Added new routines.

Self-intersection first release
This commit is contained in:
Paolo Cignoni 2005-01-17 18:19:00 +00:00
parent 7f31d74240
commit 15b0f812bd
1 changed files with 322 additions and 83 deletions

View File

@ -45,14 +45,18 @@ using namespace std;
#include<vcg/complex/trimesh/update/topology.h>
#include <vcg/complex/trimesh/update/edges.h>
#include <vcg/complex/trimesh/update/bounding.h>
#include <vcg/math/histogram.h>
#include <vcg/complex/trimesh/clean.h>
#include <vcg/space/intersection/triangle_triangle3.h>
#include <vcg/math/histogram.h>
#include <wrap/io_trimesh/import.h>
#include <wrap/io_trimesh/export_ply.h>
// loader
#include<wrap/io_trimesh/import_ply.h>
#include "defs.h"
using namespace vcg;
using namespace face;
@ -73,25 +77,72 @@ void OpenMesh(const char *filename, MyMesh &m)
}
inline char* GetExtension(char* filename)
{
for(int i=strlen(filename)-1; i >= 0; i--)
if(filename[i] == '.')
break;
if(i > 0)
return &(filename[i+1]);
else
return NULL;
}
void main(int argc,char ** argv){
char *fmt;
MyMesh m;
//load the mesh
//argv[1]=(char*)"c:\\checkup\\debug\\column1m.ply";
argv[1] = "C:\\Documents and Settings\\Rita\\Desktop\\MeshReader\\trimeshinfo\\Debug\\prova0.ply";
OpenMesh(argv[1],m);
FILE * index;
//argv[1] = "C:\\Documents and Settings\\Rita\\Desktop\\MeshReader\\trimeshinfo\\Debug\\prova0.ply";
// print program info
printf("-------------------------------\n"
" TriMeshInfo\n"
" release date: "__DATE__"\n"
"-------------------------------\n\n");
// load input meshes.
if(argc <= 1)
{
printf(MSG_ERR_N_ARGS);
exit(-1);
}
// load mesh M1.
if(!(fmt = GetExtension(argv[1])))
{
printf(MSG_ERR_UNKNOWN_FORMAT, fmt);
exit(-1);
}
if(!_stricmp(FILE_EXT_PLY, fmt))
{
printf("reading the mesh `%s'...", argv[1]);
OpenMesh(argv[1],m);
}
else
printf("done\n");
FILE * index;
index = fopen((string(argv[1])+string("2.html")).c_str(),"w");
fprintf(index,"<p>Checkup: This is the check up result for %s </p>\n\n\n", argv[1]);
fprintf(index,"<p>TriMeshInfo: This is the result for %s </p>\n\n\n", argv[1]);
fprintf(index,"<p>GENERAL INFO </p>\n\n");
fprintf(index,"<p>Number of vertices: %d </p>\n", m.vn);
fprintf(index,"<p>Number of faces: %d </p>\n", m.fn);
printf("Number of vertices: %d \n", m.vn);
printf("Number of faces: %d \n", m.fn);
if (m.Volume()!=0)
{
fprintf(index,"<p>Volume: %d </p>\n", m.Volume());
printf("Volume: %d \n", m.Volume());
}
Color4b Color=m.C();
fprintf(index, "<p>Object color(4b): %f %f %f </p>\n\n", Color[0], Color[1], Color[2]);
printf( "Object color(4b): %f %f %f \n\n", Color[0], Color[1], Color[2]);
@ -106,56 +157,38 @@ void main(int argc,char ** argv){
int j;
int man=0;
bool Manifold = true;
bool Manifold_lib = true;
MyMesh::FaceIterator prova;
prova = m.face.end();
for(f=m.face.begin();f!=m.face.end();++f)
{
for (j=0;j<3;++j)
{
if(!IsManifold(*f,j))
{
Manifold_lib = false;
Manifold = false;
f= m.face.end();
break;
}
}
}
if (!Manifold_lib)
fprintf(index, "<p> Manifold from lib gives: NO </p>");
else
fprintf(index, "<p> Manifold from lib gives: YES </p>");
for(f=m.face.begin();f!=m.face.end();++f)
{
for (j=0;j<3;++j)
{
if ((*f).IsBorder(j))
{}
else if (&(*f) == (*f).FFp(j)->FFp((*f).FFi(j)))
{}
else
{
hei.Set(&(*f), j , f->V(j));
he=hei;
he.NextF();
while (he.f!=hei.f)
{
man++;
he.NextF();
}
Manifold=false;
--f;
j=3;
}
}
}
if (!Manifold)
fprintf(index, "<p> Manifold from Matteo gives: NO </p>");
{
fprintf(index, "<p> Manifold from lib gives: NO </p>");
printf( "Manifold from lib gives: NO\n");
}
else
fprintf(index, "<p> Manifold from Matteo gives: YES </p>");
{
fprintf(index, "<p> Manifold from lib gives: YES </p>");
printf( "Manifold from lib gives: YES ");
}
// COUNT EDGES
MyMesh::FaceIterator fi;
int count_e = 0;
bool counted=false;
for(fi=m.face.begin();fi!=m.face.end();++fi)
(*fi).ClearS();
@ -164,9 +197,40 @@ void main(int argc,char ** argv){
(*fi).SetS();
count_e +=3;
for(int i=0; i<3; ++i)
if((*fi).FFp(i)->IsS()) count_e--;
{
if (IsManifold(*fi,i))
{
if((*fi).FFp(i)->IsS())
count_e--;
}
else
{
hei.Set(&(*fi), i , fi->V(i));
he=hei;
he.NextF();
while (he.f!=hei.f)
{
if (he.f->IsS())
{
counted=true;
break;
}
else
{
he.NextF();
}
}
if (counted)
{
count_e--;
counted=false;
}
}
}
}
fprintf(index, "<p>Number of edges: %d </p>\n", count_e);
printf("Number of edges: %d \n", count_e);
// DA QUI IN POI!!!
@ -177,6 +241,7 @@ void main(int argc,char ** argv){
if((*fi).Area() == 0)
count_fd++;
fprintf(index, "<p>Number of degenerated faces: %d </p>\n", count_fd);
printf("Number of degenerated faces: %d \n", count_fd);
// UNREFERENCED VERTEX
@ -196,8 +261,10 @@ void main(int argc,char ** argv){
if( !(*v).IsV() )
++count_uv;
fprintf(index,"<p>Number of unreferenced vertices: %d</p>\n",count_uv);
printf("Number of unreferenced vertices: %d\n",count_uv);
// Holes count
// HOLES COUNT
for(f=m.face.begin();f!=m.face.end();++f)
(*f).ClearS();
@ -205,34 +272,64 @@ void main(int argc,char ** argv){
int BEdges=0; int numholes=0;
for(f=g;f!=m.face.end();++f)
if (Manifold)
{
if(!(*f).IsS())
for(f=g;f!=m.face.end();++f)
{
for(j=0;j<3;j++)
{
if ((*f).IsBorder(j))
if(!(*f).IsS())
{
for(j=0;j<3;j++)
{
BEdges++;
if(!(IsManifold(*f,j)))
if ((*f).IsBorder(j))
{
(*f).SetS();
hei.Set(&(*f),j,f->V(j));
he=hei;
do
BEdges++;
if(!(IsManifold(*f,j)))
{
he.NextB();
he.f->SetS();
// BEdges++;
(*f).SetS();
hei.Set(&(*f),j,f->V(j));
he=hei;
do
{
he.NextB();
he.f->SetS();
// BEdges++;
}
while (he.f!=hei.f);
//BEdges--;
numholes++;
}
while (he.f!=hei.f);
numholes++;
}
}
}
}
}
fprintf(index, "<p> Number of holes: %d </p> \n <p> Number of border edges: %d </p>", numholes, BEdges);
else
{
for(f=g;f!=m.face.end();++f)
{
for(j=0;j<3;j++)
{
if ((*f).IsBorder(j))
{
BEdges++;
}
}
}
}
if (Manifold)
{
fprintf(index, "<p> Number of holes: %d </p> \n <p> Number of border edges: %d </p>", numholes, BEdges);
printf("Number of holes: %d \n", numholes, BEdges);
printf("Number of border edges: %d\n", numholes, BEdges);
}
else
{
fprintf(index, "<p> Number of border edges: %d </p>", BEdges);
printf("Number of border edges: %d\n", BEdges);
}
// CONNECTED COMPONENTS
@ -269,19 +366,93 @@ void main(int argc,char ** argv){
}
}
fprintf(index, "<p> Number of connected components: %d </p>", CountComp);
printf("Number of connected components: %d\n", CountComp);
if(CountComp ==1)
{
int eulero; //v-e+f
eulero = (m.vn-count_uv)- (count_e+BEdges)+m.fn;
if(Manifold)
{
int genus = (2-eulero)>>1;
fprintf(index, "<p> Genus: %d </p> \n ", genus);
printf( "Genus: %d \n ", genus);
}
}
// REGULARITY
bool Regular=true;
bool Semiregular=true;
int inc=0;
for(v=m.vert.begin();v!=m.vert.end();++v)
(*v).ClearS();
for(f=m.face.begin();f!=m.face.end();++f)
{
for (j=0; j<3; j++)
{
he.Set(&(*f),j,f->V(j));
if (!(*f).IsBorder(j) && !(*f).IsBorder((j+2)%3) && !f->V(j)->IsS())
{
hei=he;
inc=1;
he.FlipE();
he.NextF();
while (he.f!=hei.f)
{
he.FlipE();
if (he.IsBorder())
{
inc=6;
break;
}
he.NextF();
inc++;
}
if (inc!=6)
Regular=false;
if (inc!=6 && inc!=5)
Semiregular=false;
f->V(j)->SetS();
}
else
f->V(j)->SetS();
}
if (Semiregular==false)
break;
}
if (Regular)
{
fprintf(index, "<p> Type of Mesh: REGULAR</p>");
printf("Type of Mesh: REGULAR\n");
}
else if (Semiregular)
{
fprintf(index, "<p> Type of Mesh: SEMIREGULAR</p>");
printf("Type of Mesh: SEMIREGULAR\n");
}
else
{
fprintf(index, "<p> Type of Mesh: IRREGULAR</p>");
printf("Type of Mesh: IRREGULAR\n");
}
// ORIENTABLE E ORIENTED MESH
int flag=0;
bool Orientable=true;
bool Oriented=true;
if (!Manifold)
{
fprintf(index, "<p> Orientable Mesh: NO</p>");
printf( "Orientable Mesh: NO\n");
}
else
{
for(f=m.face.begin();f!=m.face.end();++f)
{
(*f).ClearS();
// (*f).ClearR();
(*f).ClearUserBit(0);
}
g=m.face.begin(); f=g;
for(f=m.face.begin();f!=m.face.end();++f)
@ -297,57 +468,125 @@ void main(int argc,char ** argv){
sf.pop();
for(j=0;j<3;++j)
{
int prova = (*g).IsR();
if( !(*g).IsBorder(j) )
{
he.Set(&(*g),0,g->V(0));
l=he.f->FFp(j);
if( !(*l).IsS() )
{
(*l).SetS();
sf.push(l);
}
he.Set(&(*g),j,g->V(j));
hei.Set(he.f->FFp(j),he.f->FFi(j), (he.f->FFp(j))->V(he.f->FFi(j)));
if (he.v!=hei.v) // bene
if( !(*g).IsUserBit(0) )
{
if ((*l).IsS())
{}
else
if (he.v!=hei.v) // bene
{
if ((*l).IsS() && (*l).IsUserBit(0))
{
Orientable=false;
break;
}
else if (!(*l).IsS())
{
(*l).SetS();
sf.push(l);
}
}
else if (!(*l).IsS())
{
Oriented=false;
(*l).SetS();
(*l).SetUserBit(0);
sf.push(l);
}
else if ((*l).IsS() && !(*l).IsUserBit(0))
{
Orientable=false;
break;
}
}
else if (he.v==hei.v) // bene
{
if ((*l).IsS() && (*l).IsUserBit(0))
{
Orientable=false;
break;
}
else if (!(*l).IsS())
{
(*l).SetS();
sf.push(l);
}
}
}
else if ((*l).IsS() && !(*l).IsR())
{
flag=1;
break;
}
else
{
Oriented=false;
(*l).SetS();
(*l).SetR();
sf.push(l);
else if (!(*l).IsS())
{
Oriented=false;
(*l).SetS();
(*l).SetUserBit(0);
sf.push(l);
}
else if ((*l).IsS() && !(*l).IsUserBit(0))
{
Orientable=false;
break;
}
}
}
}
}
if (flag==1)
if (!Orientable)
break;
}
if (flag==0)
if (Orientable)
{
fprintf(index, "<p> Orientable Mesh: YES</p>");
printf( "Orientable Mesh: YES\n");
}
else
{
fprintf(index, "<p> Orientable Mesh: NO</p>");
printf( "Orientable Mesh: NO\n");
}
}
if (Oriented && Manifold)
{
fprintf(index, "<p> Oriented Mesh: YES</p>");
printf( "Oriented Mesh: YES\n");
}
else
{
fprintf(index, "<p> Oriented Mesh: NO</p>");
printf( "Oriented Mesh: NO\n");
}
// SELF INTERSECTION
if (m.fn<300000)
{
bool SelfInt=false;
for(f=m.face.begin();f!=m.face.end();++f)
{
for(g=++f , f--;g!=m.face.end();++g)
{
if ((*f).FFp(0)!=&(*g) && (*f).FFp(1)!=&(*g) && (*f).FFp(2)!=&(*g) &&
f->V(0)!=g->V(0) && f->V(0)!=g->V(1) && f->V(0)!=g->V(2) &&
f->V(1)!=g->V(0) && f->V(1)!=g->V(1) && f->V(1)!=g->V(2) &&
f->V(2)!=g->V(0) && f->V(2)!=g->V(1) && f->V(2)!=g->V(2))
{
if (NoDivTriTriIsect(f->V(0)->P(), f->V(1)->P(), f->V(2)->P(),g->V(0)->P(), g->V(1)->P(), g->V(2)->P()) )
SelfInt=true;
}
}
if (SelfInt)
break;
}
if (SelfInt)
{
fprintf(index, "<p> Self Intersection: YES</p>");
printf( "Self Intersection: YES\n");
}
else
{
fprintf(index, "<p> Self Intersection: NO</p>");
printf( "Self Intersection: NO\n");
}
}
fclose(index);
}