Removed also from this file the deprecated dependencies from linalg. NOW EVERY PIECE OF THE VCG relies on eigen for linalgebra.
This commit is contained in:
parent
72d67f4a11
commit
12543d68a2
|
|
@ -30,8 +30,6 @@
|
|||
#include <assert.h>
|
||||
#include <vector>
|
||||
#include <vcg/math/base.h>
|
||||
#include <vcg/math/matrix.h>
|
||||
#include <vcg/math/lin_algebra.h>
|
||||
#include <vcg/simplex/face/topology.h>
|
||||
#include <vcg/complex/algorithms/update/normal.h>
|
||||
#include <vcg/complex/algorithms/update/topology.h>
|
||||
|
|
@ -39,6 +37,7 @@
|
|||
#include <vcg/complex/algorithms/clean.h>
|
||||
#include <vcg/space/point3.h>
|
||||
#include "emc_lookup_table.h"
|
||||
#include <eigenlib/Eigen/SVD>
|
||||
|
||||
namespace vcg
|
||||
{
|
||||
|
|
@ -336,45 +335,58 @@ namespace vcg
|
|||
rank = (c > cos(_featureAngle) ? 2 : 3);
|
||||
|
||||
// setup linear system (find intersection of tangent planes)
|
||||
vcg::ndim::Matrix<double> A((unsigned int) vertices_num, 3);
|
||||
double *b = new double[ vertices_num ];
|
||||
//--vcg::ndim::Matrix<double> A((unsigned int) vertices_num, 3);
|
||||
Eigen::MatrixXd A(vertices_num,3);
|
||||
|
||||
//--double *b = new double[ vertices_num ];
|
||||
Eigen::MatrixXd b(vertices_num,1);
|
||||
|
||||
for (i=0; i<vertices_num; ++i)
|
||||
{
|
||||
A[i][0] = normals[i][0];
|
||||
A[i][1] = normals[i][1];
|
||||
A[i][2] = normals[i][2];
|
||||
b[i] = (points[i] * normals[i]);
|
||||
//--A[i][0] = normals[i][0];
|
||||
//--A[i][1] = normals[i][1];
|
||||
//--A[i][2] = normals[i][2];
|
||||
//--b[i] = (points[i] * normals[i]);
|
||||
A(i,0) = normals[i][0];
|
||||
A(i,0) = normals[i][1];
|
||||
A(i,0) = normals[i][2];
|
||||
b(i) = (points[i] * normals[i]);
|
||||
}
|
||||
|
||||
// SVD of matrix A
|
||||
vcg::ndim::Matrix<double> V(3, 3);
|
||||
double *w = new double[vertices_num];
|
||||
vcg::SingularValueDecomposition< typename vcg::ndim::Matrix<double> > (A, w, V, LeaveUnsorted, 100);
|
||||
Eigen::JacobiSVD<Eigen::MatrixXd> svd(A);
|
||||
Eigen::MatrixXd sol(3,1);
|
||||
sol=svd.solve(b);
|
||||
|
||||
// vcg::ndim::Matrix<double> V(3, 3);
|
||||
// double *w = new double[vertices_num];
|
||||
// vcg::SingularValueDecomposition< typename vcg::ndim::Matrix<double> > (A, w, V, LeaveUnsorted, 100);
|
||||
|
||||
// rank == 2 -> suppress smallest singular value
|
||||
if (rank == 2)
|
||||
{
|
||||
double smin = DBL_MAX; // the max value, as defined in <float.h>
|
||||
unsigned int sminid = 0;
|
||||
unsigned int srank = std::min< unsigned int >(vertices_num, 3u);
|
||||
// if (rank == 2)
|
||||
// {
|
||||
// double smin = DBL_MAX; // the max value, as defined in <float.h>
|
||||
// unsigned int sminid = 0;
|
||||
// unsigned int srank = std::min< unsigned int >(vertices_num, 3u);
|
||||
|
||||
for (i=0; i<srank; ++i)
|
||||
{
|
||||
if (w[i] < smin)
|
||||
{
|
||||
smin = w[i];
|
||||
sminid = i;
|
||||
}
|
||||
}
|
||||
w[sminid] = 0.0;
|
||||
}
|
||||
|
||||
// SVD backsubstitution -> least squares, least norm solution x
|
||||
double *x = new double[3];
|
||||
vcg::SingularValueBacksubstitution< vcg::ndim::Matrix<double> >(A, w, V, x, b);
|
||||
// for (i=0; i<srank; ++i)
|
||||
// {
|
||||
// if (w[i] < smin)
|
||||
// {
|
||||
// smin = w[i];
|
||||
// sminid = i;
|
||||
// }
|
||||
// }
|
||||
// w[sminid] = 0.0;
|
||||
// }
|
||||
//
|
||||
// // SVD backsubstitution -> least squares, least norm solution x
|
||||
// double *x = new double[3];
|
||||
// vcg::SingularValueBacksubstitution< vcg::ndim::Matrix<double> >(A, w, V, x, b);
|
||||
|
||||
// transform x to world coords
|
||||
CoordType point((ScalarType) x[0], (ScalarType) x[1], (ScalarType) x[2]);
|
||||
//--CoordType point((ScalarType) x[0], (ScalarType) x[1], (ScalarType) x[2]);
|
||||
CoordType point((ScalarType) sol[0], (ScalarType) sol[1], (ScalarType) sol[2]);
|
||||
point += center;
|
||||
|
||||
// Safety check if the feature point found by svd is
|
||||
|
|
@ -386,7 +398,7 @@ namespace vcg
|
|||
mean_point->SetUserBit(_featureFlag);
|
||||
mean_point->P() = point;
|
||||
mean_point->N().SetZero();
|
||||
delete []x;
|
||||
// delete []x;
|
||||
delete []points;
|
||||
delete []normals;
|
||||
return mean_point;
|
||||
|
|
|
|||
Loading…
Reference in New Issue