Dodecahedron added! (and doxigened a little bit)
This commit is contained in:
parent
ba4965a409
commit
1706a1a0b5
|
@ -24,12 +24,12 @@
|
|||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
Revision 1.6 2004/05/13 21:08:00 cignoni
|
||||
Conformed C++ syntax to GCC requirements
|
||||
|
||||
Revision 1.5 2004/03/18 15:29:07 cignoni
|
||||
Completed Octahedron and Icosahedron
|
||||
|
||||
Revision 1.4 2004/03/11 18:14:19 tarini
|
||||
prova
|
||||
|
||||
Revision 1.2 2004/03/03 16:11:46 cignoni
|
||||
First working version (tetrahedron!)
|
||||
|
||||
|
@ -39,11 +39,19 @@ First working version (tetrahedron!)
|
|||
#ifndef __VCGLIB_PLATONIC
|
||||
#define __VCGLIB_PLATONIC
|
||||
|
||||
//#include <vcg/Mesh/Refine.h>
|
||||
#include<vcg/complex/trimesh/allocate.h>
|
||||
#include<vcg/math/base.h>
|
||||
namespace vcg {
|
||||
namespace tri {
|
||||
/*@{*/
|
||||
/**
|
||||
A set of functions that builds meshes
|
||||
that represent surfaces of platonic solids,
|
||||
and other simple shapes.
|
||||
|
||||
The 1st parameter is the mesh that will
|
||||
be filled with the solid.
|
||||
*/
|
||||
template <class TetraMeshType>
|
||||
void Tetrahedron(TetraMeshType &in)
|
||||
{
|
||||
|
@ -72,6 +80,111 @@ void Tetrahedron(TetraMeshType &in)
|
|||
(*fi).V(0)=ivp[3]; (*fi).V(1)=ivp[2]; (*fi).V(2)=ivp[1];
|
||||
}
|
||||
|
||||
|
||||
/// builds a Dodecahedron,
|
||||
/// (each pentagon is composed of 5 triangles)
|
||||
template <class DodMeshType>
|
||||
void Dodecahedron(DodMeshType & in)
|
||||
{
|
||||
typedef DodMeshType MeshType;
|
||||
typedef typename MeshType::CoordType CoordType;
|
||||
typedef typename MeshType::VertexPointer VertexPointer;
|
||||
typedef typename MeshType::VertexIterator VertexIterator;
|
||||
typedef typename MeshType::FaceIterator FaceIterator;
|
||||
typedef typename MeshType::ScalarType ScalarType;
|
||||
const N_penta=12;
|
||||
const N_points=62;
|
||||
|
||||
int penta[N_penta*3*3]=
|
||||
{20,11, 18, 18, 11, 8, 8, 11, 4,
|
||||
13,23, 4, 4, 23, 8, 8, 23, 16,
|
||||
13, 4, 30, 30, 4, 28, 28, 4, 11,
|
||||
16,34, 8, 8, 34, 18, 18, 34, 36,
|
||||
11,20, 28, 28, 20, 45, 45, 20, 38,
|
||||
13,30, 23, 23, 30, 41, 41, 30, 47,
|
||||
16,23, 34, 34, 23, 50, 50, 23, 41,
|
||||
20,18, 38, 38, 18, 52, 52, 18, 36,
|
||||
30,28, 47, 47, 28, 56, 56, 28, 45,
|
||||
50,60, 34, 34, 60, 36, 36, 60, 52,
|
||||
45,38, 56, 56, 38, 60, 60, 38, 52,
|
||||
50,41, 60, 60, 41, 56, 56, 41, 47 };
|
||||
//A B E D C
|
||||
const ScalarType p=(1.0 + math::Sqrt(5.0)) / 2.0;
|
||||
const ScalarType p2=p*p;
|
||||
const ScalarType p3=p*p*p;
|
||||
ScalarType vv[N_points*3]=
|
||||
{
|
||||
0, 0, 2*p2, p2, 0, p3, p, p2, p3,
|
||||
0, p, p3, -p, p2, p3, -p2, 0, p3,
|
||||
-p, -p2, p3, 0, -p, p3, p, -p2, p3,
|
||||
p3, p, p2, p2, p2, p2, 0, p3, p2,
|
||||
-p2, p2, p2, -p3, p, p2, -p3, -p, p2,
|
||||
-p2, -p2, p2, 0, -p3, p2, p2, -p2, p2,
|
||||
p3, -p, p2, p3, 0, p, p2, p3, p,
|
||||
-p2, p3, p, -p3, 0, p, -p2, -p3, p,
|
||||
p2, -p3, p, 2*p2, 0, 0, p3, p2, 0,
|
||||
p, p3, 0, 0, 2*p2, 0, -p, p3, 0,
|
||||
-p3, p2, 0, -2*p2, 0, 0, -p3, -p2, 0,
|
||||
-p, -p3, 0, 0, -2*p2, 0, p, -p3, 0,
|
||||
p3, -p2, 0, p3, 0, -p, p2, p3, -p,
|
||||
-p2, p3, -p, -p3, 0, -p, -p2, -p3, -p,
|
||||
p2, -p3, -p, p3, p, -p2, p2, p2, -p2,
|
||||
0, p3, -p2, -p2, p2, -p2, -p3, p, -p2,
|
||||
-p3, -p, -p2, -p2, -p2, -p2, 0, -p3, -p2,
|
||||
p2, -p2, -p2, p3, -p, -p2, p2, 0, -p3,
|
||||
p, p2, -p3, 0, p, -p3, -p, p2, -p3,
|
||||
-p2, 0, -p3, -p, -p2, -p3, 0, -p, -p3,
|
||||
p, -p2, -p3, 0, 0, -2*p2
|
||||
};
|
||||
in.Clear();
|
||||
//in.face.clear();
|
||||
Allocator<DodMeshType>::AddVertices(in,20+12);
|
||||
Allocator<DodMeshType>::AddFaces(in, 5*12); // five pentagons, each made by 5 tri
|
||||
|
||||
int h,i,j,k=0,m=0;
|
||||
|
||||
bool used[N_points];
|
||||
for (i=0; i<N_points; i++) used[i]=false;
|
||||
|
||||
int reindex[20+12 *10];
|
||||
double xx,yy,zz, sx,sy,sz;
|
||||
|
||||
int order[5]={0,1,8,6,2};
|
||||
int added[12];
|
||||
|
||||
VertexIterator vi=in.vert.begin();
|
||||
|
||||
for (i=0; i<12; i++) {
|
||||
sx=sy=sz=0;
|
||||
for (int j=0; j<5; j++) {
|
||||
h= penta[ i*9 + order[j] ]-1;
|
||||
xx=vv[h*3];yy=vv[h*3+1];zz=vv[h*3+2]; sx+=xx; sy+=yy; sz+=zz;
|
||||
if (!used[h]) {
|
||||
(*vi).P()=CoordType( xx, yy, zz ); vi++;
|
||||
used[h]=true;
|
||||
reindex[ h ] = m++;
|
||||
}
|
||||
};
|
||||
(*vi).P()=CoordType( sx/5.0, sy/5.0, sz/5.0 ); vi++;
|
||||
added[ i ] = m++;
|
||||
}
|
||||
|
||||
vector<VertexPointer> index(in.vn);
|
||||
|
||||
for(j=0,vi=in.vert.begin();j<in.vn;++j,++vi) index[j] = &(*vi);
|
||||
|
||||
FaceIterator fi=in.face.begin();
|
||||
|
||||
for (i=0; i<12; i++) {
|
||||
for (j=0; j<5; j++){
|
||||
(*fi).V(0)=index[reindex[penta[i*9 + order[j ] ] -1 ] ];
|
||||
(*fi).V(1)=index[reindex[penta[i*9 + order[(j+1)%5] ] -1 ] ];
|
||||
(*fi).V(2)=index[added[i] ];
|
||||
fi++;
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template <class OctMeshType>
|
||||
void Octahedron(OctMeshType &in)
|
||||
{
|
||||
|
|
Loading…
Reference in New Issue