First Release (not working!)
This commit is contained in:
parent
10daa05e85
commit
25d8f00263
|
@ -0,0 +1,617 @@
|
|||
/****************************************************************************
|
||||
* VCGLib o o *
|
||||
* Visual and Computer Graphics Library o o *
|
||||
* _ O _ *
|
||||
* Copyright(C) 2005 \/)\/ *
|
||||
* Visual Computing Lab /\/| *
|
||||
* ISTI - Italian National Research Council | *
|
||||
* \ *
|
||||
* All rights reserved. *
|
||||
* *
|
||||
* This program is free software; you can redistribute it and/or modify *
|
||||
* it under the terms of the GNU General Public License as published by *
|
||||
* the Free Software Foundation; either version 2 of the License, or *
|
||||
* (at your option) any later version. *
|
||||
* *
|
||||
* This program is distributed in the hope that it will be useful, *
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
|
||||
* GNU General Public License (http://www.gnu.org/licenses/gpl.txt) *
|
||||
* for more details. *
|
||||
* *
|
||||
****************************************************************************/
|
||||
/****************************************************************************
|
||||
History
|
||||
|
||||
$Log: not supported by cvs2svn $
|
||||
|
||||
Revision 1.13 2005/11/17 00:42:03 cignoni
|
||||
****************************************************************************/
|
||||
/*
|
||||
The algorithm is based on a three step reduction of the volume integrals
|
||||
to successively simpler integrals. The algorithm is designed to minimize
|
||||
the numerical errors that can result from poorly conditioned alignment of
|
||||
polyhedral faces. It is also designed for efficiency. All required volume
|
||||
integrals of a polyhedron are computed together during a single walk over
|
||||
the boundary of the polyhedron; exploiting common subexpressions reduces
|
||||
floating point operations.
|
||||
|
||||
For more information, check out:
|
||||
|
||||
Brian Mirtich,
|
||||
``Fast and Accurate Computation of Polyhedral Mass Properties,''
|
||||
journal of graphics tools, volume 1, number 2, 1996
|
||||
|
||||
*/
|
||||
|
||||
#include <vcg/math/matrix33.h>
|
||||
|
||||
template <class MESH>
|
||||
class Inertia
|
||||
{
|
||||
private :
|
||||
enum {X=0,Y=1,Z=2};
|
||||
inline MESH::scalar_type SQR(MESH::scalar_type &x) const { return x*x;}
|
||||
inline MESH::scalar_type CUBE(MESH::scalar_type &x) const { return x*x*x;}
|
||||
|
||||
int A; /* alpha */
|
||||
int B; /* beta */
|
||||
int C; /* gamma */
|
||||
|
||||
/* projection integrals */
|
||||
double P1, Pa, Pb, Paa, Pab, Pbb, Paaa, Paab, Pabb, Pbbb;
|
||||
|
||||
/* face integrals */
|
||||
double Fa, Fb, Fc, Faa, Fbb, Fcc, Faaa, Fbbb, Fccc, Faab, Fbbc, Fcca;
|
||||
|
||||
/* volume integrals */
|
||||
double T0, T1[3], T2[3], TP[3];
|
||||
|
||||
public:
|
||||
|
||||
/* compute various integrations over projection of face */
|
||||
void compProjectionIntegrals(MESH::face_type &f)
|
||||
{
|
||||
double a0, a1, da;
|
||||
double b0, b1, db;
|
||||
double a0_2, a0_3, a0_4, b0_2, b0_3, b0_4;
|
||||
double a1_2, a1_3, b1_2, b1_3;
|
||||
double C1, Ca, Caa, Caaa, Cb, Cbb, Cbbb;
|
||||
double Cab, Kab, Caab, Kaab, Cabb, Kabb;
|
||||
int i;
|
||||
|
||||
P1 = Pa = Pb = Paa = Pab = Pbb = Paaa = Paab = Pabb = Pbbb = 0.0;
|
||||
|
||||
for (i = 0; i < 3; i++) {
|
||||
a0 = f.V(i)->P()[A];
|
||||
b0 = f.V(i)->P()[B];
|
||||
a1 = f.V1(i)->P()[A];
|
||||
b1 = f.V1(i)->P()[B];
|
||||
da = a1 - a0;
|
||||
db = b1 - b0;
|
||||
a0_2 = a0 * a0; a0_3 = a0_2 * a0; a0_4 = a0_3 * a0;
|
||||
b0_2 = b0 * b0; b0_3 = b0_2 * b0; b0_4 = b0_3 * b0;
|
||||
a1_2 = a1 * a1; a1_3 = a1_2 * a1;
|
||||
b1_2 = b1 * b1; b1_3 = b1_2 * b1;
|
||||
|
||||
C1 = a1 + a0;
|
||||
Ca = a1*C1 + a0_2; Caa = a1*Ca + a0_3; Caaa = a1*Caa + a0_4;
|
||||
Cb = b1*(b1 + b0) + b0_2; Cbb = b1*Cb + b0_3; Cbbb = b1*Cbb + b0_4;
|
||||
Cab = 3*a1_2 + 2*a1*a0 + a0_2; Kab = a1_2 + 2*a1*a0 + 3*a0_2;
|
||||
Caab = a0*Cab + 4*a1_3; Kaab = a1*Kab + 4*a0_3;
|
||||
Cabb = 4*b1_3 + 3*b1_2*b0 + 2*b1*b0_2 + b0_3;
|
||||
Kabb = b1_3 + 2*b1_2*b0 + 3*b1*b0_2 + 4*b0_3;
|
||||
|
||||
P1 += db*C1;
|
||||
Pa += db*Ca;
|
||||
Paa += db*Caa;
|
||||
Paaa += db*Caaa;
|
||||
Pb += da*Cb;
|
||||
Pbb += da*Cbb;
|
||||
Pbbb += da*Cbbb;
|
||||
Pab += db*(b1*Cab + b0*Kab);
|
||||
Paab += db*(b1*Caab + b0*Kaab);
|
||||
Pabb += da*(a1*Cabb + a0*Kabb);
|
||||
}
|
||||
|
||||
P1 /= 2.0;
|
||||
Pa /= 6.0;
|
||||
Paa /= 12.0;
|
||||
Paaa /= 20.0;
|
||||
Pb /= -6.0;
|
||||
Pbb /= -12.0;
|
||||
Pbbb /= -20.0;
|
||||
Pab /= 24.0;
|
||||
Paab /= 60.0;
|
||||
Pabb /= -60.0;
|
||||
}
|
||||
|
||||
|
||||
void CompFaceIntegrals(MESH::face_type &f)
|
||||
{
|
||||
MESH::vectorial_type n;
|
||||
MESH::scalar_type w;
|
||||
double k1, k2, k3, k4;
|
||||
|
||||
compProjectionIntegrals(f);
|
||||
|
||||
n = f.N();
|
||||
w = -f.V(0)->P()*n;
|
||||
k1 = 1 / n[C]; k2 = k1 * k1; k3 = k2 * k1; k4 = k3 * k1;
|
||||
|
||||
Fa = k1 * Pa;
|
||||
Fb = k1 * Pb;
|
||||
Fc = -k2 * (n[A]*Pa + n[B]*Pb + w*P1);
|
||||
|
||||
Faa = k1 * Paa;
|
||||
Fbb = k1 * Pbb;
|
||||
Fcc = k3 * (SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb
|
||||
+ w*(2*(n[A]*Pa + n[B]*Pb) + w*P1));
|
||||
|
||||
Faaa = k1 * Paaa;
|
||||
Fbbb = k1 * Pbbb;
|
||||
Fccc = -k4 * (CUBE(n[A])*Paaa + 3*SQR(n[A])*n[B]*Paab
|
||||
+ 3*n[A]*SQR(n[B])*Pabb + CUBE(n[B])*Pbbb
|
||||
+ 3*w*(SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb)
|
||||
+ w*w*(3*(n[A]*Pa + n[B]*Pb) + w*P1));
|
||||
|
||||
Faab = k1 * Paab;
|
||||
Fbbc = -k2 * (n[A]*Pabb + n[B]*Pbbb + w*Pbb);
|
||||
Fcca = k3 * (SQR(n[A])*Paaa + 2*n[A]*n[B]*Paab + SQR(n[B])*Pabb
|
||||
+ w*(2*(n[A]*Paa + n[B]*Pab) + w*Pa));
|
||||
}
|
||||
|
||||
|
||||
void Compute(MESH &m)
|
||||
{
|
||||
//
|
||||
double nx, ny, nz;
|
||||
|
||||
T0 = T1[X] = T1[Y] = T1[Z]
|
||||
= T2[X] = T2[Y] = T2[Z]
|
||||
= TP[X] = TP[Y] = TP[Z] = 0;
|
||||
MESH::face_iterator fi;
|
||||
for (fi=m.face.begin(); fi!=m.face.end();++fi) if(!(*fi).IsD()) {
|
||||
MESH::face_type &f=(*fi);
|
||||
|
||||
nx = fabs(f.N()[0]);
|
||||
ny = fabs(f.N()[1]);
|
||||
nz = fabs(f.N()[2]);
|
||||
if (nx > ny && nx > nz) C = X;
|
||||
else C = (ny > nz) ? Y : Z;
|
||||
A = (C + 1) % 3;
|
||||
B = (A + 1) % 3;
|
||||
|
||||
CompFaceIntegrals(f);
|
||||
|
||||
T0 += f.N()[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
|
||||
|
||||
T1[A] += f.N()[A] * Faa;
|
||||
T1[B] += f.N()[B] * Fbb;
|
||||
T1[C] += f.N()[C] * Fcc;
|
||||
T2[A] += f.N()[A] * Faaa;
|
||||
T2[B] += f.N()[B] * Fbbb;
|
||||
T2[C] += f.N()[C] * Fccc;
|
||||
TP[A] += f.N()[A] * Faab;
|
||||
TP[B] += f.N()[B] * Fbbc;
|
||||
TP[C] += f.N()[C] * Fcca;
|
||||
}
|
||||
|
||||
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
|
||||
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
|
||||
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
|
||||
}
|
||||
|
||||
MESH::scalar_type Mass()
|
||||
{
|
||||
return T0;
|
||||
}
|
||||
|
||||
MESH::vectorial_type CenterOfMass()
|
||||
{
|
||||
MESH::vectorial_type r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
return r;
|
||||
}
|
||||
void InertiaTensor(Matrix33<MESH::scalar_type> &J ){
|
||||
MESH::vectorial_type r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
/* compute inertia tensor */
|
||||
J[X][X] = (T2[Y] + T2[Z]);
|
||||
J[Y][Y] = (T2[Z] + T2[X]);
|
||||
J[Z][Z] = (T2[X] + T2[Y]);
|
||||
J[X][Y] = J[Y][X] = - TP[X];
|
||||
J[Y][Z] = J[Z][Y] = - TP[Y];
|
||||
J[Z][X] = J[X][Z] = - TP[Z];
|
||||
|
||||
J[X][X] -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
|
||||
J[Y][Y] -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
|
||||
J[Z][Z] -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
|
||||
J[X][Y] = J[Y][X] += T0 * r[X] * r[Y];
|
||||
J[Y][Z] = J[Z][Y] += T0 * r[Y] * r[Z];
|
||||
J[Z][X] = J[X][Z] += T0 * r[Z] * r[X];
|
||||
}
|
||||
|
||||
void InertiaTensor(Matrix44<MESH::scalar_type> &J )
|
||||
{
|
||||
J.SetIdentity();
|
||||
MESH::vectorial_type r;
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
/* compute inertia tensor */
|
||||
J[X][X] = (T2[Y] + T2[Z]);
|
||||
J[Y][Y] = (T2[Z] + T2[X]);
|
||||
J[Z][Z] = (T2[X] + T2[Y]);
|
||||
J[X][Y] = J[Y][X] = - TP[X];
|
||||
J[Y][Z] = J[Z][Y] = - TP[Y];
|
||||
J[Z][X] = J[X][Z] = - TP[Z];
|
||||
|
||||
J[X][X] -= T0 * (r[Y]*r[Y] + r[Z]*r[Z]);
|
||||
J[Y][Y] -= T0 * (r[Z]*r[Z] + r[X]*r[X]);
|
||||
J[Z][Z] -= T0 * (r[X]*r[X] + r[Y]*r[Y]);
|
||||
J[X][Y] = J[Y][X] += T0 * r[X] * r[Y];
|
||||
J[Y][Z] = J[Z][Y] += T0 * r[Y] * r[Z];
|
||||
J[Z][X] = J[X][Z] += T0 * r[Z] * r[X];
|
||||
}
|
||||
|
||||
|
||||
// Calcola autovalori ed autovettori dell'inertia tensor.
|
||||
// Gli autovettori fanno una rotmatrix che se applicata mette l'oggetto secondo gli assi id minima/max inerzia.
|
||||
|
||||
void InertiaTensorEigen(Matrix44<MESH::scalar_type> &EV, Point4<MESH::scalar_type> &ev )
|
||||
{
|
||||
Matrix44<MESH::scalar_type> it;
|
||||
InertiaTensor(it);
|
||||
Matrix44d EVd,ITd;ITd.Import(it);
|
||||
Point4d evd; evd.Import(ev);
|
||||
int n;
|
||||
ITd.Jacobi(evd,EVd,n);
|
||||
EV.Import(EVd);
|
||||
ev.Import(evd);
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
|
||||
#if 0
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
constants
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
#define MAX_VERTS 100 /* maximum number of polyhedral vertices */
|
||||
#define MAX_FACES 100 /* maximum number of polyhedral faces */
|
||||
#define MAX_POLYGON_SZ 10 /* maximum number of verts per polygonal face */
|
||||
|
||||
#define X 0
|
||||
#define Y 1
|
||||
#define Z 2
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
macros
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
inline MESH:scalar_Type SQR(MESH:scalar_Type &x) const { return x*x;}
|
||||
inline MESH:scalar_Type CUBE(MESH:scalar_Type &x) const { return x*x*x;}
|
||||
//#define CUBE(x) ((x)*(x)*(x))
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
data structures
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
int numVerts;
|
||||
double norm[3];
|
||||
double w;
|
||||
int verts[MAX_POLYGON_SZ];
|
||||
struct polyhedron *poly;
|
||||
} FACE;
|
||||
|
||||
typedef struct polyhedron {
|
||||
int numVerts, numFaces;
|
||||
double verts[MAX_VERTS][3];
|
||||
FACE faces[MAX_FACES];
|
||||
} POLYHEDRON;
|
||||
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
globals
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
static int A; /* alpha */
|
||||
static int B; /* beta */
|
||||
static int C; /* gamma */
|
||||
|
||||
/* projection integrals */
|
||||
static double P1, Pa, Pb, Paa, Pab, Pbb, Paaa, Paab, Pabb, Pbbb;
|
||||
|
||||
/* face integrals */
|
||||
static double Fa, Fb, Fc, Faa, Fbb, Fcc, Faaa, Fbbb, Fccc, Faab, Fbbc, Fcca;
|
||||
|
||||
/* volume integrals */
|
||||
static double T0, T1[3], T2[3], TP[3];
|
||||
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
read in a polyhedron
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
void readPolyhedron(char *name, POLYHEDRON *p)
|
||||
{
|
||||
FILE *fp;
|
||||
char line[200], *c;
|
||||
int i, j, n;
|
||||
double dx1, dy1, dz1, dx2, dy2, dz2, nx, ny, nz, len;
|
||||
FACE *f;
|
||||
|
||||
|
||||
if (!(fp = fopen(name, "r"))) {
|
||||
printf("i/o error\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
fscanf(fp, "%d", &p->numVerts);
|
||||
printf("Reading in %d vertices\n", p->numVerts);
|
||||
for (i = 0; i < p->numVerts; i++)
|
||||
fscanf(fp, "%lf %lf %lf",
|
||||
&p->verts[i][X], &p->verts[i][Y], &p->verts[i][Z]);
|
||||
|
||||
fscanf(fp, "%d", &p->numFaces);
|
||||
printf("Reading in %d faces\n", p->numFaces);
|
||||
for (i = 0; i < p->numFaces; i++) {
|
||||
f = &p->faces[i];
|
||||
f->poly = p;
|
||||
fscanf(fp, "%d", &f->numVerts);
|
||||
for (j = 0; j < f->numVerts; j++) fscanf(fp, "%d", &f->verts[j]);
|
||||
|
||||
/* compute face normal and offset w from first 3 vertices */
|
||||
dx1 = p->verts[f->verts[1]][X] - p->verts[f->verts[0]][X];
|
||||
dy1 = p->verts[f->verts[1]][Y] - p->verts[f->verts[0]][Y];
|
||||
dz1 = p->verts[f->verts[1]][Z] - p->verts[f->verts[0]][Z];
|
||||
dx2 = p->verts[f->verts[2]][X] - p->verts[f->verts[1]][X];
|
||||
dy2 = p->verts[f->verts[2]][Y] - p->verts[f->verts[1]][Y];
|
||||
dz2 = p->verts[f->verts[2]][Z] - p->verts[f->verts[1]][Z];
|
||||
nx = dy1 * dz2 - dy2 * dz1;
|
||||
ny = dz1 * dx2 - dz2 * dx1;
|
||||
nz = dx1 * dy2 - dx2 * dy1;
|
||||
len = sqrt(nx * nx + ny * ny + nz * nz);
|
||||
f->norm[X] = nx / len;
|
||||
f->norm[Y] = ny / len;
|
||||
f->norm[Z] = nz / len;
|
||||
f->w = - f->norm[X] * p->verts[f->verts[0]][X]
|
||||
- f->norm[Y] * p->verts[f->verts[0]][Y]
|
||||
- f->norm[Z] * p->verts[f->verts[0]][Z];
|
||||
|
||||
}
|
||||
|
||||
fclose(fp);
|
||||
|
||||
}
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
compute mass properties
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
|
||||
/* compute various integrations over projection of face */
|
||||
void compProjectionIntegrals(FACE *f)
|
||||
{
|
||||
double a0, a1, da;
|
||||
double b0, b1, db;
|
||||
double a0_2, a0_3, a0_4, b0_2, b0_3, b0_4;
|
||||
double a1_2, a1_3, b1_2, b1_3;
|
||||
double C1, Ca, Caa, Caaa, Cb, Cbb, Cbbb;
|
||||
double Cab, Kab, Caab, Kaab, Cabb, Kabb;
|
||||
int i;
|
||||
|
||||
P1 = Pa = Pb = Paa = Pab = Pbb = Paaa = Paab = Pabb = Pbbb = 0.0;
|
||||
|
||||
for (i = 0; i < f->numVerts; i++) {
|
||||
a0 = f->poly->verts[f->verts[i]][A];
|
||||
b0 = f->poly->verts[f->verts[i]][B];
|
||||
a1 = f->poly->verts[f->verts[(i+1) % f->numVerts]][A];
|
||||
b1 = f->poly->verts[f->verts[(i+1) % f->numVerts]][B];
|
||||
da = a1 - a0;
|
||||
db = b1 - b0;
|
||||
a0_2 = a0 * a0; a0_3 = a0_2 * a0; a0_4 = a0_3 * a0;
|
||||
b0_2 = b0 * b0; b0_3 = b0_2 * b0; b0_4 = b0_3 * b0;
|
||||
a1_2 = a1 * a1; a1_3 = a1_2 * a1;
|
||||
b1_2 = b1 * b1; b1_3 = b1_2 * b1;
|
||||
|
||||
C1 = a1 + a0;
|
||||
Ca = a1*C1 + a0_2; Caa = a1*Ca + a0_3; Caaa = a1*Caa + a0_4;
|
||||
Cb = b1*(b1 + b0) + b0_2; Cbb = b1*Cb + b0_3; Cbbb = b1*Cbb + b0_4;
|
||||
Cab = 3*a1_2 + 2*a1*a0 + a0_2; Kab = a1_2 + 2*a1*a0 + 3*a0_2;
|
||||
Caab = a0*Cab + 4*a1_3; Kaab = a1*Kab + 4*a0_3;
|
||||
Cabb = 4*b1_3 + 3*b1_2*b0 + 2*b1*b0_2 + b0_3;
|
||||
Kabb = b1_3 + 2*b1_2*b0 + 3*b1*b0_2 + 4*b0_3;
|
||||
|
||||
P1 += db*C1;
|
||||
Pa += db*Ca;
|
||||
Paa += db*Caa;
|
||||
Paaa += db*Caaa;
|
||||
Pb += da*Cb;
|
||||
Pbb += da*Cbb;
|
||||
Pbbb += da*Cbbb;
|
||||
Pab += db*(b1*Cab + b0*Kab);
|
||||
Paab += db*(b1*Caab + b0*Kaab);
|
||||
Pabb += da*(a1*Cabb + a0*Kabb);
|
||||
}
|
||||
|
||||
P1 /= 2.0;
|
||||
Pa /= 6.0;
|
||||
Paa /= 12.0;
|
||||
Paaa /= 20.0;
|
||||
Pb /= -6.0;
|
||||
Pbb /= -12.0;
|
||||
Pbbb /= -20.0;
|
||||
Pab /= 24.0;
|
||||
Paab /= 60.0;
|
||||
Pabb /= -60.0;
|
||||
}
|
||||
|
||||
compFaceIntegrals(FACE *f)
|
||||
{
|
||||
double *n, w;
|
||||
double k1, k2, k3, k4;
|
||||
|
||||
compProjectionIntegrals(f);
|
||||
|
||||
w = f->w;
|
||||
n = f->norm;
|
||||
k1 = 1 / n[C]; k2 = k1 * k1; k3 = k2 * k1; k4 = k3 * k1;
|
||||
|
||||
Fa = k1 * Pa;
|
||||
Fb = k1 * Pb;
|
||||
Fc = -k2 * (n[A]*Pa + n[B]*Pb + w*P1);
|
||||
|
||||
Faa = k1 * Paa;
|
||||
Fbb = k1 * Pbb;
|
||||
Fcc = k3 * (SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb
|
||||
+ w*(2*(n[A]*Pa + n[B]*Pb) + w*P1));
|
||||
|
||||
Faaa = k1 * Paaa;
|
||||
Fbbb = k1 * Pbbb;
|
||||
Fccc = -k4 * (CUBE(n[A])*Paaa + 3*SQR(n[A])*n[B]*Paab
|
||||
+ 3*n[A]*SQR(n[B])*Pabb + CUBE(n[B])*Pbbb
|
||||
+ 3*w*(SQR(n[A])*Paa + 2*n[A]*n[B]*Pab + SQR(n[B])*Pbb)
|
||||
+ w*w*(3*(n[A]*Pa + n[B]*Pb) + w*P1));
|
||||
|
||||
Faab = k1 * Paab;
|
||||
Fbbc = -k2 * (n[A]*Pabb + n[B]*Pbbb + w*Pbb);
|
||||
Fcca = k3 * (SQR(n[A])*Paaa + 2*n[A]*n[B]*Paab + SQR(n[B])*Pabb
|
||||
+ w*(2*(n[A]*Paa + n[B]*Pab) + w*Pa));
|
||||
}
|
||||
|
||||
void CompVolumeIntegrals(POLYHEDRON *p)
|
||||
{
|
||||
FACE *f;
|
||||
double nx, ny, nz;
|
||||
int i;
|
||||
|
||||
T0 = T1[X] = T1[Y] = T1[Z]
|
||||
= T2[X] = T2[Y] = T2[Z]
|
||||
= TP[X] = TP[Y] = TP[Z] = 0;
|
||||
|
||||
for (i = 0; i < p->numFaces; i++) {
|
||||
|
||||
f = &p->faces[i];
|
||||
|
||||
nx = fabs(f->norm[X]);
|
||||
ny = fabs(f->norm[Y]);
|
||||
nz = fabs(f->norm[Z]);
|
||||
if (nx > ny && nx > nz) C = X;
|
||||
else C = (ny > nz) ? Y : Z;
|
||||
A = (C + 1) % 3;
|
||||
B = (A + 1) % 3;
|
||||
|
||||
compFaceIntegrals(f);
|
||||
|
||||
T0 += f->norm[X] * ((A == X) ? Fa : ((B == X) ? Fb : Fc));
|
||||
|
||||
T1[A] += f->norm[A] * Faa;
|
||||
T1[B] += f->norm[B] * Fbb;
|
||||
T1[C] += f->norm[C] * Fcc;
|
||||
T2[A] += f->norm[A] * Faaa;
|
||||
T2[B] += f->norm[B] * Fbbb;
|
||||
T2[C] += f->norm[C] * Fccc;
|
||||
TP[A] += f->norm[A] * Faab;
|
||||
TP[B] += f->norm[B] * Fbbc;
|
||||
TP[C] += f->norm[C] * Fcca;
|
||||
}
|
||||
|
||||
T1[X] /= 2; T1[Y] /= 2; T1[Z] /= 2;
|
||||
T2[X] /= 3; T2[Y] /= 3; T2[Z] /= 3;
|
||||
TP[X] /= 2; TP[Y] /= 2; TP[Z] /= 2;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
============================================================================
|
||||
main
|
||||
============================================================================
|
||||
*/
|
||||
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
POLYHEDRON p;
|
||||
double density, mass;
|
||||
double r[3]; /* center of mass */
|
||||
double J[3][3]; /* inertia tensor */
|
||||
|
||||
if (argc != 2) {
|
||||
printf("usage: %s <polyhedron geometry filename>\n", argv[0]);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
readPolyhedron(argv[1], &p);
|
||||
|
||||
compVolumeIntegrals(&p);
|
||||
|
||||
|
||||
printf("\nT1 = %+20.6f\n\n", T0);
|
||||
|
||||
printf("Tx = %+20.6f\n", T1[X]);
|
||||
printf("Ty = %+20.6f\n", T1[Y]);
|
||||
printf("Tz = %+20.6f\n\n", T1[Z]);
|
||||
|
||||
printf("Txx = %+20.6f\n", T2[X]);
|
||||
printf("Tyy = %+20.6f\n", T2[Y]);
|
||||
printf("Tzz = %+20.6f\n\n", T2[Z]);
|
||||
|
||||
printf("Txy = %+20.6f\n", TP[X]);
|
||||
printf("Tyz = %+20.6f\n", TP[Y]);
|
||||
printf("Tzx = %+20.6f\n\n", TP[Z]);
|
||||
|
||||
density = 1.0; /* assume unit density */
|
||||
|
||||
mass = density * T0;
|
||||
|
||||
/* compute center of mass */
|
||||
r[X] = T1[X] / T0;
|
||||
r[Y] = T1[Y] / T0;
|
||||
r[Z] = T1[Z] / T0;
|
||||
|
||||
/* compute inertia tensor */
|
||||
J[X][X] = density * (T2[Y] + T2[Z]);
|
||||
J[Y][Y] = density * (T2[Z] + T2[X]);
|
||||
J[Z][Z] = density * (T2[X] + T2[Y]);
|
||||
J[X][Y] = J[Y][X] = - density * TP[X];
|
||||
J[Y][Z] = J[Z][Y] = - density * TP[Y];
|
||||
J[Z][X] = J[X][Z] = - density * TP[Z];
|
||||
|
||||
/* translate inertia tensor to center of mass */
|
||||
J[X][X] -= mass * (r[Y]*r[Y] + r[Z]*r[Z]);
|
||||
J[Y][Y] -= mass * (r[Z]*r[Z] + r[X]*r[X]);
|
||||
J[Z][Z] -= mass * (r[X]*r[X] + r[Y]*r[Y]);
|
||||
J[X][Y] = J[Y][X] += mass * r[X] * r[Y];
|
||||
J[Y][Z] = J[Z][Y] += mass * r[Y] * r[Z];
|
||||
J[Z][X] = J[X][Z] += mass * r[Z] * r[X];
|
||||
|
||||
printf("center of mass: (%+12.6f,%+12.6f,%+12.6f)\n\n", r[X], r[Y], r[Z]);
|
||||
|
||||
printf("inertia tensor with origin at c.o.m. :\n");
|
||||
printf("%+15.6f %+15.6f %+15.6f\n", J[X][X], J[X][Y], J[X][Z]);
|
||||
printf("%+15.6f %+15.6f %+15.6f\n", J[Y][X], J[Y][Y], J[Y][Z]);
|
||||
printf("%+15.6f %+15.6f %+15.6f\n", J[Z][X], J[Z][Y], J[Z][Z]);
|
||||
|
||||
}
|
||||
#endif
|
Loading…
Reference in New Issue