Heavily restructured. Now more robust and allow also the creation of discretized surfaces

This commit is contained in:
Paolo Cignoni 2009-01-08 11:26:49 +00:00
parent 3e85ffd0ff
commit 28c4843567
1 changed files with 117 additions and 41 deletions

View File

@ -89,15 +89,9 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
GridType _g;
public:
float max_dim;
float offset; // an offset value that is always added to the returned value. Useful for extrarcting isosurface at a different threshold
/*Walker(Volume_Dataset <short> *Vo,float in,const Box3i &bbox,vcg::Point3i &resolution)
{*/
/* init=in;
Vol=Vo;*/
float max_dim; // the limit value of the search (that takes into account of the offset)
float offset; // an offset value that is always added to the returned value. Useful for extrarting isosurface at a different threshold
bool DiscretizeFlag; // if the extracted surface should be discretized or not.
Walker(const Box3f &_bbox, Point3i _siz )
{
this->bbox= _bbox;
@ -107,6 +101,7 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
SliceSize = (this->siz.X()+1)*(this->siz.Z()+1);
CurrentSlice = 0;
offset=0;
DiscretizeFlag=false;
_x_cs = new VertexIndex[ SliceSize ];
_y_cs = new VertexIndex[ SliceSize ];
@ -125,10 +120,11 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
float V(const Point3i &p)
{
return (V(p.V(0),p.V(1),p.V(2)));
return V(p.V(0),p.V(1),p.V(2));
}
float V(int x,int y,int z)
std::pair<bool,float> VV(int x,int y,int z)
{
assert ((y==CurrentSlice)||(y==(CurrentSlice+1)));
@ -138,14 +134,14 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
return (1.f);*/
int index=GetSliceIndex(x,z);
if (y==CurrentSlice)
{
return _v_cs[index].second+offset;
}
else
{
return _v_ns[index].second+offset;
}
if (y==CurrentSlice) return _v_cs[index];
else return _v_ns[index];
}
float V(int x,int y,int z)
{
if(DiscretizeFlag) return VV(x,y,z).second+offset<0?-1:1;
return VV(x,y,z).second+offset;
}
///return true if the distance form the mesh is less than maxdim and return distance
bool DistanceFromMesh(int x,int y,int z,Old_Mesh *mesh, float &dist)
@ -156,9 +152,9 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
vcg::Point3f testPt;
this->IPiToPf(Point3i(x,y,z),testPt);
vcg::Point3f closestNorm;
vcg::Point3f closestNormV,closestNormF;
vcg::Point3f closestPt;
vcg::Point3f pip;
vcg::Point3f pip(-1,-1,-1);
// Note that PointDistanceBaseFunctor does not require the edge and plane precomptued.
// while the PointDistanceFunctor requires them.
@ -167,23 +163,38 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
f = _g.GetClosest(PDistFunct,markerFunctor,testPt,max_dist,dist,closestPt);
if (f==NULL) return false;
InterpolationParameters(*f,closestPt, pip[0], pip[1], pip[2]);
closestNorm = (f->V(0)->cN())*pip[0]+ (f->V(1)->cN())*pip[1] + (f->V(2)->cN())*pip[2] ;
assert(!f->IsD());
Point3f dir=(testPt-closestPt);
/* dist=dir.Norm();*/
bool retIP;
// To compute the interpolated normal we use the more robust function that require to know what is the most orhogonal direction of the face.
if((*f).Flags() & Old_Mesh::FaceType::NORMX) retIP=InterpolationParameters(*f,0,closestPt, pip);
else if((*f).Flags() & Old_Mesh::FaceType::NORMY) retIP=InterpolationParameters(*f,1,closestPt, pip);
else if((*f).Flags() & Old_Mesh::FaceType::NORMZ) retIP=InterpolationParameters(*f,2,closestPt, pip);
else assert(0);
assert(retIP); // this should happen only if the starting mesh has degenerate faces.
closestNormV = (f->V(0)->cN())*pip[0] + (f->V(1)->cN())*pip[1] + (f->V(2)->cN())*pip[2] ;
closestNormF = f->cN() ;
dir.Normalize();
//direction of normal inside the mesh
if ((dir.dot(closestNorm))<0)
dist=-dist;
//the intersection exist
return true;
Point3f dir=(testPt-closestPt).Normalize();
// Compute test if the point see the surface normal from inside or outside
// Surface normal for improved robustness is computed both by face and interpolated from vertices.
float signV = dir.dot(closestNormV) ;
float signF = dir.dot(closestNormF) ;
// Note that the two sings could be discordant.
// Always choose the best one according to the magnitude.
float signBest;
if(fabs(signV) > fabs(signF)) signBest = signV;
else signBest = signF;
if(signBest<0) dist=-dist;
return true;
}
///compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
/// compute the values if an entire slice (per y) distances>dig of a cell are signed with double of
/// the distance of the bb
void ComputeSliceValues(int slice,field_value *slice_values)
{
@ -200,11 +211,60 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
//end putting values
}
else
slice_values[index]=field_value(false,dist);
slice_values[index]=field_value(false,0);
}
}
//ComputeConsensus(slice,slice_values);
}
/*
For some reasons it can happens that the sign of the computed distance is not correct.
*/
void ComputeConsensus(int slice, field_value *slice_values)
{
float max_dist = min(min(this->voxel[0],this->voxel[1]),this->voxel[2]);
int flippedCnt=0;
int flippedTot=0;
int flippedTimes=0;
do
{
flippedCnt=0;
for (int i=0; i<=this->siz.X(); i++)
{
for (int k=0; k<=this->siz.Z(); k++)
{
int goodCnt=0;
int badCnt=0;
int index=GetSliceIndex(i,k);
int index_l,index_r,index_u,index_d;
if(slice_values[index].first)
{
float curVal= slice_values[index].second;
if(i > 0 ) index_l=GetSliceIndex(i-1,k); else index_l = index;
if(i < this->siz.X() ) index_r=GetSliceIndex(i+1,k); else index_r = index;
if(k > 0 ) index_d=GetSliceIndex(i,k-1); else index_d = index;
if(k < this->siz.Z() ) index_u=GetSliceIndex(i,k+1); else index_u = index;
if(slice_values[index_l].first) { goodCnt++; if(fabs(slice_values[index_l].second - curVal) > max_dist) badCnt++; }
if(slice_values[index_r].first) { goodCnt++; if(fabs(slice_values[index_r].second - curVal) > max_dist) badCnt++; }
if(slice_values[index_u].first) { goodCnt++; if(fabs(slice_values[index_u].second - curVal) > max_dist) badCnt++; }
if(slice_values[index_d].first) { goodCnt++; if(fabs(slice_values[index_d].second - curVal) > max_dist) badCnt++; }
if(badCnt >= goodCnt) {
slice_values[index].second *=-1.0f;
//slice_values[index].first = false;
flippedCnt++;
}
}
}
}
flippedTot+=flippedCnt;
flippedTimes++;
} while(flippedCnt>0);
if(flippedTot>0)
qDebug("Flipped %i values in %i times",flippedTot,flippedTimes);
}
template<class EXTRACTOR_TYPE>
void ProcessSlice(EXTRACTOR_TYPE &extractor)
{
@ -212,9 +272,15 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
{
for (int k=0; k<this->siz.Z(); k++)
{
bool goodCell=true;
Point3i p1(i,CurrentSlice,k);
Point3i p2=p1+Point3i(1,1,1);
extractor.ProcessCell(p1, p2);
for(int ii=0;ii<2;++ii)
for(int jj=0;jj<2;++jj)
for(int kk=0;kk<2;++kk)
goodCell &= VV(p1[0]+ii,p1[1]+jj,p1[2]+kk).first;
if(goodCell) extractor.ProcessCell(p1, p2);
}
}
}
@ -227,24 +293,33 @@ template <class OLD_MESH_TYPE,class NEW_MESH_TYPE, class FLT, class DISTFUNCTOR
_oldM=&old_mesh;
// the following two steps are required to be sure that the point-face distance without precomputed data works well.
tri::UpdateNormals<Old_Mesh>::PerFaceNormalized(old_mesh);
tri::UpdateNormals<Old_Mesh>::PerVertexNormalizedPerFaceNormalized(old_mesh);
tri::UpdateFlags<Old_Mesh>::FaceProjection(old_mesh);
int _size=(int)old_mesh.fn*100;
_g.Set(_oldM->face.begin(),_oldM->face.end());
_g.Set(_oldM->face.begin(),_oldM->face.end(),_size);
markerFunctor.SetMesh(&old_mesh);
_newM->Clear();
Begin();
extractor.Initialize();
int computeTime =0;
int extractTime =0;
int t0,t1,t2;
for (int j=0; j<=this->siz.Y(); j++)
{
cb((100*j)/this->siz.Y(),"Marching ");
t0 = clock();
ProcessSlice<EXTRACTOR_TYPE>(extractor);//find cells where there is the isosurface and examine it
t1 = clock();
NextSlice();
t2 = clock();
computeTime += t1-t0;
extractTime += t2-t1;
}
extractor.Finalize();
qDebug("Extract %i, Compute %i",t1-t0,t2-t1);
typename New_Mesh::VertexIterator vi;
for(vi=new_mesh.vert.begin();vi!=new_mesh.vert.end();++vi)
@ -499,7 +574,7 @@ typedef Walker /*< Old_Mesh,New_Mesh>*/ MyWalker;
typedef vcg::tri::MarchingCubes<New_Mesh, MyWalker> MyMarchingCubes;
///resample the mesh using marching cube algorithm ,the accuracy is the dimension of one cell the parameter
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist, float thr=0, vcg::CallBackPos *cb=0 )
static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accuracy,float max_dist, float thr=0, bool DiscretizeFlag=false, vcg::CallBackPos *cb=0 )
{
///be sure that the bounding box is updated
vcg::tri::UpdateBounding<Old_Mesh>::Box(old_mesh);
@ -510,6 +585,7 @@ static void Resample(Old_Mesh &old_mesh,New_Mesh &new_mesh,vcg::Point3<int> accu
walker.max_dim=max_dist+fabs(thr);
walker.offset = - thr;
walker.DiscretizeFlag = DiscretizeFlag;
MyMarchingCubes mc(new_mesh, walker);
walker.BuildMesh(old_mesh,new_mesh,mc,cb);
}