mask::IOM_EDGEINDEX);
#endif
// Samples vector
std::vector<Coord> borderSamples;
TrivialSampler<EdgeMeshType> ps(borderSamples);
// uniform sampling
// (use different sampling radius for the edges)
UpdateTopology<EdgeMeshType>::EdgeEdge(em);
SurfaceSampling<EdgeMeshType>::EdgeMeshUniform(em, ps, samplingRadius, true);
// convert to mesh
auto vi = Allocator<Mesh>::AddVertices(poissonEdgeMesh, borderSamples.size());
for (auto p : borderSamples)
{
vi->P() = CoordType::Construct(p);
vi++;
}
UpdateBounding<Mesh>::Box(poissonEdgeMesh);
// remove duplicate vertices
Clean<Mesh>::RemoveDuplicateVertex(poissonEdgeMesh, false);
Allocator<Mesh>::CompactVertexVector(poissonEdgeMesh);
// select all vertices (to mark them fixed)
UpdateFlags<Mesh>::VertexSetS(poissonEdgeMesh);
#ifdef DEBUG_VORO
// // temp remove
// UpdateColor<Mesh>::PerVertexConstant(poissonEdgeMesh, vcg::Color4b::Gray);
// typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
// HashVertexGrid HG;
// HG.Set(poissonEdgeMesh.vert.begin(),poissonEdgeMesh.vert.end());
// for (size_t i=0; i<creases.size(); i++)
// {
// const float dist_upper_bound=FLT_MAX;
// ScalarType dist;
// VertexType * vp = GetClosestVertex<MeshType,HashVertexGrid>(poissonEdgeMesh, HG, creases[i], dist_upper_bound, dist);
// assert(vp);
// vp->C() = vcg::Color4b::Red;
// }
io::ExporterPLY<MeshType>::Save(poissonEdgeMesh, QString("borderMesh_%1.ply").arg(idx).toStdString().c_str(), io::Mask::IOM_VERTCOLOR);
#endif
}
typedef VoronoiProcessing<Mesh> Voronoi;
typedef TrivialSampler<Mesh> BaseSampler;
typedef SurfaceSampling<Mesh, BaseSampler> SurfaceSampler;
typedef SurfaceSampling<Mesh, FixSampler> SurfaceFixSampler;
// copy original mesh
Mesh baseMesh;
Append<Mesh, Mesh>::MeshCopy(baseMesh, original, false, true);
// refine to obtain a base mesh
VoronoiProcessingParameter vpp;
vpp.refinementRatio = 4.0f;
Voronoi::PreprocessForVoronoi(baseMesh, samplingRadius, vpp);
// Poisson sampling preserving border
Mesh poissonMesh;
std::vector<CoordType> seedPointVec;
std::vector<bool> seedFixedVec;
FixSampler fix_sampler(seedPointVec, seedFixedVec);
// montecarlo sampler
std::vector<CoordType> sampleVec;
BaseSampler mps(sampleVec);
// NOTE in order to make results always the same the random sampling generator is reinitialized for
// for each patch resampling
SurfaceSampler::SamplingRandomGenerator().initialize(5489u);
// Montecarlo oversampling
Mesh montecarloMesh;
int poissonCount = SurfaceSampler::ComputePoissonSampleNum(original, samplingRadius) * 0.7;
std::cout << "poisson Count: " << poissonCount << std::endl;
if (poissonCount <= 0)
{
// no need for internal sampling
Append<Mesh, Mesh>::MeshCopy(poissonMesh, poissonEdgeMesh);
for (auto vi = poissonEdgeMesh.vert.begin(); vi != poissonEdgeMesh.vert.end(); vi++)
{
fix_sampler.AddVert(*vi);
}
}
else
{
// Montecarlo poisson sampling
SurfaceSampler::MontecarloPoisson(original, mps, poissonCount * 20);
BuildMeshFromCoordVector(montecarloMesh,sampleVec);
#ifdef DEBUG_VORO
io::ExporterPLY<MeshType>::Save(montecarloMesh, QString("montecarloMesh_%1.ply").arg(idx).toStdString().c_str());
#endif
// Poisson disk pruning initialized with edges
typename SurfaceFixSampler::PoissonDiskParam pp;
pp.preGenMesh = &poissonEdgeMesh;
pp.preGenFlag = true;
SurfaceFixSampler::PoissonDiskPruning(fix_sampler, montecarloMesh, samplingRadius, pp);
#ifdef DEBUG_VORO
BuildMeshFromCoordVector(poissonMesh,seedPointVec);
io::ExporterPLY<MeshType>::Save(poissonMesh, QString("poissonMesh_%1.ply").arg(idx).toStdString().c_str());
#endif
}
std::cout << "poisson samples " << seedPointVec.size() << std::endl;
// restricted relaxation with fixed points
vpp.seedPerturbationProbability = 0.0f;
// TODO check preserveFixedSeed flag (NO)
Voronoi::RestrictedVoronoiRelaxing(baseMesh, seedPointVec, seedFixedVec, VoroRelaxationStep, vpp);
#ifdef DEBUG_VORO
BuildMeshFromCoordVector(poissonMesh,seedPointVec);
io::ExporterPLY<MeshType>::Save(poissonMesh, QString("relaxedMesh_%1.ply").arg(idx).toStdString().c_str());
#endif
// FAIL?
MeshPtr finalMeshPtr = std::make_shared<Mesh>();
std::vector<VertexType *> seedVertexVec;
// Voronoi::SeedToVertexConversion(baseMesh, seedPointVec, seedVertexVec, false);
ThisType::SeedToFixedBorderVertexConversion(baseMesh, seedPointVec, seedFixedVec, seedVertexVec);
EuclideanDistance<Mesh> dd;
std::cout << "BEGIN compute vertex sources (basemesh vn:" << baseMesh.VN() << " fn:" << baseMesh.FN() << ")" << std::endl;
Voronoi::ComputePerVertexSources(baseMesh, seedVertexVec, dd);
std::cout << "END compute vertex sources" << std::endl;
// Voronoi::ConvertDelaunayTriangulationToMesh(baseMesh, *finalMeshPtr, seedVertexVec, false); // traditional
ThisType::ConvertDelaunayTriangulationExtendedToMesh(baseMesh, *finalMeshPtr, seedVertexVec); // border-preserving
#ifdef DEBUG_VORO
io::ExporterPLY<MeshType>::Save(*finalMeshPtr, QString("voroMesh_%1.ply").arg(idx).toStdString().c_str());
io::ExporterPLY<MeshType>::Save(baseMesh, QString("baseMesh_%1.ply").arg(idx).toStdString().c_str(), io::Mask::IOM_VERTCOLOR);
#endif
return finalMeshPtr;
}
protected:
static inline void ExtractMeshBorders(Mesh & mesh, EdgeMeshType & sides)
{
RequireFFAdjacency(mesh);
RequireVFAdjacency(mesh);
// clean the edge mesh containing the borders
sides.Clear();
// gather into separate vertices lists
std::vector<std::vector<VertexType *> > edges;
for (auto fi = mesh.face.begin(); fi != mesh.face.end(); fi++)
{
for (int e=0; e<fi->VN(); e++)
{
if (vcg::face::IsBorder(*fi, e))
{
std::vector<VertexType *> tmp;
tmp.push_back(fi->V(e));
tmp.push_back(fi->V((e+1)%fi->VN()));
edges.push_back(tmp);
}
}
}
// convert to edge mesh
for (auto & e : edges)
{
assert(e.size() >= 2);
std::vector<typename EdgeMeshType::VertexType *> newVtx;
// insert new vertices and store their pointer
auto vi = Allocator<EdgeMeshType>::AddVertices(sides, e.size());
for (const auto & v : e)
{
vi->ImportData(*v);
newVtx.push_back(&(*vi++));
}
auto ei = Allocator<EdgeMeshType>::AddEdges(sides, e.size() - 1);
for (int i=0; i<static_cast<int>(e.size() - 1); i++)
{
ei->V(0) = newVtx[i];
ei->V(1) = newVtx[i+1];
ei++;
}
}
Clean<EdgeMeshType>::RemoveDuplicateVertex(sides);
}
///
/// \brief ExtractMeshSides
/// \param mesh the mesh (topology already computed)
/// \param sides the edge mesh filled with the extracted borders
///
static inline void ExtractMeshSides(Mesh & mesh, EdgeMeshType & sides)
{
// TODO change this.... maybe wrong
RequireFFAdjacency(mesh);
RequireVFAdjacency(mesh);
// clean the edge mesh containing the borders
sides.Clear();
// find a border edge
assert(Clean<Mesh>::CountHoles(mesh) >= 1);
PosType pos;
for (auto fi = mesh.face.begin(); fi != mesh.face.end() && pos.IsNull(); fi++)
{
for (int e=0; e<fi->VN(); e++)
{
if (vcg::face::IsBorder(*fi, e))
{
pos = PosType(&(*fi), e);
break;
}
}
}
assert(!pos.IsNull());
assert(pos.IsBorder());
// navigate to a corner
VertexType * v = pos.V();
do
{
pos.NextB();
} while(!pos.V()->IsV() && pos.V() != v);
// if it's a loop mark the initial point as a corner
pos.V()->SetV();
v = pos.V();
// gather into separate vertices lists
std::vector<std::vector<VertexType *> > edges;
std::vector<VertexType *> edgePtrVec;
do
{
edgePtrVec.push_back(pos.V());
pos.NextB();
if (pos.V()->IsV())
{
edgePtrVec.push_back(pos.V());
edges.push_back(edgePtrVec);
edgePtrVec.clear();
}
} while (pos.V() != v);
// convert to edge mesh
for (auto & e : edges)
{
assert(e.size() >= 2);
std::vector<typename EdgeMeshType::VertexType *> newVtx;
// insert new vertices and store their pointer
auto vi = Allocator<EdgeMeshType>::AddVertices(sides, e.size());
for (const auto & v : e)
{
vi->ImportData(*v);
newVtx.push_back(&(*vi++));
}
auto ei = Allocator<EdgeMeshType>::AddEdges(sides, e.size() - 1);
for (int i=0; i<static_cast<int>(e.size() - 1); i++)
{
ei->V(0) = newVtx[i];
ei->V(1) = newVtx[i+1];
ei++;
}
}
}
static void SeedToFixedBorderVertexConversion(MeshType & m,
const std::vector<CoordType> & seedPVec,
const std::vector<bool> & seedFixed,
std::vector<VertexType *> & seedVVec)
{
typedef typename vcg::SpatialHashTable<VertexType, ScalarType> HashVertexGrid;
seedVVec.clear();
UpdateTopology<MeshType>::FaceFace(m);
UpdateFlags<MeshType>::VertexBorderFromFaceAdj(m);
typename MeshType::BoxType bbox = m.bbox;
bbox.Offset(bbox.Diag()/4.0);
// internal vertices grid
HashVertexGrid HG;
HG.Set(m.vert.begin(),m.vert.end(), bbox);
// boundary vertices grid
MeshType borderMesh;
HashVertexGrid borderHG;
{
// get border vertices and build another mesh
std::vector<CoordType> borderPts;
for (auto vit=m.vert.begin(); vit!=m.vert.end(); vit++)
{
if (!vit->IsD() && vit->IsB())
borderPts.push_back(vit->cP());
}
BuildMeshFromCoordVector(borderMesh,borderPts);
borderMesh.bbox = m.bbox;
borderHG.Set(borderMesh.vert.begin(), borderMesh.vert.end(), bbox);
}
const float dist_upper_bound=m.bbox.Diag()/4.0;
VertexType * vp = NULL;
for( size_t i = 0; i < seedPVec.size(); i++)
{
const CoordType & p = seedPVec[i];
const bool fixed = seedFixed[i];
if (!fixed)
{
ScalarType dist;
vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, p, dist_upper_bound, dist);
}
else
{
vp = NULL;
ScalarType dist;
VertexType * borderVp = GetClosestVertex<MeshType,HashVertexGrid>(borderMesh, borderHG, p, dist_upper_bound, dist);
if (borderVp)
{
vp = GetClosestVertex<MeshType,HashVertexGrid>(m, HG, borderVp->cP(), dist_upper_bound, dist);
}
}
if (vp)
{
seedVVec.push_back(vp);
}
}
}
static void ConvertDelaunayTriangulationExtendedToMesh(MeshType &m,
MeshType &outMesh,
std::vector<VertexType *> &seedVec)
{
typedef VoronoiProcessing<MeshType> Voronoi;
RequirePerVertexAttribute(m ,"sources");
RequireCompactness(m);
RequireVFAdjacency(m);
auto sources = Allocator<MeshType>::template GetPerVertexAttribute<VertexPointer> (m,"sources");
outMesh.Clear();
UpdateTopology<MeshType>::FaceFace(m);
UpdateFlags<MeshType>::FaceBorderFromFF(m);
std::map<VertexPointer, int> seedMap; // It says if a given vertex of m is a seed (and its index in seedVec)
Voronoi::BuildSeedMap(m, seedVec, seedMap);
std::vector<FacePointer> innerCornerVec, // Faces adjacent to three different regions
borderCornerVec; // Faces that are on the border and adjacent to at least two regions.
Voronoi::GetFaceCornerVec(m, sources, innerCornerVec, borderCornerVec);
// First add all the needed vertices: seeds and corners
for(size_t i=0;i<seedVec.size();++i)
{
Allocator<MeshType>::AddVertex(outMesh, seedVec[i]->P(), vcg::Color4b::White);
}
// Now just add one face for each inner corner
for(size_t i=0; i<innerCornerVec.size(); ++i)
{
VertexPointer s0 = sources[innerCornerVec[i]->V(0)];
VertexPointer s1 = sources[innerCornerVec[i]->V(1)];
VertexPointer s2 = sources[innerCornerVec[i]->V(2)];
assert ( (s0!=s1) && (s0!=s2) && (s1!=s2) );
VertexPointer v0 = & outMesh.vert[seedMap[s0]];
VertexPointer v1 = & outMesh.vert[seedMap[s1]];
VertexPointer v2 = & outMesh.vert[seedMap[s2]];
Allocator<MeshType>::AddFace(outMesh, v0, v1, v2 );
}
// Now loop around the borders and find the missing delaunay triangles
// select border seed vertices only and pick one
UpdateFlags<Mesh>::VertexBorderFromFaceAdj(m);
UpdateFlags<Mesh>::VertexClearS(m);
UpdateFlags<Mesh>::VertexClearV(m);
std::vector<VertexPointer> borderSeeds;
for (auto & s : seedVec)
{
if (s->IsB())
{
s->SetS();
borderSeeds.emplace_back(s);
}
}
for (VertexPointer startBorderVertex : borderSeeds)
{
if (startBorderVertex->IsV())
{
continue;
}
// unvisited border seed found
// put the pos on the border
PosType pos(startBorderVertex->VFp(), startBorderVertex->VFi());
do {
pos.NextE();
} while (!pos.IsBorder() || (pos.VInd() != pos.E()));
// check all border edges between each consecutive border seeds pair
do {
std::vector<VertexPointer> edgeVoroVertices(1, sources[pos.V()]);
// among all sources found
do {
pos.NextB();
VertexPointer source = sources[pos.V()];
if (edgeVoroVertices.empty() || edgeVoroVertices.back() != source)
{
edgeVoroVertices.push_back(source);
}
} while (!pos.V()->IsS());
pos.V()->SetV();
// assert(edgeVoroVertices.size() >= 2);
// add face if 3 different voronoi regions are crossed by the edge
if (edgeVoroVertices.size() == 3)
{
VertexPointer v0 = & outMesh.vert[seedMap[edgeVoroVertices[0]]];
VertexPointer v1 = & outMesh.vert[seedMap[edgeVoroVertices[1]]];
VertexPointer v2 = & outMesh.vert[seedMap[edgeVoroVertices[2]]];
Allocator<MeshType>::AddFace(outMesh, v0,v1,v2);
}
} while ((pos.V() != startBorderVertex));
}
Clean<MeshType>::RemoveUnreferencedVertex(outMesh);
Allocator<MeshType>::CompactVertexVector(outMesh);
}
///
/// \brief The FixSampler class is used with poisson disk pruning to preserve selected vertices and
/// keep an auxiliary vector indicating wether the sample is fixed or not
///
class FixSampler
{
public:
typedef typename MeshType::CoordType CoordType;
typedef typename MeshType::VertexType VertexType;
FixSampler(std::vector<CoordType> & samples,
std::vector<bool> & fixed)
: sampleVec(samples)
, fixedVec (fixed)
{
reset();
}
void reset()
{
sampleVec.clear();
fixedVec .clear();
}
void AddVert(const VertexType &p)
{
sampleVec.push_back(p.cP());
fixedVec .push_back(p.IsS());
}
private:
std::vector<CoordType> & sampleVec;
std::vector<bool> & fixedVec;
};
};
} // end namespace tri
} // end namespace vcg
#endif // REMESHER_H