Include header cleaning and reordering.
This commit is contained in:
parent
0fd6ac2f9c
commit
1c1e3f778a
|
@ -25,9 +25,6 @@
|
|||
#define _VCG_FACE_TOPOLOGY
|
||||
|
||||
#include <vcg/simplex/face/pos.h>
|
||||
#include <vcg/complex/allocate.h>
|
||||
#include <vector>
|
||||
#include <algorithm>
|
||||
|
||||
namespace vcg {
|
||||
namespace face {
|
||||
|
@ -35,8 +32,8 @@ namespace face {
|
|||
/*@{*/
|
||||
|
||||
/** Return a boolean that indicate if the face is complex.
|
||||
@param j Index of the edge
|
||||
@return true se la faccia e' manifold, false altrimenti
|
||||
@param j Index of the edge
|
||||
@return true se la faccia e' manifold, false altrimenti
|
||||
*/
|
||||
template <class FaceType>
|
||||
inline bool IsManifold( FaceType const & f, const int j )
|
||||
|
@ -49,8 +46,8 @@ inline bool IsManifold( FaceType const & f, const int j )
|
|||
}
|
||||
|
||||
/** Return a boolean that indicate if the j-th edge of the face is a border.
|
||||
@param j Index of the edge
|
||||
@return true if j is an edge of border, false otherwise
|
||||
@param j Index of the edge
|
||||
@return true if j is an edge of border, false otherwise
|
||||
*/
|
||||
template <class FaceType>
|
||||
inline bool IsBorder(FaceType const & f, const int j )
|
||||
|
@ -159,10 +156,10 @@ inline int ComplexSize(FaceType & f, const int e)
|
|||
|
||||
|
||||
/** This function check the FF topology correctness for an edge of a face.
|
||||
It's possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't defined.
|
||||
@param f the face to be checked
|
||||
@param e Index of the edge to be checked
|
||||
It's possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't defined.
|
||||
@param f the face to be checked
|
||||
@param e Index of the edge to be checked
|
||||
*/
|
||||
template <class FaceType>
|
||||
bool FFCorrectness(FaceType & f, const int e)
|
||||
|
@ -230,10 +227,10 @@ void FFDetachManifold(FaceType & f, const int e)
|
|||
}
|
||||
|
||||
/** This function detach the face from the adjacent face via the edge e.
|
||||
It's possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't defined.
|
||||
@param f the face to be detached
|
||||
@param e Index of the edge to be detached
|
||||
It's possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't defined.
|
||||
@param f the face to be detached
|
||||
@param e Index of the edge to be detached
|
||||
*/
|
||||
|
||||
template <class FaceType>
|
||||
|
@ -244,25 +241,25 @@ void FFDetach(FaceType & f, const int e)
|
|||
int complexity;
|
||||
assert(complexity=ComplexSize(f,e));
|
||||
|
||||
Pos< FaceType > FirstFace(&f,e); // Build the half edge
|
||||
Pos< FaceType > LastFace(&f,e); // Build the half edge
|
||||
FirstFace.NextF();
|
||||
LastFace.NextF();
|
||||
int cnt=0;
|
||||
Pos< FaceType > FirstFace(&f,e); // Build the half edge
|
||||
Pos< FaceType > LastFace(&f,e); // Build the half edge
|
||||
FirstFace.NextF();
|
||||
LastFace.NextF();
|
||||
int cnt=0;
|
||||
|
||||
// then in case of non manifold face continue to advance LastFace
|
||||
// until I find it become the one that
|
||||
// preceed the face I want to erase
|
||||
|
||||
while ( LastFace.f->FFp(LastFace.z) != &f)
|
||||
{
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
|
||||
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
|
||||
assert(!LastFace.IsBorder());
|
||||
LastFace.NextF();
|
||||
cnt++;
|
||||
assert(cnt<100);
|
||||
}
|
||||
while ( LastFace.f->FFp(LastFace.z) != &f)
|
||||
{
|
||||
assert(ComplexSize(*LastFace.f,LastFace.z)==complexity);
|
||||
assert(!LastFace.IsManifold()); // We enter in this loop only if we are on a non manifold edge
|
||||
assert(!LastFace.IsBorder());
|
||||
LastFace.NextF();
|
||||
cnt++;
|
||||
assert(cnt<100);
|
||||
}
|
||||
|
||||
assert(LastFace.f->FFp(LastFace.z)==&f);
|
||||
assert(f.FFp(e)== FirstFace.f);
|
||||
|
@ -283,25 +280,25 @@ void FFDetach(FaceType & f, const int e)
|
|||
|
||||
|
||||
/** This function attach the face (via the edge z1) to another face (via the edge z2). It's possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't define.
|
||||
@param z1 Index of the edge
|
||||
@param f2 Pointer to the face
|
||||
@param z2 The edge of the face f2
|
||||
The function cannot be applicated if the adjacencies among faces aren't define.
|
||||
@param z1 Index of the edge
|
||||
@param f2 Pointer to the face
|
||||
@param z2 The edge of the face f2
|
||||
*/
|
||||
template <class FaceType>
|
||||
void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
|
||||
{
|
||||
//typedef FEdgePosB< FACE_TYPE > ETYPE;
|
||||
Pos< FaceType > EPB(f2,z2);
|
||||
Pos< FaceType > TEPB;
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
|
||||
{
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
}
|
||||
//Salvo i dati di f1 prima di sovrascrivere
|
||||
//typedef FEdgePosB< FACE_TYPE > ETYPE;
|
||||
Pos< FaceType > EPB(f2,z2);
|
||||
Pos< FaceType > TEPB;
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
while( EPB.f != f2) //Alla fine del ciclo TEPB contiene la faccia che precede f2
|
||||
{
|
||||
TEPB = EPB;
|
||||
EPB.NextF();
|
||||
}
|
||||
//Salvo i dati di f1 prima di sovrascrivere
|
||||
FaceType *f1prec = f->FFp(z1);
|
||||
int z1prec = f->FFi(z1);
|
||||
//Aggiorno f1
|
||||
|
@ -313,11 +310,11 @@ void FFAttach(FaceType * &f, int z1, FaceType *&f2, int z2)
|
|||
}
|
||||
|
||||
/** This function attach the face (via the edge z1) to another face (via the edge z2).
|
||||
It is not possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't define.
|
||||
@param z1 Index of the edge
|
||||
@param f2 Pointer to the face
|
||||
@param z2 The edge of the face f2
|
||||
It is not possible to use it also in non-two manifold situation.
|
||||
The function cannot be applicated if the adjacencies among faces aren't define.
|
||||
@param z1 Index of the edge
|
||||
@param f2 Pointer to the face
|
||||
@param z2 The edge of the face f2
|
||||
*/
|
||||
template <class FaceType>
|
||||
void FFAttachManifold(FaceType * &f1, int z1, FaceType *&f2, int z2)
|
||||
|
@ -345,13 +342,13 @@ void FFSetBorder(FaceType * &f1, int z1)
|
|||
template <class FaceType>
|
||||
void AssertAdj(FaceType & f)
|
||||
{
|
||||
assert(f.FFp(0)->FFp(f.FFi(0))==&f);
|
||||
assert(f.FFp(1)->FFp(f.FFi(1))==&f);
|
||||
assert(f.FFp(2)->FFp(f.FFi(2))==&f);
|
||||
assert(f.FFp(0)->FFp(f.FFi(0))==&f);
|
||||
assert(f.FFp(1)->FFp(f.FFi(1))==&f);
|
||||
assert(f.FFp(2)->FFp(f.FFi(2))==&f);
|
||||
|
||||
assert(f.FFp(0)->FFi(f.FFi(0))==0);
|
||||
assert(f.FFp(1)->FFi(f.FFi(1))==1);
|
||||
assert(f.FFp(2)->FFi(f.FFi(2))==2);
|
||||
assert(f.FFp(0)->FFi(f.FFi(0))==0);
|
||||
assert(f.FFp(1)->FFi(f.FFi(1))==1);
|
||||
assert(f.FFp(2)->FFi(f.FFi(2))==2);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -362,17 +359,17 @@ void AssertAdj(FaceType & f)
|
|||
template <class FaceType>
|
||||
bool CheckOrientation(FaceType &f, int z)
|
||||
{
|
||||
if (IsBorder(f, z))
|
||||
return true;
|
||||
else
|
||||
{
|
||||
FaceType *g = f.FFp(z);
|
||||
int gi = f.FFi(z);
|
||||
if (f.V0(z) == g->V1(gi))
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
if (IsBorder(f, z))
|
||||
return true;
|
||||
else
|
||||
{
|
||||
FaceType *g = f.FFp(z);
|
||||
int gi = f.FFi(z);
|
||||
if (f.V0(z) == g->V1(gi))
|
||||
return true;
|
||||
else
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
@ -386,51 +383,51 @@ void SwapEdge(FaceType &f, const int z) { SwapEdge<FaceType,true>(f,z); }
|
|||
template <class FaceType, bool UpdateTopology>
|
||||
void SwapEdge(FaceType &f, const int z)
|
||||
{
|
||||
// swap V0(z) with V1(z)
|
||||
std::swap(f.V0(z), f.V1(z));
|
||||
// swap V0(z) with V1(z)
|
||||
std::swap(f.V0(z), f.V1(z));
|
||||
|
||||
// Managemnt of faux edge information (edge z is not affected)
|
||||
bool Faux1 = f.IsF((z+1)%3);
|
||||
bool Faux2 = f.IsF((z+2)%3);
|
||||
if(Faux1) f.SetF((z+2)%3); else f.ClearF((z+2)%3);
|
||||
if(Faux2) f.SetF((z+1)%3); else f.ClearF((z+1)%3);
|
||||
// Managemnt of faux edge information (edge z is not affected)
|
||||
bool Faux1 = f.IsF((z+1)%3);
|
||||
bool Faux2 = f.IsF((z+2)%3);
|
||||
if(Faux1) f.SetF((z+2)%3); else f.ClearF((z+2)%3);
|
||||
if(Faux2) f.SetF((z+1)%3); else f.ClearF((z+1)%3);
|
||||
|
||||
if(f.HasFFAdjacency() && UpdateTopology)
|
||||
{
|
||||
// store information to preserve topology
|
||||
int z1 = (z+1)%3;
|
||||
int z2 = (z+2)%3;
|
||||
FaceType *g1p = f.FFp(z1);
|
||||
FaceType *g2p = f.FFp(z2);
|
||||
int g1i = f.FFi(z1);
|
||||
int g2i = f.FFi(z2);
|
||||
if(f.HasFFAdjacency() && UpdateTopology)
|
||||
{
|
||||
// store information to preserve topology
|
||||
int z1 = (z+1)%3;
|
||||
int z2 = (z+2)%3;
|
||||
FaceType *g1p = f.FFp(z1);
|
||||
FaceType *g2p = f.FFp(z2);
|
||||
int g1i = f.FFi(z1);
|
||||
int g2i = f.FFi(z2);
|
||||
|
||||
// g0 face topology is not affected by the swap
|
||||
// g0 face topology is not affected by the swap
|
||||
|
||||
if (g1p != &f)
|
||||
{
|
||||
g1p->FFi(g1i) = z2;
|
||||
f.FFi(z2) = g1i;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFi(z2) = z2;
|
||||
}
|
||||
if (g1p != &f)
|
||||
{
|
||||
g1p->FFi(g1i) = z2;
|
||||
f.FFi(z2) = g1i;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFi(z2) = z2;
|
||||
}
|
||||
|
||||
if (g2p != &f)
|
||||
{
|
||||
g2p->FFi(g2i) = z1;
|
||||
f.FFi(z1) = g2i;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFi(z1) = z1;
|
||||
}
|
||||
if (g2p != &f)
|
||||
{
|
||||
g2p->FFi(g2i) = z1;
|
||||
f.FFi(z1) = g2i;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFi(z1) = z1;
|
||||
}
|
||||
|
||||
// finalize swap
|
||||
f.FFp(z1) = g2p;
|
||||
f.FFp(z2) = g1p;
|
||||
}
|
||||
// finalize swap
|
||||
f.FFp(z1) = g2p;
|
||||
f.FFp(z2) = g1p;
|
||||
}
|
||||
}
|
||||
|
||||
/*! Perform a simple edge collapse
|
||||
|
@ -561,8 +558,8 @@ bool CheckFlipEdge(FaceType &f, int z)
|
|||
// boundary edges cannot be flipped
|
||||
if (face::IsBorder(f, z)) return false;
|
||||
|
||||
FaceType *g = f.FFp(z);
|
||||
int w = f.FFi(z);
|
||||
FaceType *g = f.FFp(z);
|
||||
int w = f.FFi(z);
|
||||
|
||||
// check if the vertices of the edge are the same
|
||||
// e.g. the mesh has to be well oriented
|
||||
|
@ -605,52 +602,52 @@ bool CheckFlipEdge(FaceType &f, int z)
|
|||
template <class FaceType>
|
||||
void FlipEdge(FaceType &f, const int z)
|
||||
{
|
||||
assert(z>=0);
|
||||
assert(z<3);
|
||||
assert( !IsBorder(f,z) );
|
||||
assert( face::IsManifold<FaceType>(f, z));
|
||||
assert(z>=0);
|
||||
assert(z<3);
|
||||
assert( !IsBorder(f,z) );
|
||||
assert( face::IsManifold<FaceType>(f, z));
|
||||
|
||||
FaceType *g = f.FFp(z);
|
||||
int w = f.FFi(z);
|
||||
FaceType *g = f.FFp(z);
|
||||
int w = f.FFi(z);
|
||||
|
||||
assert( g->V(w) == f.V1(z) );
|
||||
assert( g->V1(w)== f.V(z) );
|
||||
assert( g->V2(w)!= f.V(z) );
|
||||
assert( g->V2(w)!= f.V1(z) );
|
||||
assert( g->V2(w)!= f.V2(z) );
|
||||
assert( g->V(w) == f.V1(z) );
|
||||
assert( g->V1(w)== f.V(z) );
|
||||
assert( g->V2(w)!= f.V(z) );
|
||||
assert( g->V2(w)!= f.V1(z) );
|
||||
assert( g->V2(w)!= f.V2(z) );
|
||||
|
||||
f.V1(z) = g->V2(w);
|
||||
g->V1(w) = f.V2(z);
|
||||
f.V1(z) = g->V2(w);
|
||||
g->V1(w) = f.V2(z);
|
||||
|
||||
f.FFp(z) = g->FFp((w+1)%3);
|
||||
f.FFi(z) = g->FFi((w+1)%3);
|
||||
g->FFp(w) = f.FFp((z+1)%3);
|
||||
g->FFi(w) = f.FFi((z+1)%3);
|
||||
f.FFp((z+1)%3) = g;
|
||||
f.FFi((z+1)%3) = (w+1)%3;
|
||||
g->FFp((w+1)%3) = &f;
|
||||
g->FFi((w+1)%3) = (z+1)%3;
|
||||
f.FFp(z) = g->FFp((w+1)%3);
|
||||
f.FFi(z) = g->FFi((w+1)%3);
|
||||
g->FFp(w) = f.FFp((z+1)%3);
|
||||
g->FFi(w) = f.FFi((z+1)%3);
|
||||
f.FFp((z+1)%3) = g;
|
||||
f.FFi((z+1)%3) = (w+1)%3;
|
||||
g->FFp((w+1)%3) = &f;
|
||||
g->FFi((w+1)%3) = (z+1)%3;
|
||||
|
||||
if(f.FFp(z)==g)
|
||||
{
|
||||
f.FFp(z) = &f;
|
||||
f.FFi(z) = z;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFp(z)->FFp( f.FFi(z) ) = &f;
|
||||
f.FFp(z)->FFi( f.FFi(z) ) = z;
|
||||
}
|
||||
if(g->FFp(w)==&f)
|
||||
{
|
||||
g->FFp(w)=g;
|
||||
g->FFi(w)=w;
|
||||
}
|
||||
else
|
||||
{
|
||||
g->FFp(w)->FFp( g->FFi(w) ) = g;
|
||||
g->FFp(w)->FFi( g->FFi(w) ) = w;
|
||||
}
|
||||
if(f.FFp(z)==g)
|
||||
{
|
||||
f.FFp(z) = &f;
|
||||
f.FFi(z) = z;
|
||||
}
|
||||
else
|
||||
{
|
||||
f.FFp(z)->FFp( f.FFi(z) ) = &f;
|
||||
f.FFp(z)->FFi( f.FFi(z) ) = z;
|
||||
}
|
||||
if(g->FFp(w)==&f)
|
||||
{
|
||||
g->FFp(w)=g;
|
||||
g->FFi(w)=w;
|
||||
}
|
||||
else
|
||||
{
|
||||
g->FFp(w)->FFp( g->FFi(w) ) = g;
|
||||
g->FFp(w)->FFi( g->FFi(w) ) = w;
|
||||
}
|
||||
}
|
||||
|
||||
template <class FaceType>
|
||||
|
@ -667,47 +664,47 @@ void VFDetach(FaceType & f)
|
|||
template <class FaceType>
|
||||
void VFDetach(FaceType & f, int z)
|
||||
{
|
||||
if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin
|
||||
{
|
||||
int fz = f.V(z)->VFi();
|
||||
f.V(z)->VFp() = f.VFp(fz);
|
||||
f.V(z)->VFi() = f.VFi(fz);
|
||||
}
|
||||
else // scan the list of faces in order to finde the current face f to be detached
|
||||
{
|
||||
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
|
||||
VFIterator<FaceType> y;
|
||||
if(f.V(z)->VFp()==&f ) //if it is the first face detach from the begin
|
||||
{
|
||||
int fz = f.V(z)->VFi();
|
||||
f.V(z)->VFp() = f.VFp(fz);
|
||||
f.V(z)->VFi() = f.VFi(fz);
|
||||
}
|
||||
else // scan the list of faces in order to finde the current face f to be detached
|
||||
{
|
||||
VFIterator<FaceType> x(f.V(z)->VFp(),f.V(z)->VFi());
|
||||
VFIterator<FaceType> y;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
y = x;
|
||||
++x;
|
||||
assert(x.f!=0);
|
||||
if(x.f==&f) // found!
|
||||
{
|
||||
y.f->VFp(y.z) = f.VFp(z);
|
||||
y.f->VFi(y.z) = f.VFi(z);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
for(;;)
|
||||
{
|
||||
y = x;
|
||||
++x;
|
||||
assert(x.f!=0);
|
||||
if(x.f==&f) // found!
|
||||
{
|
||||
y.f->VFp(y.z) = f.VFp(z);
|
||||
y.f->VFi(y.z) = f.VFi(z);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Append a face in VF list of vertex f->V(z)
|
||||
template <class FaceType>
|
||||
void VFAppend(FaceType* & f, int z)
|
||||
{
|
||||
typename FaceType::VertexType *v = f->V(z);
|
||||
if (v->VFp()!=0)
|
||||
{
|
||||
FaceType *f0=v->VFp();
|
||||
int z0=v->VFi();
|
||||
//append
|
||||
f->VFp(z)=f0;
|
||||
f->VFi(z)=z0;
|
||||
}
|
||||
v->VFp()=f;
|
||||
v->VFi()=z;
|
||||
typename FaceType::VertexType *v = f->V(z);
|
||||
if (v->VFp()!=0)
|
||||
{
|
||||
FaceType *f0=v->VFp();
|
||||
int z0=v->VFi();
|
||||
//append
|
||||
f->VFp(z)=f0;
|
||||
f->VFi(z)=z0;
|
||||
}
|
||||
v->VFp()=f;
|
||||
v->VFi()=z;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -721,19 +718,19 @@ void VFAppend(FaceType* & f, int z)
|
|||
template <class FaceType>
|
||||
void VVStarVF( typename FaceType::VertexType* vp, std::vector<typename FaceType::VertexType *> &starVec)
|
||||
{
|
||||
typedef typename FaceType::VertexType* VertexPointer;
|
||||
starVec.clear();
|
||||
face::VFIterator<FaceType> vfi(vp);
|
||||
while(!vfi.End())
|
||||
{
|
||||
starVec.push_back(vfi.F()->V1(vfi.I()));
|
||||
starVec.push_back(vfi.F()->V2(vfi.I()));
|
||||
++vfi;
|
||||
}
|
||||
typedef typename FaceType::VertexType* VertexPointer;
|
||||
starVec.clear();
|
||||
face::VFIterator<FaceType> vfi(vp);
|
||||
while(!vfi.End())
|
||||
{
|
||||
starVec.push_back(vfi.F()->V1(vfi.I()));
|
||||
starVec.push_back(vfi.F()->V2(vfi.I()));
|
||||
++vfi;
|
||||
}
|
||||
|
||||
std::sort(starVec.begin(),starVec.end());
|
||||
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
|
||||
starVec.resize(new_end-starVec.begin());
|
||||
std::sort(starVec.begin(),starVec.end());
|
||||
typename std::vector<VertexPointer>::iterator new_end = std::unique(starVec.begin(),starVec.end());
|
||||
starVec.resize(new_end-starVec.begin());
|
||||
}
|
||||
|
||||
/*!
|
||||
|
@ -952,8 +949,8 @@ void VFOrderedStarFF(Pos<FaceType> &startPos,
|
|||
|
||||
template <class FaceType>
|
||||
void VFOrderedStarFF(Pos<FaceType> &startPos,
|
||||
std::vector<FaceType*> &faceVec,
|
||||
std::vector<int> &edgeVec)
|
||||
std::vector<FaceType*> &faceVec,
|
||||
std::vector<int> &edgeVec)
|
||||
{
|
||||
std::vector<Pos<FaceType> > posVec;
|
||||
VFOrderedStarFF(startPos,posVec);
|
||||
|
|
Loading…
Reference in New Issue