Significant improvment in correctness and robustness of Loop subdivision surfaces (BIG thanks to Simon Boye' for submitting the patches)
This commit is contained in:
parent
0dbf1bf305
commit
149ae8ec5b
|
@ -20,11 +20,18 @@
|
||||||
* for more details. *
|
* for more details. *
|
||||||
* *
|
* *
|
||||||
****************************************************************************/
|
****************************************************************************/
|
||||||
|
/*! \file refine_loop.h
|
||||||
|
*
|
||||||
|
* \brief This file contain code for Loop's subdivision scheme for triangular
|
||||||
|
* mesh and some similar method.
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
#ifndef __VCGLIB_REFINE_LOOP
|
#ifndef __VCGLIB_REFINE_LOOP
|
||||||
#define __VCGLIB_REFINE_LOOP
|
#define __VCGLIB_REFINE_LOOP
|
||||||
|
|
||||||
#include <math.h>
|
#include <cmath>
|
||||||
|
#include <vcg/space/point3.h>
|
||||||
#include <vcg/complex/trimesh/base.h>
|
#include <vcg/complex/trimesh/base.h>
|
||||||
#include <vcg/complex/trimesh/refine.h>
|
#include <vcg/complex/trimesh/refine.h>
|
||||||
#include <vcg/space/color4.h>
|
#include <vcg/space/color4.h>
|
||||||
|
@ -53,37 +60,344 @@ d5------d1------d2 -> d5--e5--d1--e2--d2 l--M--r
|
||||||
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
// Nuovi punti (e.g. midpoint), ossia odd vertices
|
/*!
|
||||||
//
|
* \brief Weight class for classical Loop's scheme.
|
||||||
template<class MESH_TYPE>
|
*
|
||||||
struct OddPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
* See Zorin, D. & Schröeder, P.: Subdivision for modeling and animation. Proc. ACM SIGGRAPH [Courses], 2000
|
||||||
{
|
*/
|
||||||
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
template<class SCALAR_TYPE>
|
||||||
|
struct LoopWeight {
|
||||||
|
inline SCALAR_TYPE beta(int k) {
|
||||||
|
return (k>3)?(5.0/8.0 - std::pow((3.0/8.0 + std::cos(2.0*M_PI/SCALAR_TYPE(k))/4.0),2))/SCALAR_TYPE(k):3.0/16.0;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline SCALAR_TYPE incidentRegular(int) {
|
||||||
|
return 3.0/8.0;
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE incidentIrregular(int) {
|
||||||
|
return 3.0/8.0;
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE opposite(int) {
|
||||||
|
return 1.0/8.0;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* \brief Modified Loop's weight to optimise continuity.
|
||||||
|
*
|
||||||
|
* See Barthe, L. & Kobbelt, L.: Subdivision scheme tuning around extraordinary vertices. Computer Aided Geometric Design, 2004, 21, 561-583
|
||||||
|
*/
|
||||||
|
template<class SCALAR_TYPE>
|
||||||
|
struct RegularLoopWeight {
|
||||||
|
inline SCALAR_TYPE beta(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.32517,
|
||||||
|
.49954,
|
||||||
|
.59549,
|
||||||
|
.625,
|
||||||
|
.63873,
|
||||||
|
.64643,
|
||||||
|
.65127,
|
||||||
|
.67358,
|
||||||
|
.68678,
|
||||||
|
.69908
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline SCALAR_TYPE incidentRegular(int k) {
|
||||||
|
return 1.0 - incidentIrregular(k) - opposite(k)*2;
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE incidentIrregular(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.15658,
|
||||||
|
.25029,
|
||||||
|
.34547,
|
||||||
|
.375,
|
||||||
|
.38877,
|
||||||
|
.39644,
|
||||||
|
.40132,
|
||||||
|
.42198,
|
||||||
|
.43423,
|
||||||
|
.44579
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE opposite(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.14427,
|
||||||
|
.12524,
|
||||||
|
.11182,
|
||||||
|
.125,
|
||||||
|
.14771,
|
||||||
|
.1768,
|
||||||
|
.21092,
|
||||||
|
.20354,
|
||||||
|
.20505,
|
||||||
|
.19828
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class SCALAR_TYPE>
|
||||||
|
struct ContinuityLoopWeight {
|
||||||
|
inline SCALAR_TYPE beta(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.32517,
|
||||||
|
.50033,
|
||||||
|
.59464,
|
||||||
|
.625,
|
||||||
|
.63903,
|
||||||
|
.67821,
|
||||||
|
.6866,
|
||||||
|
.69248,
|
||||||
|
.69678,
|
||||||
|
.70014
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?(1.0-bkPolar[k-3])/k:LoopWeight<SCALAR_TYPE>().beta(k);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline SCALAR_TYPE incidentRegular(int k) {
|
||||||
|
return 1.0 - incidentIrregular(k) - opposite(k)*2;
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE incidentIrregular(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.15658,
|
||||||
|
.26721,
|
||||||
|
.33539,
|
||||||
|
.375,
|
||||||
|
.36909,
|
||||||
|
.25579,
|
||||||
|
.2521,
|
||||||
|
.24926,
|
||||||
|
.24706,
|
||||||
|
.2452
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().incidentIrregular(k);
|
||||||
|
}
|
||||||
|
inline SCALAR_TYPE opposite(int k) {
|
||||||
|
static SCALAR_TYPE bkPolar[] = {
|
||||||
|
.14427,
|
||||||
|
.12495,
|
||||||
|
.11252,
|
||||||
|
.125,
|
||||||
|
.14673,
|
||||||
|
.16074,
|
||||||
|
.18939,
|
||||||
|
.2222,
|
||||||
|
.25894,
|
||||||
|
.29934
|
||||||
|
};
|
||||||
|
|
||||||
|
return (k<=12)?bkPolar[k-3]:LoopWeight<SCALAR_TYPE>().opposite(k);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
// Centroid and LS3Projection classes may be pettre placed in an other file. (which one ?)
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* \brief Allow to compute classical Loop subdivision surface with the same code than LS3.
|
||||||
|
*/
|
||||||
|
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
|
||||||
|
struct Centroid {
|
||||||
|
typedef typename MESH_TYPE::ScalarType Scalar;
|
||||||
|
typedef typename MESH_TYPE::CoordType Coord;
|
||||||
|
typedef LSCALAR_TYPE LScalar;
|
||||||
|
typedef vcg::Point3<LScalar> LVector;
|
||||||
|
|
||||||
|
LVector sumP;
|
||||||
|
LScalar sumW;
|
||||||
|
|
||||||
|
Centroid() { reset(); }
|
||||||
|
inline void reset() {
|
||||||
|
sumP.SetZero();
|
||||||
|
sumW = 0.;
|
||||||
|
}
|
||||||
|
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
|
||||||
|
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
|
||||||
|
LVector n(v.cN().X(), v.cN().Y(), v.cN().Z());
|
||||||
|
|
||||||
|
sumP += p * w;
|
||||||
|
sumW += w;
|
||||||
|
}
|
||||||
|
inline void project(typename MESH_TYPE::VertexType &v) const {
|
||||||
|
LVector position = sumP / sumW;
|
||||||
|
v.P() = Coord(position.X(), position.Y(), position.Z());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
/*! Implementation of the APSS projection for the LS3 scheme.
|
||||||
|
*
|
||||||
|
* See Gael Guennebaud and Marcel Germann and Markus Gross
|
||||||
|
* Dynamic sampling and rendering of algebraic point set surfaces.
|
||||||
|
* Computer Graphics Forum (Proceedings of Eurographics 2008), 2008, 27, 653-662
|
||||||
|
* and Simon Boye and Gael Guennebaud and Christophe Schlick
|
||||||
|
* Least squares subdivision surfaces
|
||||||
|
* Computer Graphics Forum, 2010
|
||||||
|
*/
|
||||||
|
template<class MESH_TYPE, class LSCALAR_TYPE = typename MESH_TYPE::ScalarType>
|
||||||
|
struct LS3Projection {
|
||||||
|
typedef typename MESH_TYPE::ScalarType Scalar;
|
||||||
|
typedef typename MESH_TYPE::CoordType Coord;
|
||||||
|
typedef LSCALAR_TYPE LScalar;
|
||||||
|
typedef vcg::Point3<LScalar> LVector;
|
||||||
|
|
||||||
|
Scalar beta;
|
||||||
|
|
||||||
|
LVector sumP;
|
||||||
|
LVector sumN;
|
||||||
|
LScalar sumDotPN;
|
||||||
|
LScalar sumDotPP;
|
||||||
|
LScalar sumW;
|
||||||
|
|
||||||
|
inline LS3Projection(Scalar beta = 1.0) : beta(beta) { reset(); }
|
||||||
|
inline void reset() {
|
||||||
|
sumP.SetZero();
|
||||||
|
sumN.SetZero();
|
||||||
|
sumDotPN = 0.;
|
||||||
|
sumDotPP = 0.;
|
||||||
|
sumW = 0.;
|
||||||
|
}
|
||||||
|
inline void addVertex(const typename MESH_TYPE::VertexType &v, LScalar w) {
|
||||||
|
LVector p(v.cP().X(), v.cP().Y(), v.cP().Z());
|
||||||
|
LVector n(v.cN().X(), v.cN().Y(), v.cN().Z());
|
||||||
|
|
||||||
|
sumP += p * w;
|
||||||
|
sumN += n * w;
|
||||||
|
sumDotPN += w * n.dot(p);
|
||||||
|
sumDotPP += w * vcg::SquaredNorm(p);
|
||||||
|
sumW += w;
|
||||||
|
}
|
||||||
|
void project(typename MESH_TYPE::VertexType &v) const {
|
||||||
|
LScalar invSumW = Scalar(1)/sumW;
|
||||||
|
LScalar aux4 = beta * LScalar(0.5) *
|
||||||
|
(sumDotPN - invSumW*sumP.dot(sumN))
|
||||||
|
/(sumDotPP - invSumW*vcg::SquaredNorm(sumP));
|
||||||
|
LVector uLinear = (sumN-sumP*(Scalar(2)*aux4))*invSumW;
|
||||||
|
LScalar uConstant = -invSumW*(uLinear.dot(sumP) + sumDotPP*aux4);
|
||||||
|
LScalar uQuad = aux4;
|
||||||
|
LVector orig = sumP*invSumW;
|
||||||
|
|
||||||
|
// finalize
|
||||||
|
LVector position;
|
||||||
|
LVector normal;
|
||||||
|
if (fabs(uQuad)>1e-7)
|
||||||
|
{
|
||||||
|
LScalar b = 1./uQuad;
|
||||||
|
LVector center = uLinear*(-0.5*b);
|
||||||
|
LScalar radius = sqrt( vcg::SquaredNorm(center) - b*uConstant );
|
||||||
|
|
||||||
|
normal = orig - center;
|
||||||
|
normal.Normalize();
|
||||||
|
position = center + normal * radius;
|
||||||
|
|
||||||
|
normal = uLinear + position * (LScalar(2) * uQuad);
|
||||||
|
normal.Normalize();
|
||||||
|
}
|
||||||
|
else if (uQuad==0.)
|
||||||
|
{
|
||||||
|
LScalar s = LScalar(1)/vcg::Norm(uLinear);
|
||||||
|
assert(!vcg::math::IsNAN(s) && "normal should not have zero len!");
|
||||||
|
uLinear *= s;
|
||||||
|
uConstant *= s;
|
||||||
|
|
||||||
|
normal = uLinear;
|
||||||
|
position = orig - uLinear * (orig.dot(uLinear) + uConstant);
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
// normalize the gradient
|
||||||
|
LScalar f = 1./sqrt(vcg::SquaredNorm(uLinear) - Scalar(4)*uConstant*uQuad);
|
||||||
|
uConstant *= f;
|
||||||
|
uLinear *= f;
|
||||||
|
uQuad *= f;
|
||||||
|
|
||||||
|
// Newton iterations
|
||||||
|
LVector grad;
|
||||||
|
LVector dir = uLinear+orig*(2.*uQuad);
|
||||||
|
LScalar ilg = 1./vcg::Norm(dir);
|
||||||
|
dir *= ilg;
|
||||||
|
LScalar ad = uConstant + uLinear.dot(orig) + uQuad * vcg::SquaredNorm(orig);
|
||||||
|
LScalar delta = -ad*std::min<Scalar>(ilg,1.);
|
||||||
|
LVector p = orig + dir*delta;
|
||||||
|
for (int i=0 ; i<2 ; ++i)
|
||||||
|
{
|
||||||
|
grad = uLinear+p*(2.*uQuad);
|
||||||
|
ilg = 1./vcg::Norm(grad);
|
||||||
|
delta = -(uConstant + uLinear.dot(p) + uQuad * vcg::SquaredNorm(p))*std::min<Scalar>(ilg,1.);
|
||||||
|
p += dir*delta;
|
||||||
|
}
|
||||||
|
position = p;
|
||||||
|
|
||||||
|
normal = uLinear + position * (Scalar(2) * uQuad);
|
||||||
|
normal.Normalize();
|
||||||
|
}
|
||||||
|
|
||||||
|
v.P() = Coord(position.X(), position.Y(), position.Z());
|
||||||
|
v.N() = Coord(normal.X(), normal.Y(), normal.Z());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
|
||||||
|
struct OddPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
|
||||||
|
{
|
||||||
|
typedef METHOD_TYPE Projection;
|
||||||
|
typedef WEIGHT_TYPE Weight;
|
||||||
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
||||||
|
|
||||||
|
Projection proj;
|
||||||
|
Weight weight;
|
||||||
|
ValenceAttr *valence;
|
||||||
|
|
||||||
|
inline OddPointLoopGeneric(Projection proj = Projection(), Weight weight = Weight()) :
|
||||||
|
proj(proj), weight(weight), valence(0) {}
|
||||||
|
|
||||||
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
||||||
|
proj.reset();
|
||||||
|
|
||||||
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
||||||
typename MESH_TYPE::CoordType *l,*r,*u,*d;
|
typename MESH_TYPE::VertexType *l,*r,*u,*d;
|
||||||
l = &he.v->P();
|
l = he.v;
|
||||||
he.FlipV();
|
he.FlipV();
|
||||||
r = &he.v->P();
|
r = he.v;
|
||||||
|
|
||||||
if( MESH_TYPE::HasPerVertexColor())
|
if( MESH_TYPE::HasPerVertexColor())
|
||||||
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
|
nv.C().lerp(ep.f->V(ep.z)->C(),ep.f->V1(ep.z)->C(),.5f);
|
||||||
|
|
||||||
if (he.IsBorder()) {
|
if (he.IsBorder()) {
|
||||||
nv.P() = ((*l)*0.5 + (*r)*0.5);
|
proj.addVertex(*l, 0.5);
|
||||||
|
proj.addVertex(*r, 0.5);
|
||||||
|
proj.project(nv);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
he.FlipE(); he.FlipV();
|
he.FlipE(); he.FlipV();
|
||||||
u = &he.v->P();
|
u = he.v;
|
||||||
he.FlipV(); he.FlipE();
|
he.FlipV(); he.FlipE();
|
||||||
assert(&he.v->P()== r); // back to r
|
assert(he.v == r); // back to r
|
||||||
he.FlipF(); he.FlipE(); he.FlipV();
|
he.FlipF(); he.FlipE(); he.FlipV();
|
||||||
d = &he.v->P();
|
d = he.v;
|
||||||
|
|
||||||
// abbiamo i punti l,r,u e d per ottenere M in maniera pesata
|
if(valence && ((*valence)[l]==6 || (*valence)[r]==6)) {
|
||||||
|
int extra = ((*valence)[l]==6)?(*valence)[r]:(*valence)[l];
|
||||||
nv.P()=((*l)*(3.0/8.0)+(*r)*(3.0/8.0)+(*d)*(1.0/8.0)+(*u)*(1.0/8.0));
|
proj.addVertex(*l, ((*valence)[l]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
|
||||||
|
proj.addVertex(*r, ((*valence)[r]==6)?weight.incidentRegular(extra):weight.incidentIrregular(extra));
|
||||||
|
proj.addVertex(*u, weight.opposite(extra));
|
||||||
|
proj.addVertex(*d, weight.opposite(extra));
|
||||||
|
}
|
||||||
|
// unhandled case that append only at first subdivision step: use Loop's weights
|
||||||
|
else {
|
||||||
|
proj.addVertex(*l, 3.0/8.0);
|
||||||
|
proj.addVertex(*r, 3.0/8.0);
|
||||||
|
proj.addVertex(*u, 1.0/8.0);
|
||||||
|
proj.addVertex(*d, 1.0/8.0);
|
||||||
|
}
|
||||||
|
proj.project(nv);
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -102,58 +416,78 @@ struct OddPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::F
|
||||||
tmp.t()=(t0.t()+t1.t())/2.0;
|
tmp.t()=(t0.t()+t1.t())/2.0;
|
||||||
return tmp;
|
return tmp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline void setValenceAttr(ValenceAttr *valence) {
|
||||||
|
this->valence = valence;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
// vecchi punti, ossia even vertices
|
template<class MESH_TYPE, class METHOD_TYPE=Centroid<MESH_TYPE>, class WEIGHT_TYPE=LoopWeight<typename MESH_TYPE::ScalarType> >
|
||||||
template<class MESH_TYPE>
|
struct EvenPointLoopGeneric : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::VertexType>
|
||||||
struct EvenPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::FaceType> , typename MESH_TYPE::CoordType>
|
|
||||||
{
|
{
|
||||||
|
typedef METHOD_TYPE Projection;
|
||||||
|
typedef WEIGHT_TYPE Weight;
|
||||||
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
||||||
|
|
||||||
void operator()(typename MESH_TYPE::CoordType &nP, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
Projection proj;
|
||||||
|
Weight weight;
|
||||||
|
ValenceAttr *valence;
|
||||||
|
|
||||||
|
inline EvenPointLoopGeneric(Projection proj = Projection(), Weight weight = Weight()) :
|
||||||
|
proj(proj), weight(weight), valence(0) {}
|
||||||
|
|
||||||
|
void operator()(typename MESH_TYPE::VertexType &nv, face::Pos<typename MESH_TYPE::FaceType> ep) {
|
||||||
|
proj.reset();
|
||||||
|
|
||||||
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
face::Pos<typename MESH_TYPE::FaceType> he(ep.f,ep.z,ep.f->V(ep.z));
|
||||||
typename MESH_TYPE::CoordType *r, *l, *curr;
|
typename MESH_TYPE::VertexType *r, *l, *curr;
|
||||||
curr = &he.v->P();
|
curr = he.v;
|
||||||
|
face::Pos<typename MESH_TYPE::FaceType> heStart = he;
|
||||||
|
|
||||||
if (he.IsBorder()) {//half edge di bordo
|
// compute valence of this vertex or find a border
|
||||||
he.FlipV();
|
int k = 0;
|
||||||
r = &he.v->P();
|
do {
|
||||||
he.FlipV();
|
he.NextE();
|
||||||
assert(&he.v->P()== curr); // back to curr
|
k++;
|
||||||
he.NextB();
|
} while(!he.IsBorder() && he != heStart);
|
||||||
if (&he.v->P() == curr)
|
|
||||||
he.FlipV();
|
|
||||||
l = &he.v->P();
|
|
||||||
nP = ( *(curr) * (3.0)/(4.0) + (*l)*(1.0/8.0) + (*r)*(1.0/8.0));
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
// compute valence of this vertex
|
|
||||||
int k = 0;
|
|
||||||
face::Pos<typename MESH_TYPE::FaceType> heStart = he;
|
|
||||||
std::vector<typename MESH_TYPE::CoordType> otherVertVec;
|
|
||||||
if(he.v->IsB())return ;
|
|
||||||
do {
|
|
||||||
he.FlipV();
|
|
||||||
otherVertVec.push_back(he.v->P());
|
|
||||||
he.FlipV();
|
|
||||||
he.FlipE(); he.FlipF();
|
|
||||||
k++;
|
|
||||||
} while(he.f!=heStart.f || he.z!=heStart.z || he.v!=heStart.v);
|
|
||||||
// while(he != heStart);
|
|
||||||
|
|
||||||
float beta = 3.0 / 16.0;
|
|
||||||
if(k > 3 )
|
|
||||||
beta = (1.0/(float)k) * (5.0/8.0 - pow((3.0/8.0 + 0.25 * cos(2*M_PI/k)),2));
|
|
||||||
|
|
||||||
*curr = *curr * (1 - k * beta) ;
|
|
||||||
typename std::vector<typename MESH_TYPE::CoordType>::iterator iter;
|
|
||||||
for (iter = otherVertVec.begin();
|
|
||||||
iter != otherVertVec.end();
|
|
||||||
++iter) {
|
|
||||||
*curr = *curr + (*iter) * beta;
|
|
||||||
|
|
||||||
|
if (he.IsBorder()) { // Border rule
|
||||||
|
// consider valence of borders as if they are half+1 of an inner vertex. not perfect, but better than nothing.
|
||||||
|
if(valence) {
|
||||||
|
k = 0;
|
||||||
|
do {
|
||||||
|
he.NextE();
|
||||||
|
k++;
|
||||||
|
} while(!he.IsBorder());
|
||||||
|
(*valence)[he.V()] = std::max(2*(k-1), 3);
|
||||||
|
// (*valence)[he.V()] = 6;
|
||||||
}
|
}
|
||||||
nP = *curr;
|
|
||||||
|
he.FlipV();
|
||||||
|
r = he.v;
|
||||||
|
he.FlipV();
|
||||||
|
he.NextB();
|
||||||
|
l = he.v;
|
||||||
|
|
||||||
|
proj.addVertex(*curr, 3.0/4.0);
|
||||||
|
proj.addVertex(*l, 1.0/8.0);
|
||||||
|
proj.addVertex(*r, 1.0/8.0);
|
||||||
|
proj.project(nv);
|
||||||
|
}
|
||||||
|
else { // Inner rule
|
||||||
|
// assert(!he.v->IsB()); border flag no longer updated (useless)
|
||||||
|
if(valence)
|
||||||
|
(*valence)[he.V()] = k;
|
||||||
|
|
||||||
|
typename MESH_TYPE::ScalarType beta = weight.beta(k);
|
||||||
|
|
||||||
|
proj.addVertex(*curr, 1.0 - (typename MESH_TYPE::ScalarType)(k) * beta);
|
||||||
|
do {
|
||||||
|
proj.addVertex(*he.VFlip(), beta);
|
||||||
|
he.NextE();
|
||||||
|
} while(he != heStart);
|
||||||
|
|
||||||
|
proj.project(nv);
|
||||||
}
|
}
|
||||||
} // end of operator()
|
} // end of operator()
|
||||||
|
|
||||||
|
@ -179,14 +513,20 @@ struct EvenPointLoop : public std::unary_function<face::Pos<typename MESH_TYPE::
|
||||||
return tmp;
|
return tmp;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
inline void setValenceAttr(ValenceAttr *valence) {
|
||||||
|
this->valence = valence;
|
||||||
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
template<class CoordType> struct EvenParam {
|
template<class MESH_TYPE>
|
||||||
CoordType sum;
|
struct OddPointLoop : OddPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
|
||||||
bool border;
|
{
|
||||||
int k;
|
};
|
||||||
} ;
|
|
||||||
|
|
||||||
|
template<class MESH_TYPE>
|
||||||
|
struct EvenPointLoop : EvenPointLoopGeneric<MESH_TYPE, Centroid<MESH_TYPE> >
|
||||||
|
{
|
||||||
|
};
|
||||||
|
|
||||||
template<class MESH_TYPE,class ODD_VERT, class EVEN_VERT>
|
template<class MESH_TYPE,class ODD_VERT, class EVEN_VERT>
|
||||||
bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
|
bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
|
||||||
|
@ -196,41 +536,44 @@ bool RefineOddEven(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even,float length,
|
||||||
return RefineOddEvenE(m, odd, even, ep, RefineSelected, cbOdd, cbEven);
|
return RefineOddEvenE(m, odd, even, ep, RefineSelected, cbOdd, cbEven);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/*!
|
||||||
|
* \brief Perform diadic subdivision using given rules for odd and even vertices.
|
||||||
|
*/
|
||||||
template<class MESH_TYPE, class ODD_VERT, class EVEN_VERT, class PREDICATE>
|
template<class MESH_TYPE, class ODD_VERT, class EVEN_VERT, class PREDICATE>
|
||||||
bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePred,
|
bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePred,
|
||||||
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
|
bool RefineSelected=false, CallBackPos *cbOdd = 0, CallBackPos *cbEven = 0)
|
||||||
{
|
{
|
||||||
|
typedef typename MESH_TYPE::template PerVertexAttributeHandle<int> ValenceAttr;
|
||||||
|
|
||||||
// n = numero di vertici iniziali
|
|
||||||
int n = m.vn;
|
|
||||||
|
|
||||||
// refine dei vertici odd, crea dei nuovi vertici in coda
|
|
||||||
RefineE< MESH_TYPE,OddPointLoop<MESH_TYPE> > (m, odd, edgePred, RefineSelected, cbOdd);
|
|
||||||
// momentaneamente le callback sono identiche, almeno cbOdd deve essere passata
|
// momentaneamente le callback sono identiche, almeno cbOdd deve essere passata
|
||||||
cbEven = cbOdd;
|
cbEven = cbOdd;
|
||||||
|
|
||||||
vcg::tri::UpdateFlags<MESH_TYPE>::FaceBorderFromFF(m);
|
// to mark visited vertices
|
||||||
// aggiorno i flag perche' IsB funzioni
|
|
||||||
vcg::tri::UpdateFlags<MESH_TYPE>::VertexBorderFromFace (m);
|
|
||||||
//vcg::tri::UpdateColor<MESH_TYPE>::VertexBorderFlag(m);
|
|
||||||
|
|
||||||
// marco i vertici even [ i primi n ] come visitati
|
|
||||||
int evenFlag = MESH_TYPE::VertexType::NewBitFlag();
|
int evenFlag = MESH_TYPE::VertexType::NewBitFlag();
|
||||||
for (int i = 0; i < n ; i++ ) {
|
for (int i = 0; i < m.vn ; i++ ) {
|
||||||
m.vert[i].SetUserBit(evenFlag);
|
m.vert[i].ClearUserBit(evenFlag);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
int j = 0;
|
int j = 0;
|
||||||
// di texture per wedge (uno per ogni edge)
|
// di texture per wedge (uno per ogni edge)
|
||||||
|
|
||||||
|
ValenceAttr valence = vcg::tri::Allocator<CMeshO>::AddPerVertexAttribute<int>(m);
|
||||||
|
odd.setValenceAttr(&valence);
|
||||||
|
even.setValenceAttr(&valence);
|
||||||
|
|
||||||
|
// store updated vertices
|
||||||
|
std::vector<bool> updatedList(m.vn, false);
|
||||||
|
std::vector<typename MESH_TYPE::VertexType> newEven(m.vn);
|
||||||
|
|
||||||
typename MESH_TYPE::VertexIterator vi;
|
typename MESH_TYPE::VertexIterator vi;
|
||||||
typename MESH_TYPE::FaceIterator fi;
|
typename MESH_TYPE::FaceIterator fi;
|
||||||
for (fi = m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD()){ //itero facce
|
for (fi = m.face.begin(); fi != m.face.end(); fi++) if(!(*fi).IsD() && (!RefineSelected || (*fi).IsS())){ //itero facce
|
||||||
for (int i = 0; i < 3; i++) { //itero vert
|
for (int i = 0; i < 3; i++) { //itero vert
|
||||||
if ( (*fi).V(i)->IsUserBit(evenFlag) && ! (*fi).V(i)->IsD() ) {
|
if ( !(*fi).V(i)->IsUserBit(evenFlag) && ! (*fi).V(i)->IsD() ) {
|
||||||
if (RefineSelected && !(*fi).V(i)->IsS() )
|
(*fi).V(i)->SetUserBit(evenFlag);
|
||||||
break;
|
// use face selection, not vertex selection, to be coherent with RefineE
|
||||||
|
//if (RefineSelected && !(*fi).V(i)->IsS() )
|
||||||
|
// break;
|
||||||
face::Pos<typename MESH_TYPE::FaceType>aux (&(*fi),i);
|
face::Pos<typename MESH_TYPE::FaceType>aux (&(*fi),i);
|
||||||
if( MESH_TYPE::HasPerVertexColor() ) {
|
if( MESH_TYPE::HasPerVertexColor() ) {
|
||||||
(*fi).V(i)->C().lerp((*fi).V0(i)->C() , (*fi).V1(i)->C(),0.5f);
|
(*fi).V(i)->C().lerp((*fi).V0(i)->C() , (*fi).V1(i)->C(),0.5f);
|
||||||
|
@ -240,16 +583,34 @@ bool RefineOddEvenE(MESH_TYPE &m, ODD_VERT odd, EVEN_VERT even, PREDICATE edgePr
|
||||||
(*cbEven)(int(100.0f * (float)j / (float)m.fn),"Refining");
|
(*cbEven)(int(100.0f * (float)j / (float)m.fn),"Refining");
|
||||||
j++;
|
j++;
|
||||||
}
|
}
|
||||||
even((*fi).V(i)->P(), aux);
|
int index = tri::Index(m, (*fi).V(i));
|
||||||
|
updatedList[index] = true;
|
||||||
|
even(newEven[index], aux);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
MESH_TYPE::VertexType::DeleteBitFlag(evenFlag);
|
||||||
|
|
||||||
|
// refine dei vertici odd, crea dei nuovi vertici in coda
|
||||||
|
RefineE< MESH_TYPE, ODD_VERT > (m, odd, edgePred, RefineSelected, cbOdd);
|
||||||
|
|
||||||
|
typename std::vector<typename MESH_TYPE::VertexType>::iterator nei;
|
||||||
|
for (nei=newEven.begin(); nei!=newEven.end(); ++nei) {
|
||||||
|
if(updatedList[nei-newEven.begin()]) {
|
||||||
|
m.vert[nei-newEven.begin()].ImportData(*nei);
|
||||||
|
assert(m.vert[nei-newEven.begin()].N() == nei->N());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
odd.setValenceAttr(0);
|
||||||
|
even.setValenceAttr(0);
|
||||||
|
|
||||||
|
vcg::tri::Allocator<CMeshO>::DeletePerVertexAttribute(m, valence);
|
||||||
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
} // namespace tri
|
} // namespace tri
|
||||||
} // namespace vcg
|
} // namespace vcg
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue