Removed also from this file the deprecated dependencies from linalg. NOW EVERY PIECE OF THE VCG relies on eigen for linalgebra.

This commit is contained in:
Paolo Cignoni 2013-03-20 08:32:53 +00:00
parent 72d67f4a11
commit 12543d68a2
1 changed files with 85 additions and 73 deletions

View File

@ -8,7 +8,7 @@
* \ *
* All rights reserved. *
* *
* This program is free software; you can redistribute it and/or modify *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
@ -30,8 +30,6 @@
#include <assert.h>
#include <vector>
#include <vcg/math/base.h>
#include <vcg/math/matrix.h>
#include <vcg/math/lin_algebra.h>
#include <vcg/simplex/face/topology.h>
#include <vcg/complex/algorithms/update/normal.h>
#include <vcg/complex/algorithms/update/topology.h>
@ -39,6 +37,7 @@
#include <vcg/complex/algorithms/clean.h>
#include <vcg/space/point3.h>
#include "emc_lookup_table.h"
#include <eigenlib/Eigen/SVD>
namespace vcg
{
@ -50,23 +49,23 @@ namespace vcg
/*
* Cube description:
* 3 ________ 2 _____2__
* /| /| / | /|
* / | / | 11/ 3 10/ |
* 7 /_______ / | /__6_|__ / |1
* | | |6 | | | |
* | 0|__|_____|1 | |__|_0|__|
* | / | / 7 8/ 5 /
* | / | / | / | /9
* |/_______|/ |/___4___|/
* 4 5
* 3 ________ 2 _____2__
* /| /| / | /|
* / | / | 11/ 3 10/ |
* 7 /_______ / | /__6_|__ / |1
* | | |6 | | | |
* | 0|__|_____|1 | |__|_0|__|
* | / | / 7 8/ 5 /
* | / | / | / | /9
* |/_______|/ |/___4___|/
* 4 5
*/
//! This class implements the Extended Marching Cubes algorithm.
/*!
* The implementation is enough generic: this class works only on one volume cell for each
* The implementation is enough generic: this class works only on one volume cell for each
* call to <CODE>ProcessCell</CODE>. Using the field value at the cell corners, it adds to the
* mesh the triangles set approximating the surface that cross that cell.
* mesh the triangles set approximating the surface that cross that cell.
* @param TRIMESH_TYPE (Template parameter) the mesh type that will be constructed
* @param WALKER_TYPE (Template parameter) the class that implements the traversal ordering of the volume.
**/
@ -82,7 +81,7 @@ namespace vcg
#else
typedef _W64 unsigned int size_t;
#endif
#endif
#endif
typedef typename vcg::tri::Allocator< TRIMESH_TYPE > AllocatorType;
typedef typename TRIMESH_TYPE::ScalarType ScalarType;
typedef typename TRIMESH_TYPE::VertexType VertexType;
@ -94,11 +93,11 @@ namespace vcg
typedef typename TRIMESH_TYPE::CoordType CoordType;
typedef typename TRIMESH_TYPE::CoordType* CoordPointer;
struct LightEdge
struct LightEdge
{
LightEdge(size_t _face, size_t _edge):face(_face), edge(_edge) { }
LightEdge(size_t _face, size_t _edge):face(_face), edge(_edge) { }
size_t face, edge;
};
};
/*!
* Constructor
@ -116,7 +115,7 @@ namespace vcg
};
/*!
* Execute the initialiazation.
* Execute the initialiazation.
* This method must be executed before the first call to <CODE>ApplyEMC</CODE>
*/
void Initialize()
@ -127,13 +126,13 @@ namespace vcg
};
/*!
*
*
* This method must be executed after the last call to <CODE>ApplyEMC</CODE>
*/
void Finalize()
{
assert(_initialized && !_finalized);
FlipEdges();
FlipEdges();
VertexIterator v_iter = _mesh->vert.begin();
VertexIterator v_end = _mesh->vert.end();
@ -210,7 +209,7 @@ namespace vcg
for (n=0; n<vertices_num; ++n)
vertices_list.push_back( vertices_idx[ indices[n] ] );
VertexPointer feature = FindFeature( vertices_list );
VertexPointer feature = FindFeature( vertices_list );
if (feature != NULL) // i.e. is a valid vertex
{
// feature -> create triangle fan around feature vertex
@ -288,24 +287,24 @@ namespace vcg
CoordType *points = new CoordType[ vertices_num ];
CoordType *normals = new CoordType[ vertices_num ];
Box3<ScalarType> bb;
Box3<ScalarType> bb;
for (i=0; i<vertices_num; i++)
{
points[i] = _mesh->vert[ vertices_idx[i] ].P();
normals[i].Import(_mesh->vert[ vertices_idx[i] ].N());
bb.Add(points[i]);
normals[i].Import(_mesh->vert[ vertices_idx[i] ].N());
bb.Add(points[i]);
}
// move barycenter of points into (0, 0, 0)
CoordType center((ScalarType) 0.0, (ScalarType) 0.0, (ScalarType) 0.0);
for (i=0; i<vertices_num; ++i)
for (i=0; i<vertices_num; ++i)
center += points[i];
center /= (ScalarType) vertices_num;
for (i=0; i<vertices_num; ++i)
for (i=0; i<vertices_num; ++i)
points[i] -= center;
// normal angle criterion
double c, minC, maxC;
double c, minC, maxC;
CoordType axis;
for (minC=1.0, i=0; i<vertices_num-1; ++i)
{
@ -320,7 +319,7 @@ namespace vcg
}
} //end for (minC=1.0, i=0; i<vertNumber; ++i)
if (minC > cos(_featureAngle))
if (minC > cos(_featureAngle))
return NULL; // invalid vertex
// ok, we have a feature: is it edge or corner, i.e. rank 2 or 3 ?
@ -331,62 +330,75 @@ namespace vcg
if (c < minC) minC = c;
if (c > maxC) maxC = c;
}
c = std::max< double >(fabs(minC), fabs(maxC));
c = std::max< double >(fabs(minC), fabs(maxC));
c = sqrt(1.0-c*c);
rank = (c > cos(_featureAngle) ? 2 : 3);
// setup linear system (find intersection of tangent planes)
vcg::ndim::Matrix<double> A((unsigned int) vertices_num, 3);
double *b = new double[ vertices_num ];
//--vcg::ndim::Matrix<double> A((unsigned int) vertices_num, 3);
Eigen::MatrixXd A(vertices_num,3);
//--double *b = new double[ vertices_num ];
Eigen::MatrixXd b(vertices_num,1);
for (i=0; i<vertices_num; ++i)
{
A[i][0] = normals[i][0];
A[i][1] = normals[i][1];
A[i][2] = normals[i][2];
b[i] = (points[i] * normals[i]);
//--A[i][0] = normals[i][0];
//--A[i][1] = normals[i][1];
//--A[i][2] = normals[i][2];
//--b[i] = (points[i] * normals[i]);
A(i,0) = normals[i][0];
A(i,0) = normals[i][1];
A(i,0) = normals[i][2];
b(i) = (points[i] * normals[i]);
}
// SVD of matrix A
vcg::ndim::Matrix<double> V(3, 3);
double *w = new double[vertices_num];
vcg::SingularValueDecomposition< typename vcg::ndim::Matrix<double> > (A, w, V, LeaveUnsorted, 100);
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A);
Eigen::MatrixXd sol(3,1);
sol=svd.solve(b);
// vcg::ndim::Matrix<double> V(3, 3);
// double *w = new double[vertices_num];
// vcg::SingularValueDecomposition< typename vcg::ndim::Matrix<double> > (A, w, V, LeaveUnsorted, 100);
// rank == 2 -> suppress smallest singular value
if (rank == 2)
{
double smin = DBL_MAX; // the max value, as defined in <float.h>
unsigned int sminid = 0;
unsigned int srank = std::min< unsigned int >(vertices_num, 3u);
// if (rank == 2)
// {
// double smin = DBL_MAX; // the max value, as defined in <float.h>
// unsigned int sminid = 0;
// unsigned int srank = std::min< unsigned int >(vertices_num, 3u);
for (i=0; i<srank; ++i)
{
if (w[i] < smin)
{
smin = w[i];
sminid = i;
}
}
w[sminid] = 0.0;
}
// SVD backsubstitution -> least squares, least norm solution x
double *x = new double[3];
vcg::SingularValueBacksubstitution< vcg::ndim::Matrix<double> >(A, w, V, x, b);
// for (i=0; i<srank; ++i)
// {
// if (w[i] < smin)
// {
// smin = w[i];
// sminid = i;
// }
// }
// w[sminid] = 0.0;
// }
//
// // SVD backsubstitution -> least squares, least norm solution x
// double *x = new double[3];
// vcg::SingularValueBacksubstitution< vcg::ndim::Matrix<double> >(A, w, V, x, b);
// transform x to world coords
CoordType point((ScalarType) x[0], (ScalarType) x[1], (ScalarType) x[2]);
//--CoordType point((ScalarType) x[0], (ScalarType) x[1], (ScalarType) x[2]);
CoordType point((ScalarType) sol[0], (ScalarType) sol[1], (ScalarType) sol[2]);
point += center;
// Safety check if the feature point found by svd is
// out of the bbox of the vertices perhaps it is better to put it back in the center...
if(!bb.IsIn(point)) point = center;
// insert the feature-point
// insert the feature-point
VertexPointer mean_point = &*AllocatorType::AddVertices( *_mesh, 1);
mean_point->SetUserBit(_featureFlag);
mean_point->P() = point;
mean_point->N().SetZero();
delete []x;
// delete []x;
delete []points;
delete []normals;
return mean_point;
@ -394,7 +406,7 @@ namespace vcg
/*!
* Postprocessing step performed during the finalization tha flip some of the mesh edges.
* The flipping criterion is quite simple: each edge is flipped if it will connect two
* The flipping criterion is quite simple: each edge is flipped if it will connect two
* feature samples after the flip.
*/
void FlipEdges()
@ -405,11 +417,11 @@ namespace vcg
FaceIterator f_end = _mesh->face.end();
for (i=0; f_iter!=f_end; f_iter++, i++)
{
if (f_iter->V(1) > f_iter->V(0)) edges.push_back( LightEdge(i,0) );
if (f_iter->V(2) > f_iter->V(1)) edges.push_back( LightEdge(i,1) );
if (f_iter->V(0) > f_iter->V(2)) edges.push_back( LightEdge(i,2) );
if (f_iter->V(1) > f_iter->V(0)) edges.push_back( LightEdge(i,0) );
if (f_iter->V(2) > f_iter->V(1)) edges.push_back( LightEdge(i,1) );
if (f_iter->V(0) > f_iter->V(2)) edges.push_back( LightEdge(i,2) );
}
vcg::tri::UpdateTopology< TRIMESH_TYPE >::FaceFace( *_mesh );
vcg::tri::UpdateTopology< TRIMESH_TYPE >::FaceFace( *_mesh );
// Select all the triangles that has a vertex shared with a non manifold edge.
int nonManifEdge = tri::Clean< TRIMESH_TYPE >::CountNonManifoldEdgeFF(*_mesh,true);
@ -431,7 +443,7 @@ namespace vcg
// | / |
// | / |
// v0------v3
if (!(f->IsS()) && vcg::face::CheckFlipEdge< FaceType >(*f, z))
if (!(f->IsS()) && vcg::face::CheckFlipEdge< FaceType >(*f, z))
{
VertexPointer v0, v1, v2, v3;
v0 = f->V(z);
@ -441,12 +453,12 @@ namespace vcg
w = f->FFi(z);
v3 = g->V2(w);
bool b0, b1, b2, b3;
b0 = !v0->IsUserBit(_featureFlag) ;
b1 = !v1->IsUserBit(_featureFlag) ;
b2 = v2->IsUserBit(_featureFlag) ;
b3 = v3->IsUserBit(_featureFlag) ;
b0 = !v0->IsUserBit(_featureFlag) ;
b1 = !v1->IsUserBit(_featureFlag) ;
b2 = v2->IsUserBit(_featureFlag) ;
b3 = v3->IsUserBit(_featureFlag) ;
if( b0 && b1 && b2 && b3)
vcg::face::FlipEdge< FaceType >(*f, z);
vcg::face::FlipEdge< FaceType >(*f, z);
} // end if (vcg::face::CheckFlipEdge< _Face >(*f, z))
} // end for( ; e_it!=e_end; e_it++)