Created.
This commit is contained in:
parent
067b327350
commit
073d9ba770
|
@ -0,0 +1,489 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2004 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$LOG$
|
||||
|
||||
****************************************************************************/
|
||||
|
||||
#ifndef __VCGLIB_MATRIX44
|
||||
#define __VCGLIB_MATRIX44
|
||||
|
||||
/*
|
||||
Annotations:
|
||||
Opengl stores matrix in column-major order. That is, the matrix is stored as:
|
||||
|
||||
a0 a4 a8 a12
|
||||
a1 a5 a9 a13
|
||||
a2 a6 a10 a14
|
||||
a3 a7 a11 a15
|
||||
|
||||
e.g. glTranslate generate a matrix that is
|
||||
|
||||
1 0 0 tx
|
||||
0 1 0 ty
|
||||
0 0 1 tz
|
||||
0 0 0 1
|
||||
|
||||
Matrix44 stores matrix in row-major order i.e.
|
||||
|
||||
a0 a1 a2 a3
|
||||
a4 a5 a6 a7
|
||||
a8 a9 a10 a11
|
||||
a12 a13 a14 a15
|
||||
|
||||
and the Translate Function generate:
|
||||
|
||||
1 0 0 0
|
||||
0 1 0 0
|
||||
0 0 1 0
|
||||
tx ty tz 1
|
||||
|
||||
Le funzioni Translate e Rotate vanno usate con la Apply,
|
||||
che moltiplica vettore (inteso come riga) per la matrice
|
||||
|
||||
*/
|
||||
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
#include "../space/Point3.h"
|
||||
#include "../space/Point4.h"
|
||||
|
||||
|
||||
namespace vcg {
|
||||
|
||||
template <class T> class Matrix44 {
|
||||
protected:
|
||||
T _a[16];
|
||||
|
||||
public:
|
||||
typedef T scalar;
|
||||
|
||||
Matrix44() {};
|
||||
~Matrix44() {};
|
||||
Matrix44(const Matrix44 &m);
|
||||
Matrix44(const T v[]);
|
||||
|
||||
T &element(const int row, const int col);
|
||||
T element(const int row, const int col) const;
|
||||
T &operator[](const int i);
|
||||
T operator[](const int i) const;
|
||||
|
||||
Matrix44 operator+(const Matrix44 &m) const;
|
||||
Matrix44 operator-(const Matrix44 &m) const;
|
||||
Matrix44 operator*(const Matrix44 &m) const;
|
||||
Point4<T> operator*(const Point4<T> &v) const;
|
||||
|
||||
bool operator==(const Matrix44 &m) const;
|
||||
bool operator!= (const Matrix44 &m) const;
|
||||
|
||||
Matrix44 operator-() const;
|
||||
Matrix44 operator*(const T k) const;
|
||||
void operator+=(const Matrix44 &m);
|
||||
void operator-=(const Matrix44 &m);
|
||||
void operator*=( const Matrix44 & m );
|
||||
void operator*=( const T k );
|
||||
|
||||
void SetZero();
|
||||
void SetIdentity();
|
||||
void SetDiagonal(const T k);
|
||||
void SetScale(const T sx, const T sy, const T sz);
|
||||
void SetTranslate(const Point3<T> &t);
|
||||
void SetTranslate(const T sx, const T sy, const T sz);
|
||||
void SetRotate(T angle, const Point3<T> & axis); //use radiants for angle.
|
||||
|
||||
T Determinant() const;
|
||||
};
|
||||
|
||||
|
||||
template <class T> class LinearSolve: public Matrix44<T> {
|
||||
public:
|
||||
LinearSolve(const Matrix44<T> &m);
|
||||
Point4<T> Solve(Point4<T> &b); // solve A · x = b
|
||||
T Determinant() const;
|
||||
protected:
|
||||
int index[4]; //hold permutation
|
||||
T d; //hold sign of permutation
|
||||
void Decompose();
|
||||
};
|
||||
|
||||
|
||||
template <class T> Point4<T> operator*(const Matrix44<T> &m, const Point4<T> &p);
|
||||
template <class T> Point4<T> operator*(const Point4<T> &p, const Matrix44<T> &m);
|
||||
|
||||
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m);
|
||||
template <class T> Matrix44<T> &Invert(Matrix44<T> &m);
|
||||
|
||||
typedef Matrix44<short> Matrix44s;
|
||||
typedef Matrix44<int> Matrix44i;
|
||||
typedef Matrix44<float> Matrix44f;
|
||||
typedef Matrix44<double> Matrix44d;
|
||||
|
||||
//Implementazione
|
||||
|
||||
template <class T> Matrix44<T>::Matrix44(const Matrix44<T> &m) {
|
||||
memcpy((T *)_a, (T *)m._a, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> T &Matrix44<T>::element(const int row, const int col) {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
}
|
||||
|
||||
template <class T> T Matrix44<T>::element(const int row, const int col) const {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
}
|
||||
|
||||
template <class T> T &Matrix44<T>::operator[](const int i) {
|
||||
assert(i >= 0 && i < 16);
|
||||
return ((T *)_a)[i];
|
||||
}
|
||||
|
||||
template <class T> T Matrix44<T>::operator[](const int i) const {
|
||||
assert(i >= 0 && i < 16);
|
||||
return ((T *)_a)[i];
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator+(const Matrix44 &m) const {
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret[i] = operator[](i) + m[i];
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator-(const Matrix44 &m) const {
|
||||
Matrix44<T> ret;
|
||||
for(int i = 0; i < 16; i++)
|
||||
ret[i] = operator[](i) - m[i];
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
|
||||
Matrix44 ret;
|
||||
for(int i = 0; i < 4; i++)
|
||||
for(int j = 0; j < 4; j++) {
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += element[i][k] * m.element[k][j];
|
||||
ret.element[i][j] = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
|
||||
Point4<T> ret;
|
||||
for(int i = 0; i < 4; i++){
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += element[i][k] * v[k];
|
||||
ret[i] = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
template <class T> bool Matrix44<T>::operator==(const Matrix44 &m) const {
|
||||
for(int i = 0 ; i < 16; i++)
|
||||
if(operator[](i) != m[i])
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
template <class T> bool Matrix44<T>::operator!=(const Matrix44 &m) const {
|
||||
for(int i = 0 ; i < 16; i++)
|
||||
if(operator[](i) != m[i])
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator-() const {
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res[i] = -operator[](i);
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> Matrix44<T>::operator*(const T k) const {
|
||||
Matrix44<T> res;
|
||||
for(int i = 0; i < 16; i++)
|
||||
res[i] = operator[](i) * k;
|
||||
return res;
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::operator+=(const Matrix44 &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
operator[](i) += m[i];
|
||||
}
|
||||
template <class T> void Matrix44<T>::operator-=(const Matrix44 &m) {
|
||||
for(int i = 0; i < 16; i++)
|
||||
operator[](i) -= m[i];
|
||||
}
|
||||
template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
|
||||
for(int i = 0; i < 4; i++) {
|
||||
Point4<T> t(0, 0, 0, 0);
|
||||
for(int k = 0; k < 4; k++) {
|
||||
for(int j = 0; j < 4; j++) {
|
||||
t[k] += element(i, k) * m.element(k, j);
|
||||
}
|
||||
}
|
||||
for(int l = 0; l < 4; l++)
|
||||
element(i, l) = t[l];
|
||||
}
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::operator*=( const T k ) {
|
||||
for(int i = 0; i < 4; i++)
|
||||
operator[](i) *= k;
|
||||
}
|
||||
|
||||
|
||||
template <class T> void Matrix44<T>::SetZero() {
|
||||
memset((T *)_a, 0, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetIdentity() {
|
||||
SetDiagonal(1);
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
|
||||
SetZero();
|
||||
element(0, 0) = k;
|
||||
element(1, 1) = k;
|
||||
element(2, 2) = k;
|
||||
element(3, 3) = 1;
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
|
||||
SetZero();
|
||||
element(0, 0) = sx;
|
||||
element(1, 1) = sy;
|
||||
element(2, 2) = sz;
|
||||
element(3, 3) = 1;
|
||||
}
|
||||
|
||||
template <class T> void Matrix44<T>::SetTranslate(const Point3<T> &t) {
|
||||
SetTranslate(t[0], t[1], t[2]);
|
||||
}
|
||||
template <class T> void Matrix44<T>::SetTranslate(const T sx, const T sy, const T sz) {
|
||||
SetIdentity();
|
||||
element(3, 0) = sx;
|
||||
element(3, 1) = sy;
|
||||
element(3, 2) = sz;
|
||||
}
|
||||
template <class T> void Matrix44<T>::SetRotate(T angle, const Point3<T> & axis) {
|
||||
//angle = angle*(T)3.14159265358979323846/180; e' in radianti!
|
||||
T c = Cos(angle);
|
||||
T s = Sin(angle);
|
||||
T q = 1-c;
|
||||
Point3<T> t = axis;
|
||||
t.Normalize();
|
||||
element(0,0) = t[0]*t[0]*q + c;
|
||||
element(1,0) = t[0]*t[1]*q - t[2]*s;
|
||||
element(2,0) = t[0]*t[2]*q + t[1]*s;
|
||||
element(3,0) = 0;
|
||||
element(0,1) = t[1]*t[0]*q + t[2]*s;
|
||||
element(1,1) = t[1]*t[1]*q + c;
|
||||
element(2,1) = t[1]*t[2]*q - t[0]*s;
|
||||
element(3,1) = 0;
|
||||
element(0,2) = t[2]*t[0]*q -t[1]*s;
|
||||
element(1,2) = t[2]*t[1]*q +t[0]*s;
|
||||
element(2,2) = t[2]*t[2]*q +c;
|
||||
element(3,2) = 0;
|
||||
element(0,3) = 0;
|
||||
element(1,3) = 0;
|
||||
element(2,3) = 0;
|
||||
element(3,3) = 1;
|
||||
}
|
||||
|
||||
|
||||
template <class T> T Matrix44<T>::Determinant() const {
|
||||
LinearSolve<T> solve(*this);
|
||||
return solve.Determinant();
|
||||
}
|
||||
|
||||
|
||||
template <class T> Point4<T> operator*(const Matrix44<T> &m, const Point4<T> &p) {
|
||||
T w;
|
||||
Point4<T> s;
|
||||
s.x() = a[0][0]*p.x() + a[0][1]*p.y() + a[0][2]*p.z() + a[0][3];
|
||||
s.y() = a[1][0]*p.x() + a[1][1]*p.y() + a[1][2]*p.z() + a[1][3];
|
||||
s.z() = a[2][0]*p.x() + a[2][1]*p.y() + a[2][2]*p.z() + a[2][3];
|
||||
s.w() = a[3][0]*p.x() + a[3][1]*p.y() + a[3][2]*p.z() + a[3][3];
|
||||
if(s.w()!= 0) s /= s.w();
|
||||
return s;
|
||||
}
|
||||
|
||||
template <class T> Point4<T> operator*(const Point4<T> &p, const Matrix44<T> &m) {
|
||||
T w;
|
||||
Point4<T> s;
|
||||
s.x() = a[0][0]*p.x() + a[0][1]*p.y() + a[0][2]*p.z() + a[0][3];
|
||||
s.y() = a[1][0]*p.x() + a[1][1]*p.y() + a[1][2]*p.z() + a[1][3];
|
||||
s.z() = a[2][0]*p.x() + a[2][1]*p.y() + a[2][2]*p.z() + a[2][3];
|
||||
s.w() = a[3][0]*p.x() + a[3][1]*p.y() + a[3][2]*p.z() + a[3][3];
|
||||
if(s.w() != 0) s /= s.w();
|
||||
return s;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
|
||||
for(int i = 1; i < 4; i++)
|
||||
for(int j = 0; j < i; j++) {
|
||||
T t = element(i, j);
|
||||
element(i, j) = element(j, i);
|
||||
element(j, i) = t;
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <class T> Matrix44<T> &Invert(Matrix44<T> &m) {
|
||||
LinearSolve<T> solve(m);
|
||||
|
||||
for(int j = 0; j < 4; j++) { //Find inverse by columns.
|
||||
Point4<T> col(0, 0, 0, 0);
|
||||
col[j] = 1.0;
|
||||
col = solve.Solve(col);
|
||||
for(int i = 0; i < 4; i++)
|
||||
m.element(i, j) = col[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* LINEAR SOLVE IMPLEMENTATION */
|
||||
|
||||
template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T>(m) {
|
||||
Decompose();
|
||||
}
|
||||
|
||||
|
||||
template <class T> T LinearSolve<T>::Determinant() const {
|
||||
T det = d;
|
||||
for(int j = 0; j < 4; j++)
|
||||
det *= element(j, j);
|
||||
return det;
|
||||
}
|
||||
|
||||
|
||||
/*replaces a matrix by its LU decomposition of a rowwise permutation.
|
||||
d is +or -1 depeneing of row permutation even or odd.*/
|
||||
#define TINY 1e-100
|
||||
|
||||
template <class T> void LinearSolve<T>::Decompose() {
|
||||
d = 1; //no permutation still
|
||||
|
||||
T scaling[4];
|
||||
|
||||
//Saving the scvaling information per row
|
||||
for(int i = 0; i < 4; i++) {
|
||||
T largest = 0.0;
|
||||
for(int j = 0; j < 4; j++) {
|
||||
T t = fabs(element(i, j));
|
||||
if (t > largest) largest = t;
|
||||
}
|
||||
|
||||
if (largest == 0.0) { //oooppps there is a zero row!
|
||||
return;
|
||||
}
|
||||
scaling[i] = 1.0 / largest;
|
||||
}
|
||||
|
||||
int imax;
|
||||
for(int j = 0; j < 4; j++) {
|
||||
for(int i = 0; i < j; i++) {
|
||||
T sum = element(i,j);
|
||||
for(int k = 0; k < i; k++)
|
||||
sum -= element(i,k)*element(k,j);
|
||||
element(i,j) = sum;
|
||||
}
|
||||
T largest = 0.0;
|
||||
for(int i = j; i < 4; i++) {
|
||||
T sum = element(i,j);
|
||||
for(int k = 0; k < j; k++)
|
||||
sum -= element(i,k)*element(k,j);
|
||||
element(i,j) = sum;
|
||||
T t = scaling[i] * fabs(sum);
|
||||
if(t >= largest) {
|
||||
largest = t;
|
||||
imax = i;
|
||||
}
|
||||
}
|
||||
if (j != imax) {
|
||||
for (int k = 0; k < 4; k++) {
|
||||
T dum = element(imax,k);
|
||||
element(imax,k) = element(j,k);
|
||||
element(j,k) = dum;
|
||||
}
|
||||
d = -(d);
|
||||
scaling[imax] = scaling[j];
|
||||
}
|
||||
index[j]=imax;
|
||||
if (element(j,j) == 0.0) element(j,j) = TINY;
|
||||
if (j != 3) {
|
||||
T dum = 1.0 / (element(j,j));
|
||||
for (i = j+1; i < 4; i++)
|
||||
element(i,j) *= dum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class T> Point4<T> LinearSolve<T>::Solve(Point4<T> &b) {
|
||||
Point4<T> x(b);
|
||||
int first = 0, ip;
|
||||
for(int i = 0; i < 4; i++) {
|
||||
ip = index[i];
|
||||
T sum = x[ip];
|
||||
x[ip] = x[i];
|
||||
if(first)
|
||||
for(int j = first; j <= i-1; j++)
|
||||
sum -= element(i,j) * x[j];
|
||||
else
|
||||
if (sum) first = i;
|
||||
}
|
||||
for (int i = 3; i >= 0; i--) {
|
||||
T sum = x[i];
|
||||
for (int j = i+1; j < 4; j++)
|
||||
sum -= element(i, j) * x[j];
|
||||
x[i] = sum / element(i, i);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
||||
} //namespace
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
|
||||
/*#ifdef __GL_H__
|
||||
// Applicano la trasformazione intesa secondo la Apply
|
||||
void glMultMatrix(Matrix44<double> const & M) { glMultMatrixd(&(M.a[0][0]));}
|
||||
void glMultMatrix(Matrix44<float> const & M) { glMultMatrixf(&(M.a[0][0]));}
|
||||
void glLoadMatrix(Matrix44<double> const & M) { glLoadMatrixd(&(M.a[0][0]));}
|
||||
void glLoadMatrix(Matrix44<float> const & M) { glLoadMatrixf(&(M.a[0][0]));}
|
||||
#endif*/
|
||||
|
||||
|
Loading…
Reference in New Issue