Updated interface: all Matrix classes have now the same interface
This commit is contained in:
parent
f6597baedf
commit
13190dfe88
|
@ -24,6 +24,9 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.2 2004/07/13 06:48:26 cignoni
|
||||
removed uppercase references in include
|
||||
|
||||
Revision 1.1 2004/05/28 13:09:05 ganovelli
|
||||
created
|
||||
|
||||
|
@ -52,6 +55,7 @@ template<class S>
|
|||
class Matrix33
|
||||
{
|
||||
public:
|
||||
typedef S ScalarType;
|
||||
|
||||
/// Default constructor
|
||||
inline Matrix33() {}
|
||||
|
@ -69,6 +73,18 @@ public:
|
|||
for(int i=0;i<9;++i) a[i] = v[i];
|
||||
}
|
||||
|
||||
/// Number of columns
|
||||
inline unsigned int ColumnsNumber() const
|
||||
{
|
||||
return 3;
|
||||
};
|
||||
|
||||
/// Number of rows
|
||||
inline unsigned int RowsNumber() const
|
||||
{
|
||||
return 3;
|
||||
};
|
||||
|
||||
/// Assignment operator
|
||||
Matrix33 & operator = ( const Matrix33 & m )
|
||||
{
|
||||
|
@ -181,10 +197,10 @@ public:
|
|||
a[6] = row[0];a[7] = row[1];a[8] = row[2];
|
||||
}
|
||||
|
||||
void Zero() {
|
||||
void SetZero() {
|
||||
for(int i=0;i<9;++i) a[i] =0;
|
||||
}
|
||||
void Identity() {
|
||||
void SetIdentity() {
|
||||
for(int i=0;i<9;++i) a[i] =0;
|
||||
a[0]=a[4]=a[8]=1.0;
|
||||
}
|
||||
|
@ -208,7 +224,7 @@ public:
|
|||
a[8] = t[2]*t[2]*q +c;
|
||||
}
|
||||
/// Funzione per eseguire la trasposta della matrice
|
||||
Matrix33 & Trasp()
|
||||
Matrix33 & Transpose()
|
||||
{
|
||||
swap(a[1],a[3]);
|
||||
swap(a[2],a[6]);
|
||||
|
@ -217,7 +233,7 @@ public:
|
|||
}
|
||||
|
||||
/// Funzione per costruire una matrice diagonale dati i tre elem.
|
||||
Matrix33 & SetDiag(S *v)
|
||||
Matrix33 & SetDiagonal(S *v)
|
||||
{int i,j;
|
||||
for(i=0;i<3;i++)
|
||||
for(j=0;j<3;j++)
|
||||
|
@ -228,7 +244,7 @@ public:
|
|||
|
||||
|
||||
/// Assegna l'n-simo vettore colonna
|
||||
void SetCol(const int n, S* v){
|
||||
void SetColumn(const int n, S* v){
|
||||
assert( (n>=0) && (n<3) );
|
||||
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
|
||||
};
|
||||
|
@ -241,7 +257,7 @@ public:
|
|||
};
|
||||
|
||||
/// Assegna l'n-simo vettore colonna
|
||||
void SetCol(const int n, const Point3<S> v){
|
||||
void SetColumn(const int n, const Point3<S> v){
|
||||
assert( (n>=0) && (n<3) );
|
||||
a[n]=v[0]; a[n+3]=v[1]; a[n+6]=v[2];
|
||||
};
|
||||
|
@ -254,7 +270,7 @@ public:
|
|||
};
|
||||
|
||||
/// Restituisce l'n-simo vettore colonna
|
||||
Point3<S> GetCol(const int n) const {
|
||||
Point3<S> GetColumn(const int n) const {
|
||||
assert( (n>=0) && (n<3) );
|
||||
Point3<S> t;
|
||||
t[0]=a[n]; t[1]=a[n+3]; t[2]=a[n+6];
|
||||
|
@ -273,14 +289,14 @@ public:
|
|||
|
||||
|
||||
/// Funzione per il calcolo del determinante
|
||||
S Det() const
|
||||
S Determinant() const
|
||||
{
|
||||
return a[0]*(a[4]*a[8]-a[5]*a[7]) -
|
||||
a[1]*(a[3]*a[8]-a[5]*a[6]) +
|
||||
a[2]*(a[3]*a[7]-a[4]*a[6]) ;
|
||||
}
|
||||
|
||||
Matrix33 & invert()
|
||||
Matrix33 & Invert()
|
||||
{
|
||||
// Maple produsse:
|
||||
S t4 = a[0]*a[4];
|
||||
|
|
|
@ -24,6 +24,10 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.19 2004/10/07 14:23:57 ganovelli
|
||||
added function to take rows and comlumns. Added toMatrix and fromMatrix to comply
|
||||
RotationTYpe prototype in Similarity.h
|
||||
|
||||
Revision 1.18 2004/05/28 13:01:50 ganovelli
|
||||
changed scalar to ScalarType
|
||||
|
||||
|
@ -111,8 +115,20 @@ public:
|
|||
Matrix44(const Matrix44 &m);
|
||||
Matrix44(const T v[]);
|
||||
|
||||
T &element(const int row, const int col);
|
||||
T element(const int row, const int col) const;
|
||||
/// Number of columns
|
||||
inline unsigned int ColumnsNumber() const
|
||||
{
|
||||
return 4;
|
||||
};
|
||||
|
||||
/// Number of rows
|
||||
inline unsigned int RowsNumber() const
|
||||
{
|
||||
return 4;
|
||||
};
|
||||
|
||||
T &ElementAt(const int row, const int col);
|
||||
T ElementAt(const int row, const int col) const;
|
||||
//T &operator[](const int i);
|
||||
//const T &operator[](const int i) const;
|
||||
T *V();
|
||||
|
@ -122,7 +138,7 @@ public:
|
|||
const T *operator[](const int i) const;
|
||||
|
||||
// return a copy of the i-th column
|
||||
Point4<T> Column(const int& i)const{
|
||||
Point4<T> GetColumn(const int& i)const{
|
||||
assert(i >=0);
|
||||
assert(i<4);
|
||||
int first = i<<2;
|
||||
|
@ -130,7 +146,7 @@ public:
|
|||
}
|
||||
|
||||
// return the i-th row
|
||||
Point4<T> & Column4(const int& i)const{
|
||||
Point4<T> & GetColumn4(const int& i)const{
|
||||
assert(i >=0);
|
||||
assert(i<4);
|
||||
int first = i<<2;
|
||||
|
@ -144,7 +160,7 @@ public:
|
|||
return *((Point4<T>*)(&_a[i<<2]));
|
||||
}
|
||||
|
||||
Point3<T> Column3(const int& i)const{
|
||||
Point3<T> GetColumn3(const int& i)const{
|
||||
assert(i >=0);
|
||||
assert(i<4);
|
||||
int first = i <<2;
|
||||
|
@ -235,13 +251,13 @@ template <class T> Matrix44<T>::Matrix44(const T v[]) {
|
|||
memcpy((T *)_a, v, 16 * sizeof(T));
|
||||
}
|
||||
|
||||
template <class T> T &Matrix44<T>::element(const int row, const int col) {
|
||||
template <class T> T &Matrix44<T>::ElementAt(const int row, const int col) {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
}
|
||||
|
||||
template <class T> T Matrix44<T>::element(const int row, const int col) const {
|
||||
template <class T> T Matrix44<T>::ElementAt(const int row, const int col) const {
|
||||
assert(row >= 0 && row < 4);
|
||||
assert(col >= 0 && col < 4);
|
||||
return _a[(row<<2) + col];
|
||||
|
@ -287,8 +303,8 @@ template <class T> Matrix44<T> Matrix44<T>::operator*(const Matrix44 &m) const {
|
|||
for(int j = 0; j < 4; j++) {
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += element(i, k) * m.element(k, j);
|
||||
ret.element(i, j) = t;
|
||||
t += ElementAt(i, k) * m.ElementAt(k, j);
|
||||
ret.ElementAt(i, j) = t;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
@ -298,7 +314,7 @@ template <class T> Point4<T> Matrix44<T>::operator*(const Point4<T> &v) const {
|
|||
for(int i = 0; i < 4; i++){
|
||||
T t = 0.0;
|
||||
for(int k = 0; k < 4; k++)
|
||||
t += element(i,k) * v[k];
|
||||
t += ElementAt(i,k) * v[k];
|
||||
ret[i] = t;
|
||||
}
|
||||
return ret;
|
||||
|
@ -347,11 +363,11 @@ template <class T> void Matrix44<T>::operator*=( const Matrix44 & m ) {
|
|||
Point4<T> t(0, 0, 0, 0);
|
||||
for(int k = 0; k < 4; k++) {
|
||||
for(int j = 0; j < 4; j++) {
|
||||
t[k] += element(i, k) * m.element(k, j);
|
||||
t[k] += ElementAt(i, k) * m.ElementAt(k, j);
|
||||
}
|
||||
}
|
||||
for(int l = 0; l < 4; l++)
|
||||
element(i, l) = t[l];
|
||||
ElementAt(i, l) = t[l];
|
||||
} */
|
||||
}
|
||||
|
||||
|
@ -371,18 +387,18 @@ template <class T> void Matrix44<T>::SetIdentity() {
|
|||
|
||||
template <class T> void Matrix44<T>::SetDiagonal(const T k) {
|
||||
SetZero();
|
||||
element(0, 0) = k;
|
||||
element(1, 1) = k;
|
||||
element(2, 2) = k;
|
||||
element(3, 3) = 1;
|
||||
ElementAt(0, 0) = k;
|
||||
ElementAt(1, 1) = k;
|
||||
ElementAt(2, 2) = k;
|
||||
ElementAt(3, 3) = 1;
|
||||
}
|
||||
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetScale(const T sx, const T sy, const T sz) {
|
||||
SetZero();
|
||||
element(0, 0) = sx;
|
||||
element(1, 1) = sy;
|
||||
element(2, 2) = sz;
|
||||
element(3, 3) = 1;
|
||||
ElementAt(0, 0) = sx;
|
||||
ElementAt(1, 1) = sy;
|
||||
ElementAt(2, 2) = sz;
|
||||
ElementAt(3, 3) = 1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -392,9 +408,9 @@ template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const Point3<T> &t) {
|
|||
}
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetTranslate(const T sx, const T sy, const T sz) {
|
||||
SetIdentity();
|
||||
element(0, 3) = sx;
|
||||
element(1, 3) = sy;
|
||||
element(2, 3) = sz;
|
||||
ElementAt(0, 3) = sx;
|
||||
ElementAt(1, 3) = sy;
|
||||
ElementAt(2, 3) = sz;
|
||||
return *this;
|
||||
}
|
||||
template <class T> Matrix44<T> &Matrix44<T>::SetRotate(T AngleRad, const Point3<T> & axis) {
|
||||
|
@ -404,22 +420,22 @@ template <class T> Matrix44<T> &Matrix44<T>::SetRotate(T AngleRad, const Point3<
|
|||
T q = 1-c;
|
||||
Point3<T> t = axis;
|
||||
t.Normalize();
|
||||
element(0,0) = t[0]*t[0]*q + c;
|
||||
element(0,1) = t[0]*t[1]*q - t[2]*s;
|
||||
element(0,2) = t[0]*t[2]*q + t[1]*s;
|
||||
element(0,3) = 0;
|
||||
element(1,0) = t[1]*t[0]*q + t[2]*s;
|
||||
element(1,1) = t[1]*t[1]*q + c;
|
||||
element(1,2) = t[1]*t[2]*q - t[0]*s;
|
||||
element(1,3) = 0;
|
||||
element(2,0) = t[2]*t[0]*q -t[1]*s;
|
||||
element(2,1) = t[2]*t[1]*q +t[0]*s;
|
||||
element(2,2) = t[2]*t[2]*q +c;
|
||||
element(2,3) = 0;
|
||||
element(3,0) = 0;
|
||||
element(3,1) = 0;
|
||||
element(3,2) = 0;
|
||||
element(3,3) = 1;
|
||||
ElementAt(0,0) = t[0]*t[0]*q + c;
|
||||
ElementAt(0,1) = t[0]*t[1]*q - t[2]*s;
|
||||
ElementAt(0,2) = t[0]*t[2]*q + t[1]*s;
|
||||
ElementAt(0,3) = 0;
|
||||
ElementAt(1,0) = t[1]*t[0]*q + t[2]*s;
|
||||
ElementAt(1,1) = t[1]*t[1]*q + c;
|
||||
ElementAt(1,2) = t[1]*t[2]*q - t[0]*s;
|
||||
ElementAt(1,3) = 0;
|
||||
ElementAt(2,0) = t[2]*t[0]*q -t[1]*s;
|
||||
ElementAt(2,1) = t[2]*t[1]*q +t[0]*s;
|
||||
ElementAt(2,2) = t[2]*t[2]*q +c;
|
||||
ElementAt(2,3) = 0;
|
||||
ElementAt(3,0) = 0;
|
||||
ElementAt(3,1) = 0;
|
||||
ElementAt(3,2) = 0;
|
||||
ElementAt(3,3) = 1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
@ -433,10 +449,10 @@ template <class T> T Matrix44<T>::Determinant() const {
|
|||
template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p) {
|
||||
T w;
|
||||
Point3<T> s;
|
||||
s[0] = m.element(0, 0)*p[0] + m.element(0, 1)*p[1] + m.element(0, 2)*p[2] + m.element(0, 3);
|
||||
s[1] = m.element(1, 0)*p[0] + m.element(1, 1)*p[1] + m.element(1, 2)*p[2] + m.element(1, 3);
|
||||
s[2] = m.element(2, 0)*p[0] + m.element(2, 1)*p[1] + m.element(2, 2)*p[2] + m.element(2, 3);
|
||||
w = m.element(3, 0)*p[0] + m.element(3, 1)*p[1] + m.element(3, 2)*p[2] + m.element(3, 3);
|
||||
s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(0, 1)*p[1] + m.ElementAt(0, 2)*p[2] + m.ElementAt(0, 3);
|
||||
s[1] = m.ElementAt(1, 0)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(1, 2)*p[2] + m.ElementAt(1, 3);
|
||||
s[2] = m.ElementAt(2, 0)*p[0] + m.ElementAt(2, 1)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(2, 3);
|
||||
w = m.ElementAt(3, 0)*p[0] + m.ElementAt(3, 1)*p[1] + m.ElementAt(3, 2)*p[2] + m.ElementAt(3, 3);
|
||||
if(w!= 0) s /= w;
|
||||
return s;
|
||||
}
|
||||
|
@ -444,10 +460,10 @@ template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p)
|
|||
//template <class T> Point3<T> operator*(const Point3<T> &p, const Matrix44<T> &m) {
|
||||
// T w;
|
||||
// Point3<T> s;
|
||||
// s[0] = m.element(0, 0)*p[0] + m.element(1, 0)*p[1] + m.element(2, 0)*p[2] + m.element(3, 0);
|
||||
// s[1] = m.element(0, 1)*p[0] + m.element(1, 1)*p[1] + m.element(2, 1)*p[2] + m.element(3, 1);
|
||||
// s[2] = m.element(0, 2)*p[0] + m.element(1, 2)*p[1] + m.element(2, 2)*p[2] + m.element(3, 2);
|
||||
// w = m.element(0, 3)*p[0] + m.element(1, 3)*p[1] + m.element(2, 3)*p[2] + m.element(3, 3);
|
||||
// s[0] = m.ElementAt(0, 0)*p[0] + m.ElementAt(1, 0)*p[1] + m.ElementAt(2, 0)*p[2] + m.ElementAt(3, 0);
|
||||
// s[1] = m.ElementAt(0, 1)*p[0] + m.ElementAt(1, 1)*p[1] + m.ElementAt(2, 1)*p[2] + m.ElementAt(3, 1);
|
||||
// s[2] = m.ElementAt(0, 2)*p[0] + m.ElementAt(1, 2)*p[1] + m.ElementAt(2, 2)*p[2] + m.ElementAt(3, 2);
|
||||
// w = m.ElementAt(0, 3)*p[0] + m.ElementAt(1, 3)*p[1] + m.ElementAt(2, 3)*p[2] + m.ElementAt(3, 3);
|
||||
// if(w != 0) s /= w;
|
||||
// return s;
|
||||
//}
|
||||
|
@ -455,9 +471,9 @@ template <class T> Point3<T> operator*(const Matrix44<T> &m, const Point3<T> &p)
|
|||
template <class T> Matrix44<T> &Transpose(Matrix44<T> &m) {
|
||||
for(int i = 1; i < 4; i++)
|
||||
for(int j = 0; j < i; j++) {
|
||||
T t = m.element(i, j);
|
||||
m.element(i, j) = m.element(j, i);
|
||||
m.element(j, i) = t;
|
||||
T t = m.ElementAt(i, j);
|
||||
m.ElementAt(i, j) = m.ElementAt(j, i);
|
||||
m.ElementAt(j, i) = t;
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
@ -473,7 +489,7 @@ template <class T> Matrix44<T> &Invert(Matrix44<T> &m) {
|
|||
col[j] = 1.0;
|
||||
col = solve.Solve(col);
|
||||
for(int i = 0; i < 4; i++)
|
||||
m.element(i, j) = col[i];
|
||||
m.ElementAt(i, j) = col[i];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
|
@ -486,7 +502,7 @@ template <class T> Matrix44<T> Inverse(const Matrix44<T> &m) {
|
|||
col[j] = 1.0;
|
||||
col = solve.Solve(col);
|
||||
for(int i = 0; i < 4; i++)
|
||||
res.element(i, j) = col[i];
|
||||
res.ElementAt(i, j) = col[i];
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
@ -507,7 +523,7 @@ template <class T> LinearSolve<T>::LinearSolve(const Matrix44<T> &m): Matrix44<T
|
|||
template <class T> T LinearSolve<T>::Determinant() const {
|
||||
T det = d;
|
||||
for(int j = 0; j < 4; j++)
|
||||
det *= element(j, j);
|
||||
det *= ElementAt(j, j);
|
||||
return det;
|
||||
}
|
||||
|
||||
|
@ -528,7 +544,7 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
index[i] = i; // Initialize row index list
|
||||
T scalemax = (T)0.0;
|
||||
for(int j = 0; j < 4; j++)
|
||||
scalemax = (scalemax > math::Abs(A.element(i,j))) ? scalemax : math::Abs(A.element(i,j));
|
||||
scalemax = (scalemax > math::Abs(A.ElementAt(i,j))) ? scalemax : math::Abs(A.ElementAt(i,j));
|
||||
scale[i] = scalemax;
|
||||
}
|
||||
|
||||
|
@ -539,7 +555,7 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
T ratiomax = (T)0.0;
|
||||
int jPivot = k;
|
||||
for(int i = k; i < 4; i++ ) {
|
||||
T ratio = math::Abs(A.element(index[i], k))/scale[index[i]];
|
||||
T ratio = math::Abs(A.ElementAt(index[i], k))/scale[index[i]];
|
||||
if(ratio > ratiomax) {
|
||||
jPivot = i;
|
||||
ratiomax = ratio;
|
||||
|
@ -555,12 +571,12 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
}
|
||||
// Perform forward elimination
|
||||
for(int i=k+1; i < 4; i++ ) {
|
||||
T coeff = A.element(index[i],k)/A.element(indexJ,k);
|
||||
T coeff = A.ElementAt(index[i],k)/A.ElementAt(indexJ,k);
|
||||
for(int j=k+1; j < 4; j++ )
|
||||
A.element(index[i],j) -= coeff*A.element(indexJ,j);
|
||||
A.element(index[i],k) = coeff;
|
||||
A.ElementAt(index[i],j) -= coeff*A.ElementAt(indexJ,j);
|
||||
A.ElementAt(index[i],k) = coeff;
|
||||
//for( j=1; j< 4; j++ )
|
||||
// element(index[i],j) -= A.element(index[i], k)*element(indexJ, j);
|
||||
// ElementAt(index[i],j) -= A.ElementAt(index[i], k)*ElementAt(indexJ, j);
|
||||
}
|
||||
}
|
||||
for(int i = 0; i < 16; i++)
|
||||
|
@ -578,7 +594,7 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
for(i = 0; i < 4; i++) {
|
||||
T largest = 0.0;
|
||||
for(j = 0; j < 4; j++) {
|
||||
T t = math::Abs(element(i, j));
|
||||
T t = math::Abs(ElementAt(i, j));
|
||||
if (t > largest) largest = t;
|
||||
}
|
||||
|
||||
|
@ -591,17 +607,17 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
int imax;
|
||||
for(j = 0; j < 4; j++) {
|
||||
for(i = 0; i < j; i++) {
|
||||
T sum = element(i,j);
|
||||
T sum = ElementAt(i,j);
|
||||
for(int k = 0; k < i; k++)
|
||||
sum -= element(i,k)*element(k,j);
|
||||
element(i,j) = sum;
|
||||
sum -= ElementAt(i,k)*ElementAt(k,j);
|
||||
ElementAt(i,j) = sum;
|
||||
}
|
||||
T largest = 0.0;
|
||||
for(i = j; i < 4; i++) {
|
||||
T sum = element(i,j);
|
||||
T sum = ElementAt(i,j);
|
||||
for(k = 0; k < j; k++)
|
||||
sum -= element(i,k)*element(k,j);
|
||||
element(i,j) = sum;
|
||||
sum -= ElementAt(i,k)*ElementAt(k,j);
|
||||
ElementAt(i,j) = sum;
|
||||
T t = scaling[i] * math::Abs(sum);
|
||||
if(t >= largest) {
|
||||
largest = t;
|
||||
|
@ -610,19 +626,19 @@ template <class T> bool LinearSolve<T>::Decompose() {
|
|||
}
|
||||
if (j != imax) {
|
||||
for (int k = 0; k < 4; k++) {
|
||||
T dum = element(imax,k);
|
||||
element(imax,k) = element(j,k);
|
||||
element(j,k) = dum;
|
||||
T dum = ElementAt(imax,k);
|
||||
ElementAt(imax,k) = ElementAt(j,k);
|
||||
ElementAt(j,k) = dum;
|
||||
}
|
||||
d = -(d);
|
||||
scaling[imax] = scaling[j];
|
||||
}
|
||||
index[j]=imax;
|
||||
if (element(j,j) == 0.0) element(j,j) = (T)TINY;
|
||||
if (ElementAt(j,j) == 0.0) ElementAt(j,j) = (T)TINY;
|
||||
if (j != 3) {
|
||||
T dum = (T)1.0 / (element(j,j));
|
||||
T dum = (T)1.0 / (ElementAt(j,j));
|
||||
for (i = j+1; i < 4; i++)
|
||||
element(i,j) *= dum;
|
||||
ElementAt(i,j) *= dum;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
|
@ -638,7 +654,7 @@ template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
|
|||
x[ip] = x[i];
|
||||
if(first!= -1)
|
||||
for(int j = first; j <= i-1; j++)
|
||||
sum -= element(i,j) * x[j];
|
||||
sum -= ElementAt(i,j) * x[j];
|
||||
else
|
||||
if(sum) first = i;
|
||||
x[i] = sum;
|
||||
|
@ -646,8 +662,8 @@ template <class T> Point4<T> LinearSolve<T>::Solve(const Point4<T> &b) {
|
|||
for (int i = 3; i >= 0; i--) {
|
||||
T sum = x[i];
|
||||
for (int j = i+1; j < 4; j++)
|
||||
sum -= element(i, j) * x[j];
|
||||
x[i] = sum / element(i, i);
|
||||
sum -= ElementAt(i, j) * x[j];
|
||||
x[i] = sum / ElementAt(i, i);
|
||||
}
|
||||
return x;
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue