first version release
This commit is contained in:
parent
2a7f401e6a
commit
19a75647d2
|
@ -31,7 +31,7 @@
|
|||
#define __VCG_TETRA_POS
|
||||
|
||||
namespace vcg {
|
||||
namespace tetra {
|
||||
namespace tetra {
|
||||
|
||||
/** \addtogroup tetra */
|
||||
/*@{*/
|
||||
|
@ -54,50 +54,53 @@ private:
|
|||
int _vi;
|
||||
/// Default Constructor
|
||||
public:
|
||||
VTIterator() {}
|
||||
VTIterator(){}
|
||||
/// Constructor which associates the EdgePos elementet with a face and its edge
|
||||
VTIterator(TetraType * const tp, int const zp)
|
||||
{
|
||||
_vt=tp;
|
||||
_vi=zp;
|
||||
}
|
||||
}
|
||||
|
||||
~VTIterator(){};
|
||||
|
||||
/// Return the tetrahedron stored in the half edge
|
||||
inline TetraType & Vt()
|
||||
{
|
||||
return _vt;
|
||||
}
|
||||
/// Return the tetrahedron stored in the half edge
|
||||
inline TetraType & Vt()
|
||||
{
|
||||
return _vt;
|
||||
}
|
||||
|
||||
/// Return the tetrahedron stored in the half edge
|
||||
inline const TetraType & Vt() const
|
||||
{
|
||||
return _vt;
|
||||
}
|
||||
/// Return the tetrahedron stored in the half edge
|
||||
inline const TetraType & Vt() const
|
||||
{
|
||||
return _vt;
|
||||
}
|
||||
|
||||
/// Return the index of vertex as seen from the tetrahedron
|
||||
inline int & Vi()
|
||||
{
|
||||
return _vi;
|
||||
}
|
||||
inline int & Vi()
|
||||
{
|
||||
return _vi;
|
||||
}
|
||||
|
||||
/// Return the index of vertex as seen from the tetrahedron
|
||||
inline const int & Vi() const
|
||||
{
|
||||
/// Return the index of vertex as seen from the tetrahedron
|
||||
inline const int & Vi() const
|
||||
{
|
||||
return _vi;
|
||||
}
|
||||
}
|
||||
|
||||
bool End() const {return Vt()==0;}
|
||||
|
||||
/// move on the next tetrahedron that share the vertex
|
||||
bool NextT()
|
||||
{
|
||||
bool operator++()
|
||||
{
|
||||
int vi=Vi();
|
||||
TetraType * tw = Vt();
|
||||
Vt() = tw->TVp[vi];
|
||||
Vi() = tw->TVi[vi];
|
||||
assert(((tw->V(vi))==(Vt()->V(Vi())))||(t==NULL));
|
||||
return (Vt()!=NULL);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
/** \addtogroup tetra */
|
||||
|
@ -142,7 +145,7 @@ public:
|
|||
|
||||
/// Return the tetrahedron stored in the half edge
|
||||
inline TetraType & T()
|
||||
{
|
||||
{
|
||||
return _t;
|
||||
}
|
||||
|
||||
|
@ -277,8 +280,8 @@ public:
|
|||
{
|
||||
|
||||
//save the two vertices of the old edge
|
||||
char *v0=vcg::Tetra::VofE(z,0);
|
||||
char *v1=vcg::Tetra::VofE(z,1);
|
||||
VertexType *v0=T()->V(vcg::Tetra::VofE(E(),0));
|
||||
VertexType *v1=T()->V(vcg::Tetra::VofE(E(),1));
|
||||
|
||||
//get new tetrahedron according to faceto face topology
|
||||
TetraType *nt=T()->TTp(F());
|
||||
|
@ -289,87 +292,43 @@ public:
|
|||
char ne0=vcg::Tetra::EofF(nfa,0);
|
||||
char ne1=vcg::Tetra::EofF(nfa,1);
|
||||
char ne2=vcg::Tetra::EofF(nfa,2);
|
||||
|
||||
|
||||
//the vertices of new edges
|
||||
VertexType *vn0=nt->V(vcg::Tetra::VofE(ne0,0));
|
||||
VertexType *vn1=nt->V(vcg::Tetra::VofE(ne0,1));
|
||||
//verify that the two vertices of tetrahedron are identical
|
||||
if (((nt->VE(ne0,0)==v0)&&(nt->VE(ne0,1)==v1))||
|
||||
((nt->VE(ne0,1)==v0)&&(nt->VE(ne0,0)==v1)))
|
||||
z=ne0;
|
||||
if (((vn0==v0)&&(vn1==v1))||((vn1==v0)&&(vn0==v1)))
|
||||
E()=ne0;
|
||||
else
|
||||
if (((nt->VE(ne1,0)==v0)&&(nt->VE(ne1,1)==v1))||
|
||||
((nt->VE(ne1,1)==v0)&&(nt->VE(ne1,0)==v1)))
|
||||
z=ne1;
|
||||
else
|
||||
z=ne2;
|
||||
t=nt;
|
||||
fa=nfa;
|
||||
}
|
||||
}
|
||||
{
|
||||
vn0=nt->V(vcg::Tetra::VofE(ne1,0));
|
||||
vn1=nt->V(vcg::Tetra::VofE(ne1,1));
|
||||
if (((vn0==v0)&&(vn1==v1))||((vn1==v0)&&(vn0==v1)))
|
||||
E()=ne1;
|
||||
else
|
||||
E()=ne2;
|
||||
}
|
||||
T()=nt;
|
||||
F()=nfa;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
void NextE( )
|
||||
///returns the next half edge on the same edge
|
||||
void NextT( )
|
||||
{
|
||||
//assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
#ifdef _DEBUG
|
||||
vertex_type *v0old=t->VE(z,0);
|
||||
vertex_type *v1old=t->VE(z,1);
|
||||
VertexType *v0old=T()->V(vcg::Tetra::VofE(E(),0));
|
||||
VertexType *v1old=T()->V(vcg::Tetra::VofE(E(),1));
|
||||
assert(v0old!=v1old);
|
||||
#endif
|
||||
FlipT();
|
||||
FlipF();
|
||||
#ifdef _DEBUG
|
||||
vertex_type *v0=t->VE(z,0);
|
||||
vertex_type *v1=t->VE(z,1);
|
||||
VertexType *v0=T()->V(vcg::Tetra::VofE(E(),0));
|
||||
VertexType *v1=T()->V(vcg::Tetra::VofE(E(),1));
|
||||
assert(v1!=v0);
|
||||
assert(((v0==v0old)&&(v1==v1old))||((v1==v0old)&&(v0==v1old)));
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void NextV( )
|
||||
{
|
||||
//assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
int j;
|
||||
int indexv;
|
||||
|
||||
// find the index of the current vertex
|
||||
for (j=0;j<4;j++)
|
||||
{
|
||||
if (v==t->V(j))
|
||||
indexv=j;
|
||||
}
|
||||
//increase the iterator
|
||||
EdgePosT <MTTYPE> e(t,indexv);
|
||||
e.NextT();
|
||||
t=e.t;
|
||||
|
||||
//assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
}
|
||||
|
||||
void NextF( )
|
||||
{
|
||||
assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
FlipT();
|
||||
assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
}
|
||||
|
||||
void NextT( )
|
||||
{
|
||||
assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
/*fa=(fa+1)%4;
|
||||
t=T(*/
|
||||
assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
}
|
||||
|
||||
|
||||
/** Function to inizialize an half-edge.
|
||||
@param fp Puntatore alla faccia
|
||||
@param zp Indice dell'edge
|
||||
@param vp Puntatore al vertice
|
||||
*/
|
||||
void Set(MTTYPE * const tp, int const fap,int const zp,vertex_type * const vp)
|
||||
{ t=tp;fa=fap;z=zp;v=vp;
|
||||
assert(t->V((z+2)%4)!=v && (t->V((z+1)%4)==v || t->V((z+0)%4)==v));
|
||||
#endif
|
||||
}
|
||||
|
||||
void Assert()
|
||||
|
@ -398,86 +357,75 @@ public:
|
|||
#else
|
||||
{}
|
||||
#endif
|
||||
|
||||
/*// Controlla la coerenza di orientamento di un hpos con la relativa faccia
|
||||
/// Checks the orientation coherence of a half-edge with the face
|
||||
inline bool Coerent() const
|
||||
{
|
||||
return v == t->V(z); // e^(ip)+1=0 ovvero E=mc^2
|
||||
}*/
|
||||
|
||||
};
|
||||
|
||||
///this pos structure jump on next tetrahedron if find an external face
|
||||
template < class MTTYPE>
|
||||
class HEdgePosTEdge:public HEdgePosT<MTTYPE>
|
||||
class PosJump:public Pos<MTTYPE>
|
||||
{
|
||||
public :
|
||||
MTTYPE *t_initial;
|
||||
short int fa_initial;
|
||||
short int back;
|
||||
private:
|
||||
MTTYPE *_t_initial;
|
||||
short int _back;
|
||||
public :
|
||||
PosJump(const TetraType* tp,const int fap,const int ep,
|
||||
VertexType * vp){T()=tp;F()=fap;E()=ep;V()=vp;_t_initial=tp;_back=0;}
|
||||
|
||||
/// Constructor which associates the half-edge elementet with a face, its edge and its vertex
|
||||
HEdgePosTEdge(){}
|
||||
|
||||
HEdgePosTEdge(MTTYPE * const tp,const int fap,const int zp,
|
||||
vertex_type * vp){t=tp;fa=fap;fa_initial=fap;z=zp;v=vp;t_initial=tp;back=0;}
|
||||
|
||||
void NextE()
|
||||
{
|
||||
void NextT()
|
||||
{
|
||||
#ifdef _DEBUG
|
||||
int cont=0;
|
||||
#endif
|
||||
MTTYPE *tpred=t;
|
||||
HEdgePosT<MTTYPE>::NextE();
|
||||
//rimbalzo
|
||||
if (tpred==t)
|
||||
MTTYPE *tpred=T();
|
||||
Pos<MTTYPE>::NextT();
|
||||
//external face
|
||||
if (tpred==T())
|
||||
{
|
||||
while (t!=t_initial)
|
||||
while (T()!=_t_initial)
|
||||
{
|
||||
HEdgePosT<MTTYPE>::NextE();
|
||||
Pos<MTTYPE>::NextT();
|
||||
#ifdef _DEBUG
|
||||
cont++;
|
||||
assert (cont<500);
|
||||
#endif
|
||||
}
|
||||
back++;
|
||||
if (back==1)
|
||||
_back++;
|
||||
if (_back==1)
|
||||
{
|
||||
HEdgePosT<MTTYPE>::NextE();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
//change tetrahedron endreturn the number of the face to put on the fan
|
||||
int NextFaceOnFan()
|
||||
{
|
||||
HEdgePosTEdge::NextE();
|
||||
//get the faces that are not on the edge
|
||||
int fa0=t->FE(z,0);
|
||||
int fa1=t->FE(z,1);
|
||||
//they are the 2 faces that remain
|
||||
int fa2=(fa0+1)%4;
|
||||
while ((fa2==fa0)||(fa2==fa1))
|
||||
{
|
||||
fa2=(fa2+1)%4;
|
||||
}
|
||||
int fa3=(fa2+1)%4;
|
||||
while ((fa3==fa0)||(fa3==fa1)||(fa3==fa2))
|
||||
{
|
||||
fa3=(fa3+1)%4;
|
||||
}
|
||||
bool first=false;
|
||||
for (int i=0;i<3;i++)
|
||||
if (t->FV(fa2,i)==v)
|
||||
first=true;
|
||||
if (first)
|
||||
return fa2;
|
||||
else
|
||||
return fa3;
|
||||
Pos<MTTYPE>::NextT();
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///this pos structure jump on next tetrahedron in rotational sense if find an external face
|
||||
template < class MTTYPE>
|
||||
class PosLoop:public Pos<MTTYPE>
|
||||
{
|
||||
public :
|
||||
|
||||
void NextT()
|
||||
{
|
||||
MTTYPE *tpred=T();
|
||||
Pos<MTTYPE>::NextT();
|
||||
//external face
|
||||
if (tpred==T())
|
||||
{
|
||||
tpred=T();
|
||||
//jump on the other side
|
||||
Pos<MTTYPE>::NextT();
|
||||
//find the next external face
|
||||
while (tpred!=T())
|
||||
{
|
||||
tpred=T();
|
||||
Pos<MTTYPE>::NextT();
|
||||
}
|
||||
//reset right rotation sense
|
||||
Pos<MTTYPE>::NextT();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
}//end namespace tetra
|
||||
}//end namespace vcg
|
||||
|
||||
#endif
|
Loading…
Reference in New Issue