optimized ( distance map are calculated 1 time each point)

This commit is contained in:
Nico Pietroni 2005-02-08 17:50:41 +00:00
parent 06adb386ad
commit 0ebd1f6f91
1 changed files with 378 additions and 129 deletions

View File

@ -10,6 +10,8 @@
#include <vcg/complex/trimesh/closest.h> #include <vcg/complex/trimesh/closest.h>
#include <vcg/space/box3.h> #include <vcg/space/box3.h>
//#include <volume_dataset.h>//debugghe
namespace vcg { namespace vcg {
namespace trimesh { namespace trimesh {
@ -48,6 +50,7 @@ class Resampler:RES
typedef typename Old_Mesh::FaceContainer FaceCont; typedef typename Old_Mesh::FaceContainer FaceCont;
typedef typename GridStaticPtr<FaceCont> Grid; typedef typename GridStaticPtr<FaceCont> Grid;
typedef typename vcg::Box3<int> BoundingBox; typedef typename vcg::Box3<int> BoundingBox;
//typedef typename std::pair<vcg::Point3i,vcg::Point3i> PointPair;
typedef vcg::tri::Allocator< New_Mesh > Allocator; typedef vcg::tri::Allocator< New_Mesh > Allocator;
protected: protected:
@ -56,6 +59,7 @@ class Resampler:RES
vcg::Point3i _cell_size; vcg::Point3i _cell_size;
float max_dim; float max_dim;
float dim_diag;
int _slice_dimension; int _slice_dimension;
int _current_slice; int _current_slice;
@ -67,23 +71,29 @@ class Resampler:RES
VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta VertexIndex *_x_ns; // indici dell'intersezioni della superficie lungo gli Xedge della prossima fetta
VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta VertexIndex *_z_ns; // indici dell'intersezioni della superficie lungo gli Zedge della prossima fetta
//float *_v_cs;///values of distance fields for each direction in current slice
//float *_v_ns;///values of distance fields for each direction in next slice
typedef typename std::pair<bool,float> field_value;
field_value* _v_cs;
field_value* _v_ns;
New_Mesh *_newM; New_Mesh *_newM;
Old_Mesh *_oldM; Old_Mesh *_oldM;
Grid _g; Grid _g;
public: public:
Walker(const BoundingBox &bbox,vcg::Point3i &resolution) /*Walker(Volume_Dataset <short> *Vo,float in,const BoundingBox &bbox,vcg::Point3i &resolution)
{ {*/
assert (resolution.V(0)<=bbox.DimX()); /* init=in;
assert (resolution.V(1)<=bbox.DimY()); Vol=Vo;*/
assert (resolution.V(2)<=bbox.DimZ());
_bbox= bbox; void SetBBParameters()
_resolution = resolution; {
_cell_size.X() = _bbox.DimX()/_resolution.X(); _cell_size.X() =_bbox.DimX()/_resolution.X();
_cell_size.Y() = _bbox.DimY()/_resolution.Y(); _cell_size.Y() =_bbox.DimY()/_resolution.Y();
_cell_size.Z() = _bbox.DimZ()/_resolution.Z(); _cell_size.Z() =_bbox.DimZ()/_resolution.Z();
///extend bb until the box - resolution and cell matches ///extend bb until the box - resolution and cell matches
while ((_bbox.DimX()%_cell_size.X())!=0) while ((_bbox.DimX()%_cell_size.X())!=0)
@ -118,70 +128,203 @@ class Resampler:RES
Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2)); Point3f diag=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
max_dim=diag.Norm();///diagonal of a cell max_dim=diag.Norm();///diagonal of a cell
_current_slice = _bbox.min.Y();
Point3f minD=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
Point3f maxD=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
Point3f d=(maxD-minD);
dim_diag=d.Norm();
}
Walker(const BoundingBox &bbox,vcg::Point3i &resolution)
{
assert (resolution.V(0)<=bbox.DimX());
assert (resolution.V(1)<=bbox.DimY());
assert (resolution.V(2)<=bbox.DimZ());
_bbox= bbox;
_resolution = resolution;
SetBBParameters();
_x_cs = new VertexIndex[ _slice_dimension ]; _x_cs = new VertexIndex[ _slice_dimension ];
_y_cs = new VertexIndex[ _slice_dimension ]; _y_cs = new VertexIndex[ _slice_dimension ];
_z_cs = new VertexIndex[ _slice_dimension ]; _z_cs = new VertexIndex[ _slice_dimension ];
_x_ns = new VertexIndex[ _slice_dimension ]; _x_ns = new VertexIndex[ _slice_dimension ];
_z_ns = new VertexIndex[ _slice_dimension ]; _z_ns = new VertexIndex[ _slice_dimension ];
_v_cs= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
_v_ns= new field_value[(_resolution.X()+1)*(_resolution.Z()+1)];
}; };
~Walker() ~Walker()
{} {}
float V(Point3i p)
{
return (V(p.V(0),p.V(1),p.V(2)));
}
float V(int x,int y,int z)
{
assert ((y==_current_slice)||(y==(_current_slice+_cell_size.Y())));
//test if it is outside the bb of the mesh
//vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
/*if (!_oldM->bbox.IsIn(test))
return (1.f);*/
int index=GetSliceIndex(x,z);
if (y==_current_slice)
{
//assert(_v_cs[index]<dim_diag);
assert(_v_cs[index].first);
return _v_cs[index].second;
}
else
{
//assert(_v_ns[index]<dim_diag);
assert(_v_ns[index].first);
return _v_ns[index].second;
}
}
///return true if the distance form the mesh is less than maxdim and return distance
bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh,float &dist)
{
Old_Mesh::FaceType *f=NULL;
//float distm=max_dim;
dist=max_dim;
vcg::Point3f test=vcg::Point3f((float)x,(float)y,(float)z);
////test if it is outside the bb of the mesh
/*if (!_oldM->bbox.IsIn(test))
{
dist=1.f;
return true;
}*/
vcg::Point3f Norm;
vcg::Point3f Target;
vcg::Point3f pip;
vcg::trimesh::Closest<Old_Mesh,Grid,float>((*mesh),test,_g,dist,Norm,Target,f,pip);
if (f==NULL)
return false;
else
{
Point3f dir=(test-Target);
//dist=dir.Norm();
dir.Normalize();
//direction of normal inside the mesh
if ((dir*Norm)<0)
dist=-dist;
//the intersection exist
return true;
}
}
///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
/// the distance of the bb
void CumputeSliceValues(int slice,field_value *slice_values)
{
float dist;
/*for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.X(); k+=_cell_size.Z())
{
*/
for (int i=_bbox.min.X(); i<=_bbox.max.X(); i+=_cell_size.X())
{
for (int k=_bbox.min.Z(); k<=_bbox.max.Z(); k+=_cell_size.Z())
{
int index=GetSliceIndex(i,k);
if (DistanceFromMesh(i,slice,k,_oldM,dist))///compute the distance,inside volume of the mesh is negative
{
//put computed values in the slice values matrix
slice_values[index]=field_value(true,dist);
//end putting values
}
else
slice_values[index]=field_value(false,dist);
}
}
}
template<class EXTRACTOR_TYPE>
void ProcessSlice(std::vector<vcg::Point3i> cells,EXTRACTOR_TYPE &extractor)
{
std::vector<vcg::Point3i>::iterator it;
for (it=cells.begin();it<cells.end();it++)
{
assert((*it).Y()==_current_slice);
assert(V(*it)<=max_dim);
assert(_bbox.IsIn(*it));
vcg::Point3i p1=(*it)+_cell_size;
extractor.ProcessCell((*it), p1);
}
}
void SetUGrid()
{
Point3f min=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2));
Point3f max=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
Point3f cell=Point3f((float)_cell_size.V(0),(float)_cell_size.V(1),(float)_cell_size.V(2));
vcg::Box3<float> BBf=vcg::Box3<float>(min-cell,max+cell);
_g.SetBBox(BBf);
_g.Set(_oldM->face);
}
template<class EXTRACTOR_TYPE> template<class EXTRACTOR_TYPE>
void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor) void BuildMesh(Old_Mesh &old_mesh,New_Mesh &new_mesh,EXTRACTOR_TYPE &extractor)
{ {
_newM=&new_mesh; _newM=&new_mesh;
_oldM=&old_mesh; _oldM=&old_mesh;
Point3f min=Point3f((float)_bbox.min.V(0),(float)_bbox.min.V(1),(float)_bbox.min.V(2)); SetUGrid();
Point3f max=Point3f((float)_bbox.max.V(0),(float)_bbox.max.V(1),(float)_bbox.max.V(2));
vcg::Box3<float> BBf=vcg::Box3<float>(min,max);
_g.SetBBox(BBf);
_g.Set(_oldM->face);
_newM->Clear(); _newM->Clear();
vcg::Point3i p1, p2;
vcg::Point3i p1, p2;
Begin(); Begin();
extractor.Initialize(); extractor.Initialize();
for (int j=_bbox.min.Y(); j<_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y()) for (int j=_bbox.min.Y(); j<=_bbox.max.Y()-_cell_size.Y(); j+=_cell_size.Y())
{ {
for (int i=_bbox.min.X(); i<_bbox.max.X()-_cell_size.X(); i+=_cell_size.X()) ProcessSlice<EXTRACTOR_TYPE>(FindCells(),extractor);//find cells where there is the isosurface and examine it
{
for (int k=_bbox.min.Z(); k<_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
{
p1.X()=i;
p1.Y()=j;
p1.Z()=k;
p2.X()=i+_cell_size.X();
p2.Y()=j+_cell_size.Y();
p2.Z()=k+_cell_size.Z();
if (ExistIntersection(p1,p2))
extractor.ProcessCell(p1, p2);
}
}
NextSlice(); NextSlice();
} }
extractor.Finalize(); extractor.Finalize();
/*_newM= NULL;*/ /*_newM= NULL;*/
};
float V(Point3i p)
{
return (V(p.V(0),p.V(1),p.V(2)));
} }
///control if exist any intersection with the mesh using all points of the cell //return the index of a vertex in slide as it was stored
bool ExistIntersection(Point3i min,Point3i max) int GetSliceIndex(int x,int z)
{ {
vcg::Point3i _corners[8]; int ii = (x - _bbox.min.X())/_cell_size.X();
int zz = (z - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = ii+zz*(_resolution.X()+1);
return (index);
}
///return true if exist in the cell one value <0 and another one >0
bool FindMinMax(vcg::Point3i min,vcg::Point3i max)
{
assert((min.X()<max.X())&&(min.Y()<max.Y())&&(min.Z()<max.Z()));
vcg::Point3i _corners[8];
///control for each corner of the
_corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z(); _corners[0].X()=min.X(); _corners[0].Y()=min.Y(); _corners[0].Z()=min.Z();
_corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z(); _corners[1].X()=max.X(); _corners[1].Y()=min.Y(); _corners[1].Z()=min.Z();
_corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z(); _corners[2].X()=max.X(); _corners[2].Y()=max.Y(); _corners[2].Z()=min.Z();
@ -191,78 +334,203 @@ class Resampler:RES
_corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z(); _corners[6].X()=max.X(); _corners[6].Y()=max.Y(); _corners[6].Z()=max.Z();
_corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z(); _corners[7].X()=min.X(); _corners[7].Y()=max.Y(); _corners[7].Z()=max.Z();
////control if there is a face float min_value=max_dim;
vcg::Point3f Norm; float max_value=-max_dim;
Old_Mesh::FaceType *f=NULL; field_value value;
float distm;
Point3f pip;
Point3f Target;
vcg::Point3f test;
for (int i=0;i<8;i++) for (int i=0;i<8;i++)
{ {
f=NULL; //if one value is > that bbox.diag this value is not valid
distm=max_dim; //that is the mark
test=vcg::Point3f((float)_corners[i].X(),(float)_corners[i].Y(),(float)_corners[i].Z());
vcg::trimesh::Closest<Old_Mesh,Grid,float>((*_oldM),test,_g,distm,Norm,Target,f,pip); if (_corners[i].Y()==_current_slice)
if (f==NULL) value=_v_cs[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
else
value=_v_ns[GetSliceIndex(_corners[i].X(),_corners[i].Z())];
if (value.first==false)
return false; return false;
//assign new values of min and max
if (value.second<min_value)
min_value=value.second;
if (value.second>max_value)
max_value=value.second;
} }
return true;
/////do not test with zero..
if ((min_value<=0.f)&&(max_value>=0.f))
return true;
return false;
//return true;
} }
///si potrebbe ottimizzare sfruttando valori che in realta' ho gia' calcolato ///filter the cells from to_hexamine vector to the ones that
float V(int pi, int pj, int pk) /// min and max of the cell are <0 and >0
std::vector<vcg::Point3i> FindCells()
{ {
vcg::Point3f Norm; std::vector<vcg::Point3i> res;
Old_Mesh::FaceType *f=NULL; for (int i=_bbox.min.X(); i<=_bbox.max.X()-_cell_size.X(); i+=_cell_size.X())
float dist=max_dim;; {
vcg::Point3f test=vcg::Point3f((float)pi,(float)pj,(float)pk); for (int k=_bbox.min.Z(); k<=_bbox.max.Z()-_cell_size.Z(); k+=_cell_size.Z())
{
Point3f pip; int x0=i;
Point3f Target; int y0=_current_slice;
vcg::trimesh::Closest<Old_Mesh,Grid,float>((*_oldM),test,_g,dist,Norm,Target,f,pip); int z0=k;
int x1=x0+_cell_size.X();
assert(f!=NULL); int y1=y0+_cell_size.Y();
int z1=z0+_cell_size.Z();
Point3f dir=(test-Target); if (FindMinMax(Point3i(x0,y0,z0),Point3i(x1,y1,z1)))
res.push_back(Point3i(x0,y0,z0));
//dist=dir.Norm(); }
dir=dir.Normalize(); }
return res;
//direction of normal inside or outside the mesh
if ((f->N()*dir)>0)
return (dist);
else
return (-dist);
} }
//swap slices , the initial value of distance fields ids set as double of bbox of space
void NextSlice()
{
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
std::swap(_x_cs, _x_ns);
std::swap(_z_cs, _z_ns);
std::swap(_v_cs, _v_ns);
_current_slice += _cell_size.Y();
//memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));
//memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));
CumputeSliceValues(_current_slice+ _cell_size.Y(),_v_ns);
}
//initialize data strucures , the initial value of distance fields ids set as double of bbox of space
void Begin()
{
_current_slice = _bbox.min.Y();
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));
/*memset(_v_cs, dim_diag*2.f, _slice_dimension*sizeof(float));
memset(_v_ns, dim_diag*2.f, _slice_dimension*sizeof(float));*/
/*memset(_v_cs, field_value(false,0.f), _slice_dimension*sizeof(field_value));
memset(_v_ns, field_value(false,0.f), _slice_dimension*sizeof(field_value));*/
CumputeSliceValues(_current_slice,_v_cs);
CumputeSliceValues(_current_slice+_cell_size.Y(),_v_ns);
}
bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) bool Exist(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
return false; int i = (p1.X() - _bbox.min.X())/_cell_size.X();
//int i_idx = p1.X()-_bbox.min.X(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
//int k_idx = p2.Z()-_bbox.min.Z(); VertexIndex index = i+z*_resolution.X();
//int index = i_idx+k_idx*_resolution.X();
//if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge //VertexIndex index =GetSliceIndex(//
// return (p1.Y()==_current_slice)? _x_cs[index]!=-1 : _x_ns[index]!=-1; int v_ind = 0;
//else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge if (p1.X()!=p2.X()) //intersezione della superficie con un Xedge
// return _y_cs[index]!=-1; {
//else if (p1.Z()!=p2.Z()) //intersezione della superficie con un Zedge if (p1.Y()==_current_slice)
// return (p1.Y()==_current_slice)? _z_cs[index]!=-1 : _z_ns[index]!=-1; {
if (_x_cs[index]!=-1)
{
v_ind = _x_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
else
{
if (_x_ns[index]!=-1)
{
v_ind = _x_ns[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
v = NULL;
return false;
}
else if (p1.Y()!=p2.Y()) //intersezione della superficie con un Yedge
{
if (_y_cs[index]!=-1)
{
v_ind =_y_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
else
{
v = NULL;
return false;
}
}
else if (p1.Z()!=p2.Z())
//intersezione della superficie con un Zedge
{
if (p1.Y()==_current_slice)
{
if ( _z_cs[index]!=-1)
{
v_ind = _z_cs[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
else
{
if (_z_ns[index]!=-1)
{
v_ind = _z_ns[index];
v = &_newM->vert[v_ind];
assert(!v->IsD());
return true;
}
}
v = NULL;
return false;
}
assert (0);
} }
///interpolate
NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir) NewCoordType Interpolate(const vcg::Point3i &p1, const vcg::Point3i &p2,int dir)
{ {
float f1 = V(p1); float f1 = (float)V(p1);
float f2 = V(p2); float f2 = (float)V(p2);
float u = (float) f1/(f1-f2); float u = (float) f1/(f1-f2);
NewCoordType ret=vcg::Point3f((float)p1.V(0),(float)p1.V(1),(float)p1.V(2)); NewCoordType ret=vcg::Point3f((float)p1.V(0),(float)p1.V(1),(float)p1.V(2));
ret.V(dir) = (float) p1.V(dir)*(1-u) + u*p2.V(dir); ret.V(dir) = (float) p1.V(dir)*(1.f-u) + u*(float)p2.V(dir);
return (ret); return (ret);
} }
///if there is a vertex in z axis of a cell return the vertex or create it
void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetXIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); VertexIndex index = i+z*_resolution.X();
@ -294,8 +562,11 @@ class Resampler:RES
v = &_newM->vert[pos]; v = &_newM->vert[pos];
} }
///if there is a vertex in y axis of a cell return the vertex or create it
void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetYIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); VertexIndex index = i+z*_resolution.X();
@ -311,8 +582,11 @@ class Resampler:RES
v = &_newM->vert[pos]; v = &_newM->vert[pos];
} }
///if there is a vertex in z axis of a cell return the vertex or create it
void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v) void GetZIntercept(const vcg::Point3i &p1, const vcg::Point3i &p2, VertexPointer &v)
{ {
assert ((p1.Y()==_current_slice)||(p1.Y()==(_current_slice+_cell_size.Y())));
int i = (p1.X() - _bbox.min.X())/_cell_size.X(); int i = (p1.X() - _bbox.min.X())/_cell_size.X();
int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z(); int z = (p1.Z() - _bbox.min.Z())/_cell_size.Z();
VertexIndex index = i+z*_resolution.X(); VertexIndex index = i+z*_resolution.X();
@ -345,31 +619,6 @@ class Resampler:RES
v = &_newM->vert[pos]; v = &_newM->vert[pos];
} }
void NextSlice()
{
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
std::swap(_x_cs, _x_ns);
std::swap(_z_cs, _z_ns);
_current_slice += _cell_size.Y();
}
void Begin()
{
_current_slice = _bbox.min.Y();
memset(_x_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_y_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_cs, -1, _slice_dimension*sizeof(VertexIndex));
memset(_x_ns, -1, _slice_dimension*sizeof(VertexIndex));
memset(_z_ns, -1, _slice_dimension*sizeof(VertexIndex));
}
};//end class walker };//end class walker
public: public:
@ -402,11 +651,10 @@ static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accu
Point3i min=Point3i((int)ceil(old_mesh.bbox.min.V(0)),(int)ceil(old_mesh.bbox.min.V(1)),(int)ceil(old_mesh.bbox.min.V(2))); Point3i min=Point3i((int)ceil(old_mesh.bbox.min.V(0)),(int)ceil(old_mesh.bbox.min.V(1)),(int)ceil(old_mesh.bbox.min.V(2)));
Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2))); Point3i max=Point3i((int)ceil(old_mesh.bbox.max.V(0)),(int)ceil(old_mesh.bbox.max.V(1)),(int)ceil(old_mesh.bbox.max.V(2)));
///exetend out to BB for resample the limits of the mesh
/*min-=Point3i(1,1,1);
max+=Point3i(1,1,1);*/
vcg::Box3<int> boxInt=Box3<int>(min,max); vcg::Box3<int> boxInt=Box3<int>(min,max);
float rx=((float)boxInt.DimX())/(float)accuracy.X(); float rx=((float)boxInt.DimX())/(float)accuracy.X();
float ry=((float)boxInt.DimY())/(float)accuracy.Y(); float ry=((float)boxInt.DimY())/(float)accuracy.Y();
float rz=((float)boxInt.DimZ())/(float)accuracy.Z(); float rz=((float)boxInt.DimZ())/(float)accuracy.Z();
@ -418,6 +666,7 @@ static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accu
Point3i res=Point3i(rxi,ryi,rzi); Point3i res=Point3i(rxi,ryi,rzi);
MyWalker walker(boxInt,res); MyWalker walker(boxInt,res);
if (mm==MMarchingCubes) if (mm==MMarchingCubes)
{ {
MarchingCubes mc(new_mesh, walker); MarchingCubes mc(new_mesh, walker);