Added SuperEllipsoid and SuperToroid functions
Thanks to Antonio Nicoletti
This commit is contained in:
parent
8ee0aafb6e
commit
13951475e9
|
@ -600,7 +600,88 @@ void Torus(MeshType &m, float hRingRadius, float vRingRadius, int hRingDiv=24, i
|
|||
|
||||
}
|
||||
|
||||
/**
|
||||
* SuperToroid
|
||||
*
|
||||
* Generate a a supertoroid, e.g. a member of a family of doughnut-like surfaces
|
||||
* (technically, a topological torus) whose shape is defined by mathematical formulas
|
||||
* similar to those that define the superquadrics.
|
||||
*/
|
||||
template <class MeshType>
|
||||
void SuperToroid(MeshType &m, float hRingRadius, float vRingRadius, float s, float t, int hRingDiv=24, int vRingDiv=12 )
|
||||
{
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
m.Clear();
|
||||
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
|
||||
ScalarType angleStepH = (2.0f*M_PI)/hRingDiv;
|
||||
auto fnC=[](float a, float b){
|
||||
return math::Sgn(cos(a))*pow(abs(cos(a)),b);
|
||||
};
|
||||
auto fnS=[](float a, float b){
|
||||
return math::Sgn(sin(a))*pow(abs(sin(a)),b);
|
||||
};
|
||||
float u;
|
||||
float v;
|
||||
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
|
||||
for(int i=0;i<hRingDiv+1;++i)
|
||||
{
|
||||
u=float(i%hRingDiv)*angleStepH;
|
||||
for(int j=0;j<vRingDiv+1;++j)
|
||||
{
|
||||
CoordType p;
|
||||
v=float(j%vRingDiv)*angleStepV;
|
||||
p[0]= (hRingRadius+fnC(u,s))*fnC(v,t);
|
||||
p[1]= (vRingRadius+fnC(u,s))*fnS(v,t);
|
||||
p[2] = fnS(u,s);
|
||||
m.vert[i*(vRingDiv+1)+j].P() = p;
|
||||
}
|
||||
}
|
||||
FaceGrid(m,vRingDiv+1,hRingDiv+1);
|
||||
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
|
||||
tri::Allocator<MeshType>::CompactEveryVector(m);
|
||||
|
||||
}
|
||||
/**
|
||||
* Generate a SuperEllipsoid eg a solid whose horizontal sections are super-ellipses (Lamé curves)
|
||||
* with the same exponent r, and whose vertical sections through the center are super-ellipses with
|
||||
* the same exponent t.
|
||||
*/
|
||||
template <class MeshType>
|
||||
void SuperEllipsoid(MeshType &m, float r, float s, float t, int hRingDiv=24, int vRingDiv=12 )
|
||||
{
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
m.Clear();
|
||||
ScalarType angleStepV = (2.0f*M_PI)/vRingDiv;
|
||||
ScalarType angleStepH = (2.0f*M_PI)/hRingDiv;
|
||||
auto fnC=[](float a, float b){
|
||||
return math::Sgn(cos(a))*pow(abs(cos(a)),b);
|
||||
};
|
||||
auto fnS=[](float a, float b){
|
||||
return math::Sgn(sin(a))*pow(abs(sin(a)),b);
|
||||
};
|
||||
float u;
|
||||
float v;
|
||||
Allocator<MeshType>::AddVertices(m,(vRingDiv+1)*(hRingDiv+1));
|
||||
for(int i=0;i<hRingDiv+1;++i)
|
||||
{
|
||||
u=float(i%hRingDiv)*angleStepH;
|
||||
for(int j=0;j<vRingDiv+1;++j)
|
||||
{
|
||||
CoordType p;
|
||||
v=float(j%vRingDiv)*angleStepV;
|
||||
p[0]= fnC(v,2/r)*fnC(u,2/r);
|
||||
p[1]= fnC(v,2/s)*fnS(u,2/s);
|
||||
p[2] = fnS(v,2/t);
|
||||
m.vert[i*(vRingDiv+1)+j].P() = p;
|
||||
}
|
||||
}
|
||||
FaceGrid(m,vRingDiv+1,hRingDiv+1);
|
||||
tri::Clean<MeshType>::RemoveDuplicateVertex(m);
|
||||
tri::Allocator<MeshType>::CompactEveryVector(m);
|
||||
|
||||
}
|
||||
// this function build a mesh starting from a vector of generic coords (objects having a triple of float at their beginning)
|
||||
// and a vector of faces (objects having a triple of ints at theri beginning).
|
||||
template <class MeshType,class V, class F >
|
||||
|
|
Loading…
Reference in New Issue