added *NotManifold versions for CheckFlipEdge() and FlipEdge() to use over not 2-manifold meshes
This commit is contained in:
parent
b01f140e50
commit
08a16799d6
|
@ -24,6 +24,8 @@
|
|||
#ifndef _VCG_FACE_TOPOLOGY
|
||||
#define _VCG_FACE_TOPOLOGY
|
||||
|
||||
#include <vcg/simplex/face/pos.h>
|
||||
|
||||
namespace vcg {
|
||||
namespace face {
|
||||
/** \addtogroup face */
|
||||
|
@ -244,47 +246,46 @@ void FFDetachManifold(FaceType & f, const int e)
|
|||
template <class FaceType>
|
||||
void FFDetach(FaceType & f, const int e)
|
||||
{
|
||||
assert(FFCorrectness<FaceType>(f,e));
|
||||
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
|
||||
int complexity=ComplexSize(f,e);
|
||||
(void) complexity;
|
||||
assert(complexity>0);
|
||||
assert(FFCorrectness<FaceType>(f,e));
|
||||
assert(!IsBorder<FaceType>(f,e)); // Never try to detach a border edge!
|
||||
int complexity=ComplexSize(f,e);
|
||||
(void) complexity;
|
||||
assert(complexity>0);
|
||||
vcg::face::Pos<FaceType> FirstFace(&f,e); // Build the half edge
|
||||
vcg::face::Pos<FaceType> LastFace(&f,e); // Build the half edge
|
||||
FirstFace.NextF();
|
||||
LastFace.NextF();
|
||||
int cnt=0;
|
||||
|
||||
Pos< FaceType > FirstFace(&f,e); // Build the half edge
|
||||
Pos< FaceType > LastFace(&f,e); // Build the half edge
|
||||
FirstFace.NextF();
|
||||
LastFace.NextF();
|
||||
int cnt=0;
|
||||
// then in case of non manifold face continue to advance LastFace
|
||||
// until I find it become the one that
|
||||
// preceed the face I want to erase
|
||||
|
||||
// then in case of non manifold face continue to advance LastFace
|
||||
// until I find it become the one that
|
||||
// preceed the face I want to erase
|
||||
while ( LastFace.f->FFp(LastFace.z) != &f)
|
||||
{
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
|
||||
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
|
||||
assert(!LastFace.IsBorder());
|
||||
LastFace.NextF();
|
||||
cnt++;
|
||||
assert(cnt<100);
|
||||
}
|
||||
|
||||
while ( LastFace.f->FFp(LastFace.z) != &f)
|
||||
{
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
|
||||
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
|
||||
assert(!LastFace.IsBorder());
|
||||
LastFace.NextF();
|
||||
cnt++;
|
||||
assert(cnt<100);
|
||||
}
|
||||
assert(LastFace.f->FFp(LastFace.z)==&f);
|
||||
assert(f.FFp(e)== FirstFace.f);
|
||||
|
||||
assert(LastFace.f->FFp(LastFace.z)==&f);
|
||||
assert(f.FFp(e)== FirstFace.f);
|
||||
// Now we link the last one to the first one, skipping the face to be detached;
|
||||
LastFace.f->FFp(LastFace.z) = FirstFace.f;
|
||||
LastFace.f->FFi(LastFace.z) = FirstFace.z;
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
|
||||
|
||||
// Now we link the last one to the first one, skipping the face to be detached;
|
||||
LastFace.f->FFp(LastFace.z) = FirstFace.f;
|
||||
LastFace.f->FFi(LastFace.z) = FirstFace.z;
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity-1);
|
||||
// At the end selfconnect the chosen edge to make a border.
|
||||
f.FFp(e) = &f;
|
||||
f.FFi(e) = e;
|
||||
assert(ComplexSize(f,e)==1);
|
||||
|
||||
// At the end selfconnect the chosen edge to make a border.
|
||||
f.FFp(e) = &f;
|
||||
f.FFi(e) = e;
|
||||
assert(ComplexSize(f,e)==1);
|
||||
|
||||
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
|
||||
assert(FFCorrectness<FaceType>(f,e));
|
||||
assert(FFCorrectness<FaceType>(*LastFace.f,LastFace.z));
|
||||
assert(FFCorrectness<FaceType>(f,e));
|
||||
}
|
||||
|
||||
|
||||
|
@ -297,25 +298,34 @@ void FFDetach(FaceType & f, const int e)
|
|||
template <class FaceType>
|
||||
void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
|
||||
{
|
||||
//typedef FEdgePosB< FACE_TYPE > ETYPE;
|
||||
Pos< FaceType > EPB(f2,z2);
|
||||
Pos< FaceType > TEPB;
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
|
||||
{
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
}
|
||||
//Salvo i dati di f1 prima di sovrascrivere
|
||||
//typedef FEdgePosB< FACE_TYPE > ETYPE;
|
||||
vcg::face::Pos< FaceType > EPB(f2,z2);
|
||||
vcg::face::Pos< FaceType > TEPB;
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
|
||||
{
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
}
|
||||
//Salvo i dati di f1 prima di sovrascrivere
|
||||
FaceType *f1prec = f->FFp(z1);
|
||||
int z1prec = f->FFi(z1);
|
||||
int z1prec = f->FFi(z1);
|
||||
|
||||
//Aggiorno f1
|
||||
assert(f1prec == f);
|
||||
assert(TEPB.f->FFp(TEPB.z) == f2);
|
||||
|
||||
f->FFp(z1) = TEPB.f->FFp(TEPB.z);
|
||||
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
|
||||
//Aggiorno la faccia che precede f2
|
||||
TEPB.f->FFp(TEPB.z) = f1prec;
|
||||
TEPB.f->FFi(TEPB.z) = z1prec;
|
||||
f->FFi(z1) = TEPB.f->FFi(TEPB.z);
|
||||
|
||||
//Aggiorno la faccia che precede f2
|
||||
TEPB.f->FFp(TEPB.z) = f1prec;
|
||||
TEPB.f->FFi(TEPB.z) = z1prec;
|
||||
|
||||
assert(FFCorrectness<FaceType>(*f,z1));
|
||||
assert(FFCorrectness<FaceType>(*TEPB.f, TEPB.z));
|
||||
|
||||
}
|
||||
|
||||
/** This function attach the face (via the edge z1) to another face (via the edge z2).
|
||||
|
@ -625,15 +635,54 @@ bool CheckFlipEdge(FaceType &f, int z)
|
|||
PosType startPos=pos;
|
||||
do
|
||||
{
|
||||
pos.NextE();
|
||||
if (g_v2 == pos.VFlip())
|
||||
return false;
|
||||
pos.NextE();
|
||||
if (g_v2 == pos.VFlip())
|
||||
return false;
|
||||
}
|
||||
while (pos != startPos);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <class FaceType>
|
||||
bool checkFlipEdgeNotManifold (FaceType &f, const int z)
|
||||
{
|
||||
typedef typename FaceType::VertexType VertexType;
|
||||
typedef typename vcg::face::Pos< FaceType > PosType;
|
||||
if (z<0 || z>2) return false;
|
||||
|
||||
// boundary edges cannot be flipped
|
||||
if (vcg::face::IsBorder(f, z)) return false;
|
||||
|
||||
FaceType *g = f.FFp(z);
|
||||
int w = f.FFi(z);
|
||||
|
||||
// check if the vertices of the edge are the same
|
||||
// e.g. the mesh has to be well oriented
|
||||
if (g->V(w)!=f.V1(z) || g->V1(w)!=f.V(z) )
|
||||
return false;
|
||||
|
||||
// check if the flipped edge is already present in the mesh
|
||||
// f_v2 and g_v2 are the vertices of the new edge
|
||||
VertexType *f_v2 = f.V2(z);
|
||||
VertexType *g_v2 = g->V2(w);
|
||||
|
||||
PosType pos(&f, (z+2)%3, f_v2);
|
||||
PosType startPos=pos;
|
||||
do
|
||||
{
|
||||
pos.FlipE();
|
||||
pos.NextF();
|
||||
// if (g_v2 == pos.F()->V((pos.E()+1) % 3))
|
||||
if (g_v2 == pos.VFlip())
|
||||
return false;
|
||||
}
|
||||
while (pos != startPos);
|
||||
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* Flip the z-th edge of the face f.
|
||||
* Check for topological correctness first using <CODE>CheckFlipEdge()</CODE>.
|
||||
|
@ -675,41 +724,121 @@ void FlipEdge(FaceType &f, const int z)
|
|||
assert( g->V2(w) != f.V1(z) );
|
||||
assert( g->V2(w) != f.V2(z) );
|
||||
|
||||
int fi1 = f.FFi(f.Next(z));
|
||||
FaceType* fp1 = f.FFp(f.Next(z));
|
||||
|
||||
int gi1 = g->FFi(g->Next(w));
|
||||
FaceType* gp1 = g->FFp(g->Next(w));
|
||||
|
||||
// FaceType* fp2 = f.FFp(f.Next(z));
|
||||
|
||||
|
||||
f.V1(z) = g->V2(w);
|
||||
g->V1(w) = f.V2(z);
|
||||
|
||||
f.FFp(z) = g->FFp((w+1)%3);
|
||||
f.FFi(z) = g->FFi((w+1)%3);
|
||||
g->FFp(w) = f.FFp((z+1)%3);
|
||||
g->FFi(w) = f.FFi((z+1)%3);
|
||||
f.FFp((z+1)%3) = g;
|
||||
f.FFi((z+1)%3) = (w+1)%3;
|
||||
g->FFp((w+1)%3) = &f;
|
||||
g->FFi((w+1)%3) = (z+1)%3;
|
||||
//topology update
|
||||
|
||||
if(f.FFp(z)==g)
|
||||
{
|
||||
f.FFp(z) = &f;
|
||||
f.FFi(z) = z;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFp(z)->FFp( f.FFi(z) ) = &f;
|
||||
f.FFp(z)->FFi( f.FFi(z) ) = z;
|
||||
}
|
||||
if(g->FFp(w)==&f)
|
||||
{
|
||||
g->FFp(w)=g;
|
||||
g->FFi(w)=w;
|
||||
}
|
||||
else
|
||||
{
|
||||
g->FFp(w)->FFp( g->FFi(w) ) = g;
|
||||
g->FFp(w)->FFi( g->FFi(w) ) = w;
|
||||
}
|
||||
|
||||
f.FFp(z) = g->FFp((w+1)%3);
|
||||
f.FFi(z) = g->FFi((w+1)%3);
|
||||
g->FFp(w) = f.FFp((z+1)%3);
|
||||
g->FFi(w) = f.FFi((z+1)%3);
|
||||
|
||||
f.FFp((z+1)%3) = g;
|
||||
f.FFi((z+1)%3) = (w+1)%3;
|
||||
g->FFp((w+1)%3) = &f;
|
||||
g->FFi((w+1)%3) = (z+1)%3;
|
||||
|
||||
if(f.FFp(z)==g)
|
||||
{
|
||||
f.FFp(z) = &f;
|
||||
f.FFi(z) = z;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFp(z)->FFp( f.FFi(z) ) = &f;
|
||||
f.FFp(z)->FFi( f.FFi(z) ) = z;
|
||||
}
|
||||
if(g->FFp(w)==&f)
|
||||
{
|
||||
g->FFp(w)=g;
|
||||
g->FFi(w)=w;
|
||||
}
|
||||
else
|
||||
{
|
||||
g->FFp(w)->FFp( g->FFi(w) ) = g;
|
||||
g->FFp(w)->FFi( g->FFi(w) ) = w;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*!
|
||||
* Flip the z-th edge of the face f.
|
||||
* Check for topological correctness first using <CODE>CheckFlipEdge()</CODE>.
|
||||
* \param f pointer to the face
|
||||
* \param z the edge index
|
||||
*
|
||||
* Note: For <em>edge flip</em> we intend the swap of the diagonal of the quadrilater
|
||||
* formed by the face \a f and the face adjacent to the specified edge.
|
||||
*
|
||||
* 0__________ 2 0__________2
|
||||
* -> 1|\ | | /|1
|
||||
* | \ g | | g / |
|
||||
* | \ | |w / |
|
||||
* | f z\w | | / f z|
|
||||
* | \ | | / |
|
||||
* |__________\|1 <- 1|/__________|
|
||||
* 2 0 2 0
|
||||
*
|
||||
* Note that, after an operation FlipEdge(f,z)
|
||||
* to topologically revert it should be sufficient to do FlipEdge(f,z+1)
|
||||
* (even if the mesh is actually different: f and g will be swapped)
|
||||
*
|
||||
*/
|
||||
template <class FaceType>
|
||||
void FlipEdgeNotManifold(FaceType &f, const int z)
|
||||
{
|
||||
assert(z>=0);
|
||||
assert(z<3);
|
||||
assert( !IsBorder(f,z) );
|
||||
assert( face::IsManifold<FaceType>(f, z));
|
||||
|
||||
FaceType *g = f.FFp(z); // The other face
|
||||
int w = f.FFi(z); // and other side
|
||||
|
||||
assert( g->V0(w) == f.V1(z) );
|
||||
assert( g->V1(w) == f.V0(z) );
|
||||
assert( g->V2(w) != f.V0(z) );
|
||||
assert( g->V2(w) != f.V1(z) );
|
||||
assert( g->V2(w) != f.V2(z) );
|
||||
|
||||
int fi1 = f.FFi(f.Next(z));
|
||||
FaceType* fp1 = f.FFp(f.Next(z));
|
||||
|
||||
int gi1 = g->FFi(g->Next(w));
|
||||
FaceType* gp1 = g->FFp(g->Next(w));
|
||||
|
||||
|
||||
FFDetach(f, z);
|
||||
if (!IsBorder(f, (z+1)%3))
|
||||
FFDetach(f, (z+1)%3);
|
||||
if (!IsBorder(*g, (w+1)%3))
|
||||
FFDetach(*g, (w+1)%3);
|
||||
|
||||
f.V1(z) = g->V2(w);
|
||||
g->V1(w) = f.V2(z);
|
||||
|
||||
//topology update
|
||||
FaceType* ftmp = &f;
|
||||
|
||||
if (gp1 != g)
|
||||
FFAttach(ftmp, z, gp1, gi1);
|
||||
if (fp1 != &f)
|
||||
FFAttach(g, w, fp1, fi1);
|
||||
|
||||
FFAttachManifold(ftmp, (z+1)%3, g, (w+1)%3);
|
||||
}
|
||||
|
||||
template <class FaceType>
|
||||
void TriSplit(FaceType *fToSplit, FaceType *newf0, FaceType *newf1, typename FaceType::VertexType *newVert)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue